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ABSTRACT
Effort-aware Just-in-Time (JIT) defect identification aims at iden-
tifying defect-introducing changes just-in-time with limited code
inspection effort. Such identification has two benefits compared
with traditional module-level defect identification, i.e., identify-
ing defects in a more cost-effective and efficient manner. Recently,
researchers have proposed various effort-aware JIT defect identifi-
cation approaches, including supervised (e.g., CBS+, OneWay) and
unsupervised approaches (e.g., LT and Code Churn). The compari-
son of the effectiveness between such supervised and unsupervised
approaches has attracted a large amount of research interest. How-
ever, the effectiveness of the recently proposed approaches and
the comparison among them have never been investigated in an
industrial setting.

In this paper, we investigate the effectiveness of state-of-the-art
effort-aware JIT defect identification approaches in an industrial
setting. To that end, we conduct a case study on 14 Alibaba projects
with 196,790 changes. In our case study, we investigate three as-
pects: (1) The effectiveness of state-of-the-art supervised (i.e., CBS+,
OneWay, EALR) and unsupervised (i.e., LT and Code Churn) effort-
aware JIT defect identification approaches on Alibaba projects, (2)
the importance of the features used in the effort-aware JIT defect
identification approach, and (3) the association between project-
specific factors and the likelihood of a defective change. Moreover,
we develop a tool based on the best performing approach and in-
vestigate the tool’s effectiveness in a real-life setting at Alibaba.
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CCS CONCEPTS
• Software and its engineering� Software maintenance tools;

1 INTRODUCTION
Software defect identification is a fundamental and active research
question in software engineering. Researchers have proposed var-
ious defect identification approaches. The main benefit of defect
identification is discovering defective software artifacts (i.e., pack-
age, file or change) in advance which can lead to effective use of
the limited resources for software quality assurance.

There are two main types of defect identification approaches in
terms of the identification granularity, i.e., module-level and change-
level. Module-level is targeted at discovering defective modules (e.g.,
packages, files, or methods) [11, 22, 26, 28, 41, 50, 60]. Change-level
is targeted at identifying defect-introducing changes [17]. Change-
level defect identification has attracted an increasing interest in
recent years, as it enables developers to identify defective artifacts
at a finer and more timely granularity level (i.e., a change to source
code) [7, 8, 14, 16, 17, 24, 36, 45, 52, 53, 55].

Change-level defect identification is commonly referred to as
Just-in-Time (JIT) defect identification as identifies defect-introducing
change at check-in time. A defect-introducing change is a software
change that introduces one or several defects [37].

Compared with module-level defect identification, JIT defect
identification has two main benefits: (1) Identifying defective
changes is more cost-effective. As JIT defect identification is
performed at a finer granularity, it enables developers to inspect a
small amount of LOC (lines of code) to find latent defects. This can
save a large amount of inspection effort compared with module-
level (i.e., coarser) defect identification [17, 55]. (2) Identifying
defective changes is more timely. As JIT defect identification
is invoked at check-in time, it enables developers to inspect the
changes for identifying defects while developers can still remember
the context of these changes. This fresh context can lead developers
to find the defects faster [36, 55].

Different changes would require different amounts of effort to
inspect. Based on this intuition, effort-aware JIT defect identification
was proposed to take into account the required effort to inspect
the modified code for a change [12, 25]. Researchers have proposed
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different effort-aware JIT defect identification approaches [7, 12, 13,
17, 55]. Such approach focuses on optimizing the number of defects
that can be found given a fixed inspection budget (e.g., inspecting
20% of the modified LOC by all changes). It is more practical for
practitioners, as it enables them to find more latent defects per unit
of code inspection effort [55].

Due to the perceived benefits of JIT defect identification, several
studies have attempted to apply JIT defect identification approaches
into practice. Shihab et al. [36] conducted an industrial study to un-
derstand and identify risky changes at a large commercial company.
Kamei et al. [17] evaluated the EALR approach on five commer-
cial projects. Nayrolles et al. [31] proposed a two-phase approach
(change metrics and clone detection) for intercepting risky changes
and applied their approach to 12 Ubisoft projects. Among these in-
dustrial studies, only Kamei et al. [17] investigated the effectiveness
of effort-aware JIT defect identification approach (i.e., EALR) in an
industrial setting. The effectiveness of the follow-up effort-aware
JIT defect identification approaches (e.g., CBS+ [13], OneWay [7]
and unsupervised approaches [23, 55]) in an industrial setting has
never been investigated. Furthermore, the effectiveness of super-
vised vs. unsupervised approaches in an industrial setting has never
been explored.

