
KGAMD: An API-Misuse Detector Driven by Fine-Grained
API-Constraint Knowledge Graph

Xiaoxue Ren
xxren@zju.edu.cn
Zhejiang University

China

Xinyuan Ye
u6296255@anu.edu.au

Australian National University
Australia

Zhenchang Xing
zhenchang.Xing@anu.edu

Australian National University
Australia

Xin Xia
xin.xia@acm.org
Monash University

Australia

Xiwei Xu
Xiwei.Xu@data61.csiro.au

CSIRO
Australia

Liming Zhu
Liming.Zhu@data61.csiro.au

CSIRO
Australia

Jianling Sun
sunjl@zju.edu.cn

Zhejiang University
China

ABSTRACT
Application Programming Interfaces (APIs) typically come with us-
age constraints. The violations of these constraints (i.e. API misuses)
can cause significant problems in software development. Existing
methods mine frequent API usage patterns from codebase to detect
API misuses. They make a naive assumption that API usage that
deviates from the most-frequent API usage is a misuse. However,
there is a big knowledge gap between API usage patterns and API
usage constraints in terms of comprehensiveness, explainability
and best practices. Inspired by this, we propose a novel approach
named KGAMD (API-Misuse Detector Driven by Fine-Grained API-
Constraint Knowledge Graph) that detects API misuses directly
against the API constraint knowledge, rather than API usage pat-
terns. We first construct a novel API-constraint knowledge graph
from API reference documentation with open information extrac-
tion methods. This knowledge graph explicitly models two types
of API-constraint relations (call-order and condition-checking) and
enriches return and throw relations with return conditions and
exception triggers. Then, we develop the KGAMD tool that utilizes
the knowledge graph to detect API misuses. There are three types
of frequent API misuses we can detect - missing calls, missing con-
dition checking and missing exception handling, while existing
detectors mostly focus on only missing calls. Our quantitative eval-
uation and user study demonstrate that our KGAMD is promising
in helping developers avoid and debug API misuses.
Demo Video: https://www.youtube.com/watch?v=TN4LtHJ-494
IntelliJ plug-in: https://github.com/goodchar/KGAMD

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3473112

CCS CONCEPTS
• Software and its engineering→ Data types and structures.

KEYWORDS
API Misuse, Knowledge Graph, Java Documentation

ACM Reference Format:
Xiaoxue Ren, Xinyuan Ye, Zhenchang Xing, Xin Xia, Xiwei Xu, Liming
Zhu, and Jianling Sun. 2021. KGAMD: An API-Misuse Detector Driven by
Fine-Grained API-Constraint Knowledge Graph. In Proceedings of the 29th
ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE ’21), August 23–28, 2021,
Athens, Greece. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3468264.3473112

1 INTRODUCTION
Application Programming Interfaces (APIs) often have usage caveats,
such as constraints on call order or value/state conditions. For in-
stance, when using the Iterator in Java, one should check that
hasNext() returns true (i.e., the iteration has more elements) before
calling next(), to avoidNoSuchElementExcpetion. Applications that
fail to follow these caveats (i.e., misuse APIs) may suffer from bugs.
Existing work has developed some pattern-based tools to detect
API misuses via static code analysis. These pattern-based methods
mine frequent API usage patterns from codebase, and make a naive
assumption that any deviations with respect to these patterns are
potential misuses [2]. Amann et al. [2] conduct a systematic evalu-
ation and reveal that all pattern-based API-misuse detectors suffer
from low precision (0-11%) and recall (0-20%) in practice.

To improve detection results, some methods attempt to mining
from bigger codebase through code search engine [8], which can ob-
tain more API usage patterns [4], or set up more robust probabilistic
models of deviation [5]. However, none of these improvements go
beyond the naive assumption of pattern-based API-misuse detec-
tion. In this case, to abandon such naive assumption, we propose a
knowledge-driven approach named API-Misuse Detector Driven by
Fine-Grained API-Constraint Knowledge Graph (KGAMD), which
detects API misuses against a novel API-constraint knowledge

1515

https://www.youtube.com/watch?v=TN4LtHJ-494
https://github.com/goodchar/KGAMD
https://doi.org/10.1145/3468264.3473112
https://doi.org/10.1145/3468264.3473112
https://doi.org/10.1145/3468264.3473112

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Xiaoxue Ren, Xinyuan Ye, Zhenchang Xing, Xin Xia, Xiwei Xu, Liming Zhu, and Jianling Sun

graph derived from API documentation, rather than API usage
patterns.

