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ABSTRACT KEYWORDS

In software development and maintenance, defect localization is
necessary for software quality assurance. Current defect localiza-
tion techniques mainly rely on defect symptoms (e.g., bug reports
or program spectrum) when the defect has been exposed. One chal-
lenge task is: can we locate buggy program prior to the appearance
of the defect symptom. Such kind of localization is conducted at an
early stage (e.g., when buggy program elements are being checked-
in) which can be an early step of continuous quality control.

In this paper, we propose a Just-In-Time defect identification
and lOcalization tool, named JI_TO, which can help developers to
locate defective lines at check-in time. In summary, JITO contains
two phases: (i) identify if a new change is buggy and (ii) locate
suspicious buggy code lines in the identified buggy changes. We
implement JITO as a plugin in an integrated development environ-
ment (i.e., Intellij IDEA). When developers using our plugin, JITO
loads the local Git repository to build the JIT defect identification
model and localization model based on historical changes. After
submitting a new change to the local repository, developers apply
JITO to identify whether it is a buggy change. If a buggy change
is identified, JITO leverages JIT defect localization model to locate
its suspicious buggy lines and highlight them in Intellij IDEA. Ex-
perimental results show that JITO outperforms two baselines (i.e.,
random guess and a static bug finder (i.e., PMD)) by a substantial
margin in terms of four ranking measures.

Demo URL: https://youtu.be/tvnYs62FKEQ

Plugin download: https://git.io/Jf5r1

CCS CONCEPTS

- Software and its engineering — Software development tech-
niques.
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1 INTRODUCTION

In software development and maintenance, developers often spend
much effort and resources for debugging [8]. Defect identification
and localization aim to help developers save time in finding and
locating suspicious defective program elements, such as defective
lines of code. Previous work shows that defect localization can
use information retrieval (IR) based techniques [13, 15, 24, 25] and
spectrum-based techniques [1, 11, 14]. However, one disadvantage
for the these localization techniques is that they require defect
symptoms (e.g., from bug reports or execution traces). When we re-
ceive the defect symptoms, the defect has been exposed and caused
negative impacts. In addition, as for defect identification, JIT defect
identification is a well-known technique for identifying defects at
check-in time. A number of studies have proposed various tech-
niques for JIT defect identification [5, 9, 12, 18, 19, 21-23]. Although
those JIT defect identification approaches can help developers iden-
tify buggy changes earlier, it is still challenging for locating the
exact buggy positions (e.g., line-level) for a buggy change. A buggy
change may introduce many lines of code (e.g., the average number
of the introduced lines across all changes in Jmeter project is 180).
In such case, it would cost a large amount of inspection effort if we
inspect all the introduced lines for all the buggy changes.

In our previous work, to inspect a buggy change in order to
locate the exact buggy lines with less inspection, we propose a
two-phase framework of JIT defect Identification and Localization
[20]. In the JIT defect identification phase, we use 14 change-level
features to build a classifier to identify whether the change is a
buggy change. In the JIT defect localization phase, we leverage
software naturalness with the N-gram model to locate the buggy
lines in a buggy change.

In this paper, we present JITO, a tool based on our framework of
JIT defect Identification and Localization. JITO is able to (i) identify


https://youtu.be/tvnYs62FkEQ
https://git.io/Jf5r1
https://doi.org/10.1145/3368089.3417927
https://doi.org/10.1145/3368089.3417927

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

Model Building

Link to fixing change

14 change
Buggy changes features
| | Clean changes

Classifier
Git repository

fixed

Qiu, et al.

_ N-gram
[ Clean lines ]—{Languagc modcl]

Model Application

S0

Git repository

Y
JIT defect

if a new change is buggy and (ii) locate suspicious buggy code
lines in the identified buggy changes. This tool is in a form of
an integrated development environment (IDE) (i.e., Intellij IDEA')
plugin. When a model building action is called, JITO will load the
local Git repository. After that, JITO extracts the 14 change-level
features [4, 5, 9, 12, 23] of the Git repository’s historical changes and
leverages RA-SZZ algorithm to label each change as buggy or clean
to build training set. Then it trains a classifier to construct the JIT
defect identification model based on such training set. Next, JITO
leverages software naturalness with the N-gram model [7] based
on historical clean source code to construct a JIT defect localization
model. When using JITO in practice, after submitting a new change
to the local repository, developers can call JITO Analyze Change
function in the plugin. JITO extracts the new change’s features
as extracted in the model building phase, and then applies the JIT
defect identification model to identify it. If it is identified as buggy
change, JIT defect localization model will locate suspicious buggy
lines and highlight them in Intellij IDEA.

