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ABSTRACT
Programming screencasts have become a pervasive resource on
the Internet, which is favoured by many developers for learning
new programming skills. For developers, the source code in screen-
casts is valuable and important. However, the streaming nature of
screencasts limits the choice that they have for interacting with the
code. Many studies apply the Optical Character Recognition (OCR)
technique to convert screen images into text, which can be easily
searched and indexed. However, we observe that the noise in the
screen images significantly affects the quality of OCRed code.

In this paper, we develop a tool named psc2code, which has
two components, denoising code extraction from screencasts and
enhancing programming video interaction. Experiment results on
1142 programming screencasts from YouTube show psc2code can
effectively identify frames containing valid code region with a F1-
score of 0.88 and improve the quality of OCRed code by fixing 46% of
the errors. We also conduct a user study to evaluate the applicability
of psc2code in enhancing video interaction, which shows it helps
participants learn the knowledge in tutorials more efficiently.
Demo video: https://youtu.be/Ju1JC78NEb8
Replication Package: https://github.com/baolingfeng/PSC2CODE

CCS CONCEPTS
• Software and its engineering → Software maintenance
tools.
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1 INTRODUCTION
Programming screencasts, such as programming video tutorials
on YouTube, have become a popular resource for developers to
learn coding. They provide authors an efficient way to introduce
programming skills, and help viewers better learn the knowledge
by watching a developer’s coding in action (e.g., how errors are
being fixed step by step) [9]. However, the streaming nature of
programming screencasts, i.e., a stream of screen-captured images,
limits the choice that video watchers have for interacting with its
content, such as navigating the video and reusing the source code.

An intuitive way to enhance the interaction is using the Optical
Character Recognition (OCR) technique to convert the video con-
tent into text, which can be easily searched and indexed. Besides,
the OCRed code can be directly copied and reused in one’s own pro-
gram. Several approaches have been proposed to extract code from
programming screencasts [2, 8, 13, 17], but none of them explicitly
address the following three "noisy" challenges: 1) Programming
screencasts are not all about presenting the process of code writing
in IDEs. Sometimes the authors will use other software applications
as well, for example, visiting API documentation in web browsers
and introducing concepts in Power Point slides. There is no need
to extract such non-code contents. 2) Apart from the code editor,
IDEs also include many other parts (e.g., console, tool bar). Even
within the code editor, there is interference from code completion
suggestion window, popup menu, etc. The mix of source code and
interference often leads to poor OCR results. 3) Due to the special
characteristics of GUI (e.g., overlap of UI elements, code highlights)
and low resolution of screen images, the text produced by the OCR
technique is not 100% accurate even for a clear code region.

In this paper, we propose a tool named psc2code to address three
"noisy" challenges and enhance developer interactions by leverag-
ing the more accurate code extracted from programming screen-
casts. Figure 1 presents an overview of pcs2code. Given a program-
ming screencast, psc2code first removes the nearly-identical frames
by calculating the normalized root-mean-square error (NRMSE) in
terms of pixel matrices. Then, it leverages a CNN-based classifier
to further remove the non-code and noisy-code frames (e.g., frames
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Figure 1: Framework of psc2code

containing pop-up windows). Next, it detects the boundary of sub-
windows in valid frames and crops the regions that are likely to be
the code-editor window. To reduce the noise in the detected sub-
window boundaries, psc2code clusters the nearby boundary lines
and frames with similar window layout. Finally, it uses the OCR
technique to extract code from the cropped regions, and further
corrects the errors. Based on the extracted code, psc2code enhances
the navigation and exploration of programming screencasts.

2 DENOISING CODE EXTRACTION
In this section, we introduce the code extraction part of psc2code,
which consists of following steps: 1) reducing non-informative
frames; 2) removing non-code and noisy-code frames; 3) extracting
code regions; 4) correcting errors in OCRed source code.

2.1 Reducing Non-Informative Frames
Most of the consecutive frames from a programming screencast are
nearly the same, and these nearly-identical frames are of no use for
further analysis. Hence, similar to existing techniques [1, 11, 13, 14],
the first step of psc2code is to remove such non-informative frames.