API reference documentation provides rich knowledge of API
usage caveats [3]. Although IDEs provide direct access to API docu-
mentation, the current semi-structured API documentation cannot
help solve the API misuse problems directly [3]. To improve the
accessibility of API-caveat knowledge, Li et al. [3] use Natural
Language Processing (NLP) techniques to construct an API-caveat
knowledge graph from API documentation. This knowledge graph
supports API-centric search of caveat sentences. However, caveat
sentences cannot be directly used to detect API misuses in source
code in natural language form.

In this paper, we propose an API-constraint knowledge graph by
integrating API constraint relations into current semi-structured
API knowledge graph: the entities include API elements and value
literals, and the edges include two categories: declaration relations
and constraints relations (i.e., call-order, condition-checking, return-
condition, exception-trigger) (see Section 2.1). Different from ex-
isting API knowledge graphs [3] that capture only declaration
relations and simply link API-caveat sentences to an API as its
attributes, we utilize NLP techniques to extract API constraint rela-
tions from API-caveat sentences. Compared with existing methods
that infer specifications from text [7], our approach infers more
types of and more informative API constraints. Given a program,
after representing it into a graph, such as Abstract Syntax Tree,
we link the program elements with the API entities in our API-
constraint knowledge graph. By analyzing target API constraints of
the linked entities in our knowledge, our approach reports violates
as API misuses and explains the detected misused by relevant API
caveats.

As a proof of concept, we apply our approach to Java SDK API
Specification and construct a knowledge graphwhich contains 1,938
call-order relations and 74,207 condition-checking relations among
21,910 methods and 8,632 parameters, and 8,215 return-value con-
ditions and 12,477 exception trigger clauses. Using the statistical
sampling method [6], two developers independently annotate the
accuracy of the extracted API-constrained relations. The annotation
results confirm the high accuracy (>85%) of the extracted informa-
tion with substantial to almost perfect agreement between the two
annotators. For the 239 API misuses in the 54 Java projects in the
MuBench [1], our API misuse detector achieves 60% in precision
and 28% in recall. As a comparison, existing pattern-based detectors
achieve about 0-11.4% in precision and 0-20.8% in recall according
to the systematic evaluation of these detectors [2]. We conduct a
pilot user study with 12 junior developers who are asked to find and
fix the bugs in six API misuse scenarios derived from the MuBench.
The developers, assisted by our API misuse warnings, find and fix
bugs much faster and more correctly than those using standard IDE
support.

2 APPROACH
Figure 1 shows the overall framework of our approach of construct-
ing API-constraint knowledge graph and detecting API misuses.
Moreover, it also contains an example of “filereader” method, which
shows how our approach works to detect API misuses and report

warnings to developers. Our API-constraint knowledge graph signif-
icantly extends existing general API knowledge graphs [3] (referred
to as API declaration graph (see Section 2.3) in this work) with four
types of fine-grained API constraint relations, which are derived
from API caveat sentences (see Section 2.4). These API constraint re-
lations correspond to the three most-frequent API misuse categories
in the API misuse benchmark MuBench [2] (see Section 2.1). We
develop a novel knowledge-driven API misuse detector (KGAMD)
that checks the program for API misuses against the API-constraint
knowledge graph (see Section 2.5).

2.1 Knowledge Graph Schema
The knowledge graph entities include API elements (package, class,
exception, method, parameter and return-value) and value literals.
We distinguish exception from class to facilitate exception handling
analysis. An entity has a name (null for return-value). A method
or parameter entity also has a functionality description, which is
used to link method or parameter to relevant API caveat descrip-
tion for deriving API-constraint relations. A return-value entity
has a return-value description. This work focuses on API-method
constraints, so we do not need descriptions for packages and classes.
Packages and classes are used as the declaration scope to limit the
search space of API constraint relation inference.
Relations of our knowledge graph include declaration relations and
constraint relations. The declaration relations include an API ele-
ment contains another API element, a method returns a value-literal,
and a method throws an exception. Different from the existing API
knowledge graphs [3], we attach condition attribute to return rela-
tions. It helps identify the situation where using the return value
of one method as the argument of the other method may cause
program errors. Furthermore, we attach trigger attribute to throw
relations, which records the exception situation that cannot be pre-
vented by certain pre-condition checking.
Besides constraint-enriched return/throw relations, our knowl-
edge graph includes two other constraint relations: call-order and
condition-checking, which correspond to the top-2 most frequent
API misuses in the API misuse benchmark [2]: missing-call and
missing-condition-checking. A call-order relation can be either
precede or follow. It may have an optional condition attribute for
the preceding/following method call. Call-order is not transitive,
and precede-follow are not symmetric. A condition-checking re-
lation can be either value checking or state-checking. The value-
checking records the expected expression (e.g., !=, <), and the state-
checking records the expected state(e.g., true). Both the call-order
and condition-checking relations may have a violation attribute,
which records the consequence if the call-order or the expected
expression or state is not satisfied.