In this paper, we investigate the effectiveness of effort-aware JIT
defect identification approaches in an industrial setting. To that
end, we conduct a case study to investigate the effectiveness of five
state-of-the-art effort-aware JIT defect identification approaches
(including three supervised and two unsupervised approaches) at a
large commercial company. Additionally, we develop and deploy
an effort-aware JIT defect identification tool based on the best
performing approach to investigate its effectiveness as part of the
real-life development process.

We partnered with Alibaba1 to conduct this study for three rea-
sons. First, Alibaba is one of the top ten most valuable and largest
companies in the world [46]. It has accumulated diverse and ma-
ture software development data. Second, Alibaba’s Development
Efficiency department is very interested in effort-aware JIT defect
identification. Hence, the department is willing to assign the re-
sources and enforce the usage of our tool. Third, given that the
headquarter of Alibaba is in Hangzhou, we can conveniently inter-
view developers in person when needed.

Figure 1 presents an overview framework of our case study. In
summary, the main contributions of this paper are as follows:

• We conducted a case study of effort-aware JIT defect identifi-
cation on 14 Alibaba projects with 196,790 changes. The case
study investigated the effectiveness of recently-proposed
effort-aware JIT defect identification approaches on Alibaba
projects. This paper is the first study to investigate the effec-
tiveness of recently-proposed effort-aware JIT defect identi-
fication approaches in an industrial setting.

• We investigated the effectiveness of state-of-the-art super-
vised (i.e, CBS+ [13], OneWay [7] and EALR [17]) vs. un-
supervised (i.e., LT [55] and Code Churn [23]) effort-aware
JIT defect identification approaches on Alibaba projects. To

1Alibaba is a Chinese multinational e-commerce, retail, internet, AI and technology
company which is named as one of the world’s most admired companies by For-
tune [46].

the best of our knowledge, this paper is the first study to
investigate the effectiveness of supervised vs. unsupervised
effort-aware JIT defect identification approaches in an in-
dustrial setting.

• We investigated the important change-level features for
effort-aware JIT defect identification on Alibaba projects and
their differences compared with open source projects. Ad-
ditionally, we investigated the association between project-
specific factors and the likelihood of a defective change using
a mixed effect model.

• We developed a tool based on the best performing approach
on Alibaba projects. Using this tool, we conducted a user
study to investigate the effectiveness of our tool when it
is applied to the real-life industrial setting at Alibaba. This
paper is the first study to investigate the effectiveness of
deploying effort-aware JIT defect identification in a real-life
development process.

Paper organization. Section 2 presents the background and re-
lated work on JIT defect identification. Section 3 presents our case
study setup, including the projects that we decided to study, our
approach along with the studied features and used evaluation mea-
sures. Section 4 presents our case study results. Section 5 presents
the effectiveness of our tool when applied in a real-life industrial
setting through a user study. Section 6 presents the threats to the
validity of our work. Section 7 concludes and discusses possible
avenues for future work.

2 RELATEDWORK
This paper is a case study of effort-aware JIT defect identification
in an industrial setting. Therefore, we divide our related work into
two aspects: JIT defect identification and JIT defect identification
in an industrial setting.
JIT defect identification. Several prior studies proposed approaches
for JIT defect identification and performed empirical studies of
these approaches. Śliwerski et al. [37] proposed an approach to
identify defect-introducing changes and studied defect-inducing
changes in two open-source projects. They found that the changes
that are committed on Friday had a higher probability to be defect-
inducing changes. Kim et al. [18] proposed a model for classifying a
change as clean or buggy using various change features, including
change log, source code, file names, change metadata and com-
plexity metrics. Yin et al. [56] studied the relationship between
defect-fixing changes and defect-introducing changes on several
operating systems. Yang et al. [53, 54] proposed the use of more
advanced modeling techniques for JIT defect identification, such as
ensemble learning and deep learning.

With respect to effort-aware approaches, Kamei et al. [17] pro-
posed the first effort-aware approach (called EALR) for JIT defect
identification and conducted a large-scale empirical study. They
used the number of lines modified by a change as the measure of
the effort that is required to inspect a change. Following their study,
many studies compared supervised vs. unsupervised effort-aware
approaches for JIT defect identification [7, 12, 55]. Based on the
latest studies, the CBS+ approach which is proposed by Huang et
al [13] outperforms EALR [17], one way [7] and the best performing
unsupervised approach LT [55].
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Figure 1: The overview of our case study