First, psc2code samples the given programming screencast by
extracting the first frame of each second as an image using FFmpeg1.
The sequence of the extracted frames is denoted as {𝑓𝑖 }(1 ≤ 𝑖 ≤
𝑁, 𝑁 𝑏𝑒𝑖𝑛𝑔 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑠𝑒𝑐𝑜𝑛𝑑 𝑜 𝑓 𝑡ℎ𝑒 𝑠𝑐𝑟𝑒𝑒𝑛𝑐𝑎𝑠𝑡). Then, to filter out
non-informative frames, psc2code computes the normalized root-
mean-square error (NRMSE) between consecutive frames at pixel
level [16], which ranges from 0 (identical) to 1 (completely different).
Starting with 𝑓1, only if the dissimilarity between 𝑓𝑖 and 𝑓𝑗 ( 𝑗 ≥ 𝑖+1)
is above an empirically determined threshold (0.05 in this work), 𝑓𝑗
will be retained and selected as a new starting point. Otherwise, it
will be removed as a non-informative frame.

2.2 Removing Non-Code & Noisy-Code Frames
In this step, psc2code removes frames that do not contain code
(e.g., web pages with API documentation) or contain code regions
with noise (e.g., code completion popups that block the real code).
However, the non-code and noisy-code frames vary greatly (e.g.,
diverse visual features, different window properties), making it
impossible to propose effective rules for removing these frames. We
follow the approach of Ott et al. [12] to use a CNN-based classifier
for identifying the non-code and noisy-code frames. Specifically,
it can be viewed as a binary classification problem, i.e., to predict
whether a frame is valid or not.
• Valid frames: frames with at least an entire code editor window
and the contained code content is completely visible.

1http://www.ffmpeg.org/

• Invalid frames: frames with no code editor window or the con-
tained code content is partially visible.

Labeling Training Frames Fifty videos are randomly selected
from our programming screencasts dataset (Section 4.1). We make
sure that the selected videos cover all the playlists. After removing
the non-informative frames and manually labeling, we get 3324
valid frames and 1864 invalid frames, respectively.
Building the CNN-based Classifier We use a pretrained VGG
model since it has been shown to perform well in detecting the
source code in programming screencasts [12]. Specifically, we only
train the top layer of the VGG model for a maximum iterations of
200. The 10-fold cross validation is applied in training and testing.
Besides, to ensure the input of CNN have fixed size, all frames
are rescaled to 300 × 300 pixels before sending into the network.
The validation results suggest that our CNN-based classifier can
effectively identify valid frames with an overall accuracy of 97.3%.

2.3 Extracting Code Regions
In this step, psc2code extracts the code region from valid frames. It
first divides the whole frame into several sub-windows by rectangle
boundaries, and then identifies the sub-window that is most likely
to be the code editor. However, the original results of boundary de-
tection are very noisy (see Figure 2). To reduce such noise, psc2code
clusters nearby lines and frames with similar window layouts.
Detecting Candidate Boundary Lines First, psc2code extracts
the edge map of a valid frame by Canny edge detector [5]. Then,
Probabilistic Hough transform [10] is applied to detect horizontal
and vertical lines. Lines that are incline and short (less than 60
pixels) are filtered out as noise. Figure 2(b) shows the candidate
boundary lines after filtering. To further reduce the detection noise,
psc2code applies the density-based clustering algorithm DBSCAN
[6] to cluster nearby lines based on their overlap and distance, and
uses the longest line in each cluster to represent any other lines.
Clustering Frames with Similar Window Layouts Clustering
the nearby lines effectively reduces the noise, but there is still other
interference, for example, boundaries of selected line highlights
and scrollbars. These noisy lines are difficult to eliminate since their
styles and positions vary between different frames. However, we
notice that the window layouts of most frames from a programming
screencast remain the same. Therefore, by selecting the lines that
are shared by the majority of frames, we can eliminate the differ-
ences between frames and get the unified window layout. Based
on the above observation, psc2code uses DBSCAN to cluster frames
according to the distribution of contained boundary lines. Each
cluster of the clustering results represents a unique window layout.
Only the lines shared by the majority frames in the cluster will
be selected as the sub-window boundaries for the corresponding
layout. Figure 2(c) shows that by clustering nearby lines and frames
with similar window layouts, the noise in the original detection
results is successfully eliminated.
Detecting Code Regions To detect sub-windows, psc2code forms
the clear boundary lines obtained by the above two steps into
rectangles. If several rectangles overlap, only the smallest one will
be kept. By doing so, psc2code only crops the main content region
while ignoring the potential window decorators such as headers
and rulers. The code region can be easily located based on the

http://www.ffmpeg.org/
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Figure 2: Illustration of Sub-window Boundary Detection

observation that the code editor sub-window usually takes the
largest part in the frames of programming screencasts. The detected
code region is highlighted in red box in Figure 2(a).