2.2 API Documentation and Preprocessing
To construct API-constraint knowledge graph as defined above from
API reference documentation, We crawl online API documentation
using web crawling tool and keep semi-structured API declarations
and API textual descriptions following the treatment in [3].

1516

KGAMD: An API-Misuse Detector Driven by Fine-Grained API-Constraint Knowledge Graph ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

API Reference
Documentation

API Textual
Description

Extract API Caveat Clause

Link Caveat Clause to API
Elememts

Creat API Constraint
Relations

 Semi-structured
API Declaration

Construct API
Declaration Graph

Return Condition

Exception Trigger

Call-order

State-checking

Developer

KGAMD Code

API Declaration Graph

Derive API Constraint Relations

Entity
Declared Relation

Return

Throw

Contain

API
Elements

Report

Value
Literals

API-constraint
Knowledge

Graph

API-misuse &
Caveat Description

Example

FileReader(File): throws FileNotFoundException - if the file does not exist, is a
directory rather than a regular file, or for some other reason cannot be opened for
reading.
read(): throw IOException - If an I/O error occurs.

Add API
Constraints

hasmethod
File

exists()

FileReader

FileReader
(String)

fileName

hasmethod

trigger
[cannot be opened

for reading]

<state-checking>
[Expected State: true]

[Violation:
FileNotFoundException]

<state-checking>
[Expected State: false]

[Violation:
FileNotFoundException]]

hasparameter

FileNotFoundException

hasmethod

FileNotFoundException

FileNotFoundException

Show KG
Inspections

isDirectory()

Figure 1: The Overall Framework of Our Approach

2.3 Constructing API Declaration Graph
First, we construct anAPI declaration graph from the semi-structured
API declarations of official API documentation. As our API declara-
tion graph is the same as the generic API knowledge graph in [3],
we adopt their tested web page parser to extract API elements, API
names and descriptions, and declaration relations as required in
our knowledge graph (see Section 2.1). We use brief introduction
sentences of each method in the method summary section as that
method’s functionality description. To detect API misuses related to
API chain calls (e.g., substring(indexOf())), we extend the original
parser in [3] to extract more fine-grained return relations.

2.4 Deriving API Constraint Relations
Our API-constraint knowledge graph also contains call-order and
condition-checking relations between related APIs, and constraint-
enriched return and throw relations, compared with existing API
knowledge graphs [3].

2.4.1 Extracting API-Caveat Clauses. As we focus on API-method
usage constraints, we limit the extraction to the main description
of each method and the description in the method’s return and
throws section. Each extracted caveat sentence is associated with
its corresponding method or return/throw relation. We translate
the extracted caveat sentences into fine-grained API-caveat clauses
by resolving co-reference, splitting sentences into clauses and clus-
tering similar clauses, to facilitate the subsequent API linking and
constraint relation inference.

2.4.2 Linking Caveat Clauses to API Elements. Given a caveat de-
scription (a clause or its subject/object phrase) associated with a
method or a throw relation, we can infer methods or parameters,
whose functionality descriptions match the caveat description. We
link the caveat clause or its subject/object to methods or parameters
that are referred to by the clause or its subject/object, or whose
functionality can fulfill or check the clause or its subject/object.

2.4.3 Creating API Constraint Relations. After obtaining a caveat
clause, we analyze its API linking results and create constraint
relations according to some heuristic rules (please refer to our
paper for more details about heuristic rules).

2.5 API Misuse Detection
Wedevelop a knowledge-drivenAPImisuse detector namedKGAMD,
that examines the API usage in a program against the constructed
API-constraint knowledge graph. In this work, the detector per-
forms static code analysis on the Abstract Syntax Tree (AST) of the
program. For each API method used in the program (denoted as
𝑎𝑝𝑖𝑝), it first links 𝑎𝑝𝑖𝑝 to an API method in the knowledge graph
(denoted as 𝑎𝑝𝑖𝑘𝑔) by matching their fully-qualified names. Then,
it collects all call-order, condition-checking, and throw relations of
𝑎𝑝𝑖𝑘𝑔 .