To evaluate JITO, we compare it with two baselines (i.e., random
guess and a static bug finder (i.e., PMD)) on 14 open source projects
with a total of 177,250 changes. JITO outperforms the two baselines
by a substantial margin in terms of four ranking measures.

2 APPROACH

Figure 1 illustrates the overall framework of JITO. Our framework
consists of two main phases: a model building phase and a model
application phase. These two phases integrate JIT Defect Identifica-
tion and JIT Defect Localization.

Model Building Phase. There are 3 steps in the model building
phase: extracting data from historical changes, building JIT defect
identification model, and building JIT defect localization model.

Extracting data from historical changes. Firstly, JITO loads the
local Git repository. Then, it identifies the bug fixing changes by
checking the keywords in change log and bug report ids. With such
bug fixing changes, JITO identifies the buggy and clean changes by
applying Refactoring Aware SZZ (RA-SZZ) algorithm [17]. Using
the labeled changes, JITO identifies and collects clean lines. Clean
lines are the lines introduced by clean changes, and the lines intro-
duced by buggy changes but were not fixed later. In addition, we
extract 14 change-level features from historical changes based on
our prior work [20]. These features are grouped into five dimen-
sions: diffusion (NS, ND, NF and Entropy) that characterizes the
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Figure 1: Overall Framework of JITO

distribution of a change, size (LA, LD and LT) that demonstrates
lines of code affected by a change, purpose (FIX) that indicates
whether or not this commit is a bug fixing commit, history (NDEV,
AGE and NUC) that characterizes how developers modify the files
within the change in the code history and experience (EXP, REXP
and SEXP) that captures a developer’s experience.

Building JIT defect identification model. We train a logistic regres-
sion classifier learning from historical labeled changes by following
prior studies [9, 10]. A new change would be identified as buggy if
its predicted likelihood score is larger than 0.5; otherwise it will be
classified as clean.

Building JIT defect localization model. Since N-gram model has
been proved to be effective in modeling source code [7], we lever-
age N-gram language model to construct the JIT defect localization
model. Language model is a probability distribution over sequences
of words. Given a code fragment s of length [s| and its code se-
quence S = t1ty..t;. A language model estimates the probability
of this sequence occurring as a product of a series of conditional
probabilities for each token. Because it is impossible to deal with
a large amount of possible prefixes, the commonly used language
model is N-gram language model, which assigns a probability to
a sequence of words based on the Markov assumption. Addition-
ally, to solve the probabilities may vary by orders of magnitude,
we apply the logarithm of the phrase probability to arrive at the
information-theoretic measure of entropy. Entropy represents the
number of required bits to encode the phrase (aka., a token) given
the language model. Entropy measures how “surprised” a model is
by the given document. The higher entropy of a new code fragment
indicates that new code fragment is more unnatural as compared
to code in the training code corpus. Besides, based on Hellendoorn
and Devanbu’s study [6], we set N to be 6 and adopt the JM smooth-
ing method [2] for modeling source code. We choose clean lines
provided in previous step as training corpus. In detail, we break
each line into separate words and use them to train the language
model by applying tokenization tool that delimits code based on
the Java grammar used by a prior study [16].

Model Application Phase. After submitting a new change to
the local repository, the plugin calls the Analyze Change func-
tion. The built JIT defect identification model will identify the new
change as buggy or clean. If the change is identified as buggy, the
JIT defect localization model will compute the entropy of each to-
ken. Because our model aims to sort lines based on line entropy to
find more unnatural lines which may be buggy lines, we compute
the line entropy according to the entropy of its tokens and choose
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the summary of maximum entropy and average entropy of line
as the line entropy. The line’s maximum entropy is the maximum
token entropy values in the line. The line’s average entropy is the
average tokens’ entropy values in the line. Suppose there is a code
lines of length |s| with code sequence S = t1f3..t5, and the entropy
of each token is denoted as Hp (t1), Hp (t2), ..., Hp(ts). We compute
the line entropy (Hp(s)) as

Is|

Hy(s) = max(Hp(t1), ... Hp(t5)) + ITll MNHpt) O
n=1

This approach captures both the most unnatural token sequences
and the entire naturalness of a line. Finally, JITO will highlight the
Top 10% of the most buggy lines of the change ranked by the line
entropies in Intellij IDEA. Top 10% buggy lines can provide a short
hint for locating the bug with limited inspection effort. Developers
also can also specify other ratios on demand in JITO.

3 TOOL IMPLEMENTATION

We implement JITO in the form of an Intellij IDEA plugin. The
source code can be found in our Github repository?.