Inspired by the above-mentioned approaches, we choose five
state-of-the-art approaches (i.e, CBS+ [13], OneWay [7], EALR [17],
LT [55] and Code Churn [23]) as our candidate approaches for
adoption at Alibaba. And we choose the effort-aware measures
to evaluate our effectiveness since there are always limited code
inspection resources in practice [12, 17, 55].
JIT defect identification in an industrial setting. Due to the
importance of JIT defect identification, a few prior studies examined
JIT defect identification approaches in an industrial setting. Mockus
andWeiss [29] assess the risk of Initial Modification Requests (IMRs,
ie., groups of code changes) of the 5ESS commercial project. Shihab
et al. [36] conducted an industrial study to better understand risky
changes. They developed a tool and asked the developers to label a
change as risk or not at check-in time. Czerwonka et al. [5] present
their experiences with CRANE, a tool used within Microsoft for
change risk analysis. Kamei et al. [17] used both open source and
commercial projects in their pioneering work on effort-aware JIT
defect identification. Nayrolles and Hamou-Lhadj [31] proposed a
two-phase approach (called CLEVER) for intercepting risky changes
using code clone detection on 12 Ubisoft projects. Their first phase
assesses the likelihood that an incoming change is risky or not.
Their second phase uses clone detection to suggest fixes for risky
changes that are identified in the first phase.

Our work is inspired by these above-mentioned studies but dif-
fers in several aspects. First, different from Mockus and Weiss [29],
Shihab et al. [36], Czerwonka et al. [5] and Nayrolles and Hamou-
Lhadj [31], our work focus on the effectiveness of effort-aware
JIT defect identification approaches in an industrial setting. Dif-
ferent from Kamei et al. [17], we investigate the effectiveness of
the recently proposed effort-aware JIT defect identification ap-
proaches (e.g., CBS+ [13], OneWay [7], LT [55] and Churn [23]) in
an industrial setting. Furthermore, we are the first to investigate
the effectiveness of supervised vs. unsupervised effort-aware
approaches in an industrial setting.

3 CASE STUDY SETUP
3.1 Data preparation
Projects selection.We studied 14 Alibaba projects, which we refer
to as P1 to P14 due to confidentiality reasons. A summary of these
projects can be seen in Table 1. These projects are mainly written
in Java. We select these projects as (1) they have released a few
versions and are used by millions of users on a daily basis,(2) they

differ in sizes and purposes, and (3) we are able to conveniently
interview in person developers from these projects when needed.

Data labeling.Data labeling aims to label each historical change
as defect-introducing or clean. To do this, we leveraged the SZZ
algorithm proposed by Śliwerski et al. to identify defect-introducing
changes from the historical changes of each project [37].

Studied features. We studied 14 change-level features from
prior studies [7, 12, 13, 17, 23, 51, 55]. These features are grouped
into five dimensions: diffusion (NS, ND, NF and Entropy), size (LA,
LD and LT), purpose (FIX), history (NDEV, AGE and NUC) and
experience (EXP, REXP and SEXP). We calculate these features by
following the proposed approach by Kamei et al. [17].

3.2 Selected approaches
We choose five state-of-the-art effort-aware JIT defect identification
approaches as our candidate approaches as they have already been
shown to be effective for open source projects. In particular, we
consider three supervised approaches (i.e., EALR [17], OneWay [7],
and CBS+ [12, 13]) and two unsupervised approaches (i.e., LT [55]
and Churn [23]). To make our paper self-contained, we briefly
introduce these approaches:
Approach 1: EALR (Effort-Aware Linear Regression) is proposed
by Kamei et al. [17]. First, EALR learns the relationships between
the various change metrics of a change 𝑐 (i.e., change features that
are shown in Table ??) and its defect-density. Second, for a new
change in the testing dataset, EALR would predict its defect-density
value using the learned model in phase 1. Finally, EALR sorts these
changes in the testing dataset in descending order according to
their predicted defect-density values.
Approach 2: OneWay is proposed by Fu and Menzies [7] which
is a supervised approach built on the idea of a simple unsupervised
approach that is proposed by Yang et al [55]. The basic idea of
OneWay is to leverage the training data to automatically select the
best metric for implementing the unsupervised model in Yang et
al.’s work.
Approach 3: CBS+ (Classify Before Sorting) is proposed by Huang
et al [13]. CBS+ is an extended version of CBS, which was proposed
by Huang et al [12]. CBS+ leverages the advantages of both the
supervised [17] and unsupervised approaches [55] by combining
classification and sorting.
Approach 4: LT has been shown to be effective in Yang et al.’s
work [55]. LT represents the lines of code in a file before the current
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Table 1: Summary of the studied projects. “#Devs” represents the number of developers. “Med_size” represents the median
change size. “Mean_size” represents themean change size. In “Lifecycle” column, “Post-init” represents the post-initial version,
“Pre-init” represents the pre-initial version.