3 IMPLEMENTATION DETAILS
3.1 Knowledge Base
We construct an API-constraint knowledge graph for Java SDK
APIs. Using the web page parser, we extract 72,337 API elements
(including 59,991 API methods, 11,334 parameters and 1,012 excep-
tion), and 64,400 API declaration relations (including 45,247 return
relations and 18,999 throw relations). Using API-caveat patterns de-
veloped by Li et al. [3], we extract 97,462 conditional and temporal
API-caveat sentences. From these API-caveat sentences, our ap-
proach creates 1,938 call-order relations, 74,207 condition checking
relations, and enrich 8,215 return relations with return-value con-
ditions and 12,477 throw relations with exception triggers. These
API-constraint relations involve 21,910 methods, 8,632 parameters,
and 8,215 return and 12,477 throw relations. We develop an IntelliJ
IDE plug-in which detects API misuses in Java programs based on
the constructed API-constraint knowledge graph.

3.2 Tool Implementation and Usage
As our API-constraint knowledge graph focus on four constraint
relations, which can refer to three types of API misuses: exception
trigger, call order and condition checking, exception trigger and

1517

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Xiaoxue Ren, Xinyuan Ye, Zhenchang Xing, Xin Xia, Xiwei Xu, Liming Zhu, and Jianling Sun

return condition, our KGAMD detects them and gives three types of
warnings respectively: missing call, missing condition checking and
missing exception handling. For the call-order relation, KGAMD
examines if the required preceding or following method is called
before or after calling 𝑎𝑝𝑖𝑝 . For the condition-checking relation,
the detector examines if the required value or state checking is
performed before calling 𝑎𝑝𝑖𝑝 . If the required checking is found in
the program and the expected expression or state of the condition-
checking relation involves specific values/states and mathematical
formulas, the detector further examines if the expected expression
or state can be satisfied by the program. Let 𝑒𝑥𝑝𝑝 and 𝑒𝑥𝑝𝑘𝑔 be the
formula of the corresponding condition checking in the program
and in the knowledge graph, respectively. The detector examines
if (𝑒𝑥𝑝𝑝 ∧ ¬ exp𝑘𝑔) ∨ (¬𝑒𝑥𝑝𝑝 exp𝑘𝑔) is satisfied by a SAT solver.
If a violation of the required call-order or condition-checking is
detected, the detector reports not only an API misuse, but also
the consequence of API misuse, the relevant API to fix the misuse,
and the original API caveat sentence as the explanation of the
API misuse. If the compiler detects an unhandled exception 𝑢𝑒 for
𝑎𝑝𝑖𝑝 , our detector locates the specific throw relation for 𝑢𝑒 in our
knowledge graph and reports the associated exception trigger.

The example in Figure 1 also shows the user interface of IntelliJ
IDE plugin. In the example, we assume a developer want to use
“FileReader” to read the content of “test.txt”. Our knowledge-driven
API misuse detector gives three warnings like the picture shows:
The first warning is about exception handling, which is caused by
the constraint clause “FileReader(File): throws FileNotFoundException
- if the file for some other reason cannot be opened for reading.” The
second is condition checking caused by “FileReader(File): throws
FileNotFoundException - if the file does not exist.” And the last one is
also condition checking, which is extracted from the constraint “Fil-
eReader(File): throws FileNotFoundException - if the file is a directory
rather than a regular file.” Compared to our KGAMD, IntelliJ IDE
can also give a warning, but just tell the developer there may be an
exception and please use “try-catch” around the code snippets. This
warning is quite general and cannot give us a better solution. As the
three constraint clauses, where we generate the warnings, are split
from an API usage constraint, our KGAMD can give a better solu-
tion to deal with “FileNotFoundException”. And with the warnings,
we can fully utilize API documentation to tell the developer why
we should make the condition checking and exception handling.

4 EVALUATION
4.1 Quality and Effectiveness
To evaluate the quality of KGAMD, we first evaluate the quality
of the constructed knowledge graph. We focus on the four types
of API constraint relations, which distinguish our API-constraint
knowledge graph from existing general API knowledge graphs [3].
We use a statistical sampling method to examine 𝑀𝐼𝑁 randomly
sampled instances of each type of constraint relation. For each API
constraint relations, we define several checkpoints to evaluate. The
two developers independently perform the examination, and all
decisions are binary. From results, our method achieves high accu-
racy (>98%) for extracting value-literals, return-condition clauses
and attributes of call-order and condition-checking relations.
Next, we evaluate the effectiveness of our KGAMD using the API

misuse benchmark MuBench [1]. From MuBench, we collected in
total 239 instances of API misuses in these 54 projects, including
114 missing call, 107 missing condition checking and 18 missing
exception handling. We apply our tool to examine how many of the
239 API misuses can be detected. We also examine if the explanation
that our tool provides for the detected misuse matches the misuse
description in the benchmark. From results, our KGAMD can detect
missing calls, missing condition checking and missing exception
handling with good precision, which is 60.18%, and better recall,
which is 28.45%. To improve the recall of KGAMD, more types of
API usage knowledge should be extracted and added to the under-
lying knowledge graph, and some advanced programming analysis
should be supported.