Tool Implementation. In JITO, developers will need to set
the local Python interpreter path, JITO-Identification part path
(e.g., /usr/a/JITO-identification), time period of training changes
set (e.g., five months), and highlighted lines ratio (e.g., top 10%).
When developers call the Build Model function, JITO will extract 14
change features of each changes from the project repository. Then
JITO uses this data set to train the JIT defect identification model as
well as collect clean line set. After that, JITO builds the JIT defect
localization model based on the clean line set. This process will be
performed in the background until developers are prompted after
completion. When a developer submits a new change to the local
Git repository, they can call the Analyze Change function. As a
result, JITO leverages the JIT defect identification model to identify
it as buggy or clean. If the new change is identified as buggy, JITO
will invoke the JITO defect localization model, which will locate
the suspicious buggy code lines and highlight them in Intellij IDEA.
If it is identified as clean, the JITO will inform developers that this
change is likely to be clean.

User Interface. Figure 3 shows the user interface of the JITO.
Developers need to press the Set Properties button (2) in the Tools-
JITO menu (D to set Python interpreter path, JITO-identification
part path, train set period, highlighted ratio, training set start time,
and training set end time as shown in Figure 2(a). Then they can
press the Build Model button 3 in the Tools-JITO menu @) to
build the defect identification and localization model. This process
will be performed in the background. Developers can check the
status in the status bar below as shown in Figure 2(b). If a model is
built successfully, it will send out a reminder to the developers as
shown in Figure 2(e). After submitting a new change to the local
Git repository, developers can press the Analyze Change button @
in the Tools-JITO menu (D). If JITO predicts there are buggy code
lines, it will remind the developers that the change is buggy as
shown in Figure 2(d) and highlight suspicious buggy code lines
©. Else, it will inform developers the change is clean as shown in
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Figure 2(c). When the inspection is completed, developers can press
Unhighlight button (5) to remove highlights.
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Figure 3: User Interface of the JITO

Table 1: The efficiency of the model building and application
with different number of training changes for each project.
MBT represents the Model Building Time. MAT represents
the Model Application Time.

Project 1,000 changes | 3,000 changes | 6,000 changes
MBT /s | MAT /s | MBT /s | MAT /s | MBT /s | MAT /s
Deeplearning4;j 63.83 | 40.41 | 12545 | 48.12 | 250.49 | 66.43
Jmeter 24.39 3.71 87.42 5.27 | 22870 | 8.23
H2o 26.42 9.50 93.22 | 31.76 | 237.78 | 93.91
Libgdx 26.98 6.36 82.26 | 13.25 | 379.24 | 131.61
Jetty 27.42 5.27 85.62 | 14.11 | 253.57 | 20.82
Robolectric 23.37 6.00 81.71 | 22.55 | 222.92 | 93.47
Storm 23.29 4.69 82.83 | 17.11 | 210.86 | 61.50
Jitsi 23.60 3.20 85.14 4.75 | 23247 | 9.46
Jenkins 25.43 3.55 94.65 472 | 24244 | 6.86
Graylog2-server | 23.40 4.33 78.63 9.11 | 198.68 | 18.79
Flink 25.06 | 10.34 | 88.27 | 31.23 | 236.32 | 53.12
Druid 23.47 3.30 84.12 | 29.58 | 244.42 | 118.50
Closure-compiler| 23.86 | 519 | 68.06 | 9.12 | 346.23 | 25.32
Activemq 26.04 5.26 98.99 | 11.60 | 240.42 | 18.02
average 27.61 7.93 88.31 18.02 | 251.75 | 51.86

4 EVALUATION

Data Collection. The dataset was collected from Github. We se-
lected 14 projects which are written in Java, cover different ap-
plication, and have many contributors. Besides, all the projects
have over 5,000 changes and over 1,000 stars to ensure the studied
projects have sufficient samples and are non-trivial ones. We collect
the changes of studied from the creation data of the projects to
March 1, 2018. Since we need change features to identify defect-
introducing changes and to ensure most of the studied changes are
correctly labeled, we use the changes until October 1, 2017. Too
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long intervals may cause lack of instances for our study. Too short
intervals could introduce noise in our data. In our dataset, above
80% of the buggy changes were fixed within five months. Thus,
five months interval is more appropriate. In total, there are 177,250
changes in the studied projects.

The efficiency of our tool is related to the numbers of training
changes in the local Git repository. Therefore, we measure the
efficiency by running our tool on the studied projects as described
in data collection part. We measure the efficiency of JITO on each
project by setting the number of training changes as 1,000, 3,000
and 6,000 changes for simulating small-size, medium-size and large-
size projects. We run the experiments on the 19-9900k and 16GB
RAM platform. Table 1 shows the result of our test.