Project #Changes #Defective Def Ratio #Branches #Devs #LOC #File Med_size Mean_size Users Lifecycle Time period
P1 5,218 871 16.7% 263 12 93,111 1,243 12 199 Internal Post-init 2017.7-2018.7
P2 11,571 1,504 13.0% 821 36 189,742 2,380 9 84 Internal Pre-init 2015.10-2018.7
P3 11,699 2,529 21.6% 180 41 56,691 847 12 229 Internal Post-init 2014.7-2018.6
P4 30,777 5,642 18.3% 1,095 46 326,857 2,100 13 110 Internal Post-init 2014.5-2018.6
P5 20,053 2,594 12.9% 875 67 285,887 3,986 9 87 External Post-init 2015.3-2018.7
P6 3,707 285 7.7% 55 14 135,976 976 26 173 Internal Pre-init 2016.11-2018.6
P7 3,640 294 8.1% 289 18 110,049 892 10 467 Internal Pre-init 2016.9-2018.6
P8 18,053 1,810 10.0% 1,258 267 248,887 3,082 6 87 External Post-init 2016.1-2018.7
P9 4,688 1,215 25.9% 605 30 33,896 330 3 61 External Post-init 2016.12-2018.6
P10 18,888 1,616 8.6% 985 151 326,710 3,830 4 285 External Pre-init 2016.1-2018.7
P11 20,760 1,998 9.6% 1,765 63 434,975 4,467 9 386 External Post-init 2015.5-2018.7
P12 9,042 1,628 18.0% 633 10 130,017 1,288 7 116 External Post-init 2015.12-2018.7
P13 18,424 1,869 10.1% 1,338 72 86,783 1,001 4 62 External Post-init 2012.4-2018.7
P14 20,270 1,966 9.7% 1,279 27 422,540 4,323 11 135 External Post-init 2016.7-2018.7
Total 196,790 25,821

change. This unsupervised approach uses the feature LT to sort the
changes in descending order according to the reciprocal of LT.
Approach 5: Churn2 uses the churn metric that has been shown
to be effective in a prior study by Liu et al. [23]. Churn represents
the total lines of changed code (measured as 𝐿𝐴 + 𝐿𝐷) by the cur-
rent change. The unsupervised model Churn sorts the changes in
descending order according to the reciprocal of (𝐿𝐴 + 𝐿𝐷).

3.3 Data Preprocessing
We perform the following steps to preprocess the studied data when
implementing EALR and CBS+ as described by Kamei et al. and
Huang et al. [13, 17]. We do not perform the data preprocessing
steps when implementing the other three selected approaches to
ensure that we are following the same processes as prior studies [7,
23, 55].
1) Dealing with skewness. Most of the studied change features
are highly skewed. To deal with data skewness, we apply a standard
logarithmic transformation 𝑙𝑛(𝑥 + 1) to the values of each feature
following Kamei et al. [17]. Notice that for the FIX feature, we do
not apply the logarithmic transformation since this feature is a
binary feature.
2) Dealing with correlated features. Kamei et al. and Huang et
al. removed correlated features before building their models (i.e.,
EALR and CBS+) [13, 17]. Tantithamthavorn and Hassan note that
correlated features may impact the interpretation of defect pre-
diction models [40]. Hence, before learning models, we removed
correlated features. Notice that the removal of correlated features
is performed after the logarithmic transformation of the studied
features. Hence, we detect correlation among the transformed fea-
tures. Following the guidelines proposed by Harrel [9], we remove
correlated features by following Kamei et al. [16, 17] and Li et
al. [21].

3.4 Evaluation
Validation setting. To evaluate the effectiveness of the candidate
approaches, we use a time-aware validation setting which ensures
that the changes used for testing are always created later than the
changes used for training, similar to prior studies [12, 55]. For each
project, we first rank the changes in chronological order accord-
ing to their creation time. Then, we divide all the changes into
approximately 11 equal groups. Group 1 contains the changes that

2Other studies may also call this model as SBS (Sort by Size) [13] or ManualUp [59]

were created the earliest. For each group 𝑖 (except for group 1, i.e.,
𝑖 > 2), we use changes in group 1 to group 𝑖 −1 as a training dataset
to build a model, then apply the model to identify the changes in
group 𝑖 . We use all the prior changes as a training set to ensure that
the training set will have enough instances as suggested by a prior
study [39]. Note that we remove the last group (i.e., group 11) from
our evaluation experiment, since the changes in the most recent
group may not be correctly labeled. Because the SZZ algorithm
can only identify a defect-introducing change once the introduced
defect has been fixed.