2.4 Correcting Errors in OCRed Source Code
Given an image of the cropped code region, psc2code utilizes the
Google Vision API [7] to extract source code. However, the OCR
errors are very common, for example, symbol ‘=’ is recognized as ‘-’
and cursor is recognized as ‘I’. To correct OCR errors, psc2code first
removes line numbers and fixes Unicode errors based on heuristics
of Kandarp and Guo [8]. Then, inspired by the work of Yadid and
Yahav [17], it utilizes cross-frame information to further correct
OCR errors. Specifically, psc2code learns a statistical languagemodel
from a large corpus of source code collected from 300 GitHub Java
projects as a domain-specific spell checker. For the incorrect words
and line structures detected by the spell checker, psc2code corrects
them by finding the correct one in other related frames. For example,
Properties prop In - new Properties(); is an incorrect code
line, whose line structure is denoted as IDU IDL IDU - new IDU
( ) ;, where IDU and IDL are identifiers beginning with upper and
lower characters, respectively. By finding the closest correct line
in other frames based on edit distance, the incorrect line can be
fixed as Properties propIn = new Properties();, which has
a correct line structure, i.e., IDU IDL = new IDU ( ) ;.

3 ENHANCING VIDEO INTERACTION
Based on the extracted code, psc2code enhances the navigation
and exploration of programming screencasts. Different from our
prior work [3], which enhances the video by collecting the author’s
human-computer interaction data through system level instrumen-
tation during the recording, psc2code can be directly applied to the
large amount of existing programming videos on the Internet since
it only requires the automatically extracted code. Figure 3 shows
the screenshots of our designed web application prototype, which
supports the following features for interaction enhancements:
Video Analysis Given a YouTube programming tutorial, psc2code
will automatically analyze the video once the viewers click the
button ( 1○ in Figure 3(a)). The analyzing process includes three
steps: 1) downloading the video using pytube2; 2) extracting the
source code from the video (Section 2); 3) initializing the following
interaction-enhancing features based on the extracted code.
File Content View This feature provides watchers a clear view of
all code contents that have already appeared in the programming

2https://github.com/nficano/pytube

tutorial till the current time. To detect different files, DBSCAN is
applied to cluster frames based on the similarity between their
lines of code (LOC). For two frames, the similarity is measured by
computing the normalized Longest Common Sublines (similar to
Longest Common Subsequence) between their LOC. The content
shared by the frames in each cluster is regarded as an independent
file and named after the contained Java class ( 2○ in Figure 3(b)).
Moreover, the current file and its content ( 3○ in Figure 3(b)) are
synchronized with video playing. With the help of this feature,
viewers can easily copy the extracted source code for reuse in their
own program and clearly view any code content by simply clicking
the file name instead of navigating the video to the specific frame.
Action Timeline This feature tells viewers when the tutorial au-
thor does what to which file. We compare the extracted code be-
tween the adjacent valid frames to detect the following two actions:
a) edit: adjacent frames belong to the same file but have different
code contents. b) switch: adjacent frames belong to two different
files. A brief description of each action is presented together with
its type and timestamp. For action edit, a summary including the
number of inserted and deleted code lines will be shown. By clicking
to expand the summary, viewers can get the detailed information
of the adjusted code contents ( 4○ in Figure 3(c)). For action switch,
the name of the original and target file will be presented. By click-
ing the timestamp of the interested action, tutorial watchers can
directly navigate the video to the corresponding frame.