In most small-size projects (with 1,000 changes), our tool can
complete Model Building phase within 30 seconds and complete
Model Application phase within 10 seconds. We choose to apply
a total of 10 changes from 1,001 to 1,010 to run the JITO’s Ana-
lyze Change function, and the average time is counted as model
application time for each change. The following 3,000 changes and
6,000 changes are counted in the same way. In medium-size projects
(with 3,000 changes), our tool takes an average of 88.31 seconds to
complete Model Building phase and an average of 18.02 seconds
to complete Model Application phase. In large-size projects (with
6,000 changes), our tool spends slightly more time. On average, it
takes 257.75 seconds to complete Model Building phase and 51.86
seconds to complete Model Application phase. Because the submis-
sion interval of the first 3000 changes in Deeplearning4j is smaller
than other projects and each change contains more modifications
than other projects on average, the Deeplearning4j costs more time
in both Model Building phase and Model Application phase.

In addition, we conduct an empirical study on the studied 14
projects to evaluate the effectiveness of our tool. We build a JIT
defect localization model on each project. For each change in test-
ing set, we first classify it as buggy or clean using the JIT defect
identification model learning on our training set. Then, for a likely
buggy change identified by the JIT defect identification model, we
perform the JIT defect localization model. We also implement two
baselines, i.e., random guess and a static bug finder baseline, PMD
[3]. We compare the effectiveness of the proposed approach with
these baselines.

Baseline 1: Random Guess (RG). RG randomly sorts the in-
troduced lines. Since the performance of RG relates to the order of
lines, we sort the introduced lines randomly and repeat 100 times
to get the median performance.

Baseline 2: PMD. PMD is a popular static bug finder. It pro-
duces line-level warnings and assigns a priority for each warning.
We use the PMD tool to scan the changed files then record the
warning priority (i.e., 1-6, 6 means clean) of each introduced line
by the change [3, 20]. Additionally, since some lines might have
equal priority, we add a small random amount from [0, 1] to all
line priority values for sorting. Then we sort the introduced lines
according to these computed priority values (i.e., “1-6” + “[0,1]”)
in ascending order. The lines sorted at the top of the list are more
likely to be the defect location. we repeat this process for 100 times
and get the median performance for each change.

We choose identification ratio and misidentification ratio to
measure tool’s JIT defect identification performance. Identification
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ratio is the recall of our tool, which shows the ratio of correctly
identified buggy changes among all buggy changes in our testing set.
Misidentification ratio is the false positive rate of our tool, which
shows the misidentified clean changes in our testing set. Besides,
we choose MRR, MAP [16] and Top-k Accuracy to measure the
tool’s performance. MRR measures how far we need to check down
a sorted list of added lines of a buggy change to locate the first
buggy line. MAP considers the ranks of all buggy lines in that sorted
list. Top-k Accuracy measures whether Top-k most likely buggy
lines returned by our approach is actually the buggy location. In
this paper, we set k = 1 and 5. We apply a time-aware validation
setting that divides the training and testing sets. We choose the
first 60% of the changes as our training set, and the remaining 40%
of the changes as testing set according to the change time.

In JIT defect identification phase, JITO achieves an average iden-
tification ratio of 0.843, and a misidentification ratio of 0.284. Since
this phase is not the main contribution of our work, we simply im-
plement a prior approach which provides a reasonable performance
already.

In JIT defect localization phase, JITO achieves a reasonable and
better performance than the baselines on average across the 14
projects. The tool achieves an MRR of 0.396, an MAP of 0.353, a
top-1 accuracy of 0.265 and a top-5 accuracy of 0.544 considering
the identified buggy changes. It means that our tool can successfully
locate the first buggy line in about 3 lines on average and locate at
least the buggy line at top-1 position with a probability of 26.5%,
and at top-5 positions with a probability of 54.0% of the identified-
buggy changes. Our tool outperforms the two baselines in all of 14
projects in terms of MRR and MAP, and in most cases in terms of
Top-k accuracy. More details of our evaluation results can be found
in our journal paper [20].

5 CONCLUSION AND FUTURE WORK

In this paper, we present a tool named JITO, which combines JIT
defect identification and JIT defect localization. JITO uses project
historical changes to train a JIT defect identification model that can
identify the buggy change. Then JITO leverages project historical
clean code to build a JIT defect localization model that can locate
the buggy lines. JITO is implemented as Intellij IDEA plugin, and it
provides highlight on suspicious buggy code lines introduced by a
buggy change at check-in time in an integrated development envi-
ronment. In the future, we will do further research on investigating
whether or not the entropy of the changed lines could be used to
enhance the JIT defect identification model. Moreover, further re-
search can investigate whether or not the different language model
(i.e., cache model, nested model) can improve the effectiveness of
JITO. Besides, we will enhance JITO to support more programming
languages (e.g., Python, C++) and code editors (e.g., VS Code).
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