Performance measures. The key point of effort-aware JIT de-
fect identification is to reduce the effort for code review. To that
end, we mainly consider effort-aware measures by following prior
studies [13, 55], namely precision@20%, recall@20%, f1-score@20%,
PCI@20%, IFA, and AUC. The measures precision@20%, recall@20%,
f1-score@20%, PCI@20% are calculated by considering a particu-
lar amount of inspection effort following Huang et al. [12, 13].
By default, we set the budget-effort as inspecting 20% of the total
changed LOC in the testing set as done by prior state-of-the-art
studies [12, 13, 55]. The measures IFA, and AUC are calculated
without considering the amount of inspection effort. More detailed
description for calculating these measures can be found in prior
studies [13, 55].

Suppose in a testing dataset, we have𝑀 changes and 𝑁 defective
changes. After inspecting 20% of the total changed LOC in the
testing dataset, we inspected 𝑚 changes and found 𝑛 defective
changes. Then, these measures are calculated as follows:

Recall@20% is the proportion of inspected defective changes
among all the actual defective changes3, it is computed as 𝑛/𝑁 .
Precision@20% is the proportion of inspected defective changes
among all the inspected changes, it is computed as𝑛/𝑚. F1-score@20%
is a summary measure that combines both precision@20% and re-
call@20%, it is computed as 2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@20%∗𝑅𝑒𝑐𝑎𝑙𝑙@20%

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@20%+𝑅𝑒𝑐𝑎𝑙𝑙@20% . PCI@20%
is the Proportion of Changes Inspected, it is computed as 𝑚/𝑀 .
IFA is the number of Initial False Alarms encountered before we
identify the first defective change, it is computed as the number of
inspected non-defective changes before identifying the first defec-
tive change. AUC represents the area under the receiver operating
characteristic (ROC) curve. In the ROC curve, the true positive rate
(TPR) is plotted as a function of the false positive rate (FPR) across

3Prior studies may also call the recall in an effort-aware model as ProfB@20% [14, 49]
or ACC [17, 55].
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all thresholds. AUC is threshold independent [3], robust towards
the class distribution of the used dataset [19].

With respect to Recall@20%, Precision@20%, F1-score@20%,
and AUC, a higher value is better. With respect to PCI@20% and
IFA, a lower value is better. Because (1) a higher PCI@20% value
indicates that developers need to inspect more changes under the
same inspection effort. As a result, the additional effort might be
required due to the context switches between changes and the
additional communication overhead among developers [12, 27]. (2)
A higher IFA value indicates that developers would inspect more
false alarms before finding the first defect. As a result, developers
would be frustrated and are not likely to continue inspecting other
changes whenever the IFA is too high [12, 32].

3.5 Research questions
RQ1: How effective are state-of-the-art supervised and unsuper-
vised effort-aware JIT defect identification approaches when ap-
plied on Alibaba projects?
RQ2: What are the important change-level features for effort-aware
JIT defect identification at Alibaba? Do these important features
differ between Alibaba and open source projects?
RQ3: Is there an association between project-specific factors and
the likelihood of a defective change in Alibaba projects?

4 CASE STUDY RESULTS
4.1 RQ1: Effectiveness of studied approaches
Method. First, we extract the studied 14 change-level features.
Using the SZZ algorithm, we prepare the needed dataset in our
case study. Second, we implement the candidate supervised ap-
proaches namely CBS+, EALR and OneWay based on their descrip-
tion from the prior studies [7, 13, 17], and implement the candidate
unsupervised approaches namely LT and Churn based on their
description from the prior studies [13, 23, 55]. Note that we con-
duct the same preprocessing steps for these approaches as they are
described [13, 17]. Third, we run these approaches using a time-
aware validation setting. In this setting, we run each approach on
each fold (i.e., including all changes within a two months period)
and calculate the average performance across all the folds for each
project. Note that we have a two-month gap between our training
and testing dataset and we remove the last fold as described in
Section 3. With respect to the unsupervised approaches, we only
execute them on the testing set in order to keep a fair comparison
with the results for the supervised approaches.

Additionally, to investigate whether the difference between two
approaches is statistically significant, we employ the Wilcoxon
signed-rank test [47] at a 95% significance level with a Bonferroni
correction [1]. The Bonferroni correction is used to counteract the
problem of multiple comparisons. We also employ Cliff’s delta to
measure the effect size. Cliff’s delta is a non-parametric effect size
measure that can evaluate the amount of the difference between
two approaches. We use the following mapping for the values of the
delta that are less than 0.147, between 0.147 and 0.33, between 0.33
and 0.474 and above 0.474 as “Negligible (N)”, “Small (S)”, “Medium