4 EVALUATION
4.1 Programming Video Tutorial Dataset
In our study, we focus on Java programming. However, psc2code can
be easily extended to other programming languages by rebuilding
the corresponding spell checker (Section 2.4). We build our dataset
by using YouTube APIs3 to get videos from 50most popular playlists
for Java tutorial. By manually removing those without live coding,
we collect 23 playlists with 1142 videos in total4. Except for 50
videos that have already been used for training the CNN-based
classifier (Section 2.2), we randomly sample two videos from each
playlist for evaluation. After removing the non-informative frames,
there are 4828 frames from 46 videos involved in testing.

4.2 Effectiveness of Code Extraction
We evaluate the effectiveness of three main steps in code extraction
(Section 2), identifying valid frames, locating code regions and

3https://developers.google.com/youtube/v3/
4The whole dataset can be found: https://github.com/baolingfeng/psc2code
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Figure 3: Screenshots of psc2code

Table 1: Performance Comparison with the Baseline

Approach Accuracy F1-score
@valid

F1-score
@invalid IOU

Ours 0.85 0.88 0.83 0.92
Baseline 0.73 0.74 0.72 0.64

Table 2: Average Completion Time, Answer Correctness and
Usefulness Rating of Three Videos

Video Time Correctness Rating

baseline ours baseline ours baseline ours

1 367.0 322.8 0.92 0.96 2.4 4.6
2 532.4 300.8 0.92 0.96 2.2 4.2
3 714.6 415.2 0.80 0.92 2.2 4.2

Avg. 538.0 346.3 0.88 0.95 2.3 4.3

correcting errors in OCRed code. For the former two, we use the
approach of Alahmadi et al. [1] as the baseline, where the You Only
Look Once (YOLO) network [15] is applied to identify the valid
frames and locate the code region simultaneously. We use the same
training set in Section 2.2 to train the baseline model and apply it
on the testing set for performance comparison with our approach.
We adopt accuracy and F1-score for the evaluation of valid frames
identification. To measure the accuracy of predicted code region
bounding box, we use the Intersection over Union (IOU) metric [18],
which is also adopted in Alahmadi et al.’s work. The comparison
results presented in Table 1 suggest that psc2code greatly surpasses
the baseline. Although YOLO is powerful in general object detection,
our approach is more suitable for this particular task.

To evaluate the ability of psc2code in correcting OCR errors, we
calculate the ratio of incorrect words that are corrected by psc2code
for each frame in the testing set. However, since our approach may
choose wrong candidate words in fixing errors, we further manually
check whether a wrong word is truly corrected or not. The testing
results show that 88% of the corrected errors and 46% of all the
incorrect words in the original OCRed code can be truly corrected.

4.3 User Study
We conduct a user study to evaluate the applicability of psc2code in
enhancing developer interactions with programming screencasts
(Section 3). Three videos with different topics are chosen from our

dataset. Then, we design five questions for each video with the
goal of covering the workflow and different kinds of information
(e.g., code content, API usage). Answering these questions requires
the participants to carefully watch and explore the video content.
Ten undergraduate students from the College of Computer Science
of Zhejiang University are recruited as participants, and none of
them are familiar with the programming tasks used in the study.
Following the between-subject design, we randomly divide ten
participants into two groups for each video. Participants in the ex-
perimental group use our prototype tool, while those in the control
group use a regular video player. Participants in both groups are
asked to answer the same questions and rate the usefulness of the
corresponding tool. The ratings are on a 5-points liker scale with 5
being the best. We evaluate the helpfulness of our tool by compar-
ing the completion time, answer correctness and usefulness rating
from two groups of participants. As shown in Table 2, participants
generally agree that our tool is more helpful for learning knowledge
from video tutorials compared to the baseline (i.e., regular video
player), which is also confirmed by the fact that participants in the
experimental group do give more correct answers in less time.

5 CONCLUSION
We propose a tool named psc2code to enhance developer interac-
tions by leveraging the accurate code extracted from programming
screencasts. For the effectiveness of denoising code extraction, our
experimental results indicate that psc2code can effectively locate
the code content and correct errors in OCRed code. For the applica-
bility of enhancing programming video interaction, our user study
confirms that psc2code can help viewers learn the programming tu-
torials more efficiently compared to the regular video player. In the
future, we will collect more tutorials with different programming
languages to evaluate and strengthen the robustness of psc2code
against diverse video tutorials.
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