4.2 User Study
To investigate how developers can interact with our KGAMD, we
conduct a user study. We select 6 API misuse scenarios from the
webtend project in MuBench [1] as user tasks. Our KGAMD reports
potential API misuses for all APIs in a method, among which de-
velopers have to identify the API misuse leading to the bug. We
recruit 12 master students from our school. We randomly allocate
them into two equivalent groups: the control group (G-1) uses the
standard IntelliJ IDE to complete the tasks, while the experimental
group (G-2) uses the IntelliJ IDE with our API misuse detection
plugin. Readers can check our research papers for more details
about the user study. From the results of the pilot user study, our
KGAMD is promising to assist developers in avoiding potential API
misuses and debugging bugs caused by API misuses.

5 CONCLUSION AND FUTUREWORK
We propose the first knowledge-graph based API misuse detec-
tor (KGAMD). Unlike existing pattern-based API misuse detectors,
KGAMD does not infer API misuses against API patterns in code. It
detects API misuses against four types of API-constraint relations
in a novel knowledge graph, which are derived from API reference
documentation using NLP techniques. This knowledge graph ad-
vances the start-of-the-art in API misuse detection, and outperform
existing pattern-based detectors by a large margin in precision and
recall. The usefulness of KGAMD has also been demonstrated. In
the future, we will enrich our knowledge graph with more types
of API usage knowledge, support the chain effect analysis of API
caveats, and support advanced program analysis to boost its recall.

ACKNOWLEDGMENTS
This research was partially supported by the National Science Foun-
dation of China (No. U20A20173) and Key Research and Develop-
ment Program of Zhejiang Province (No.2021C01014).

REFERENCES
[1] Sven Amann, Sarah Nadi, Hoan A Nguyen, Tien N Nguyen, and Mira Mezini.

2016. MUBench: a benchmark for API-misuse detectors. In Proceedings of the 13th
International Conference on Mining Software Repositories. 464–467.

[2] Sven Amann, Hoan Anh Nguyen, Sarah Nadi, Tien N Nguyen, and Mira Mezini.
2018. A systematic evaluation of static api-misuse detectors. IEEE Transactions on
Software Engineering 45, 12 (2018), 1170–1188.

[3] Hongwei Li, Sirui Li, Jiamou Sun, Zhenchang Xing, Xin Peng, Mingwei Liu, and
Xuejiao Zhao. 2018. Improving api caveats accessibility by mining api caveats
knowledge graph. In 2018 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 183–193.

1518

KGAMD: An API-Misuse Detector Driven by Fine-Grained API-Constraint Knowledge Graph ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

[4] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H Pham, Jafar M Al-Kofahi, and
Tien N Nguyen. 2009. Graph-based mining of multiple object usage patterns. In
Proceedings of the 7th joint meeting of the European Software Engineering Conference
and the ACM SIGSOFT symposium on the Foundations of Software Engineering. 383–
392.

[5] Tam The Nguyen, Hung Viet Pham, Phong Minh Vu, and Tung Thanh Nguyen.
2015. Recommending API usages for mobile apps with hidden markov model. In
2015 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 795–800.

[6] Ravindra Singh and Naurang Singh Mangat. 2013. Elements of survey sampling.
Vol. 15. Springer Science & Business Media.

[7] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007. /* iComment:
Bugs or bad comments?*. In Proceedings of twenty-first ACM SIGOPS symposium
on Operating systems principles. 145–158.

[8] Suresh Thummalapenta and Tao Xie. 2009. Alattin: Mining alternative patterns
for detecting neglected conditions. In 2009 IEEE/ACM International Conference on
Automated Software Engineering. IEEE, 283–294.

1519

	Abstract
	1 Introduction
	2 Approach
	2.1 Knowledge Graph Schema
	2.2 API Documentation and Preprocessing
	2.3 Constructing API Declaration Graph
	2.4 Deriving API Constraint Relations
	2.5 API Misuse Detection

	3 Implementation Details
	3.1 Knowledge Base
	3.2 Tool Implementation and Usage

	4 Evaluation
	4.1 Quality and Effectiveness
	4.2 User Study

	5 Conclusion and Future Work
	Acknowledgments
	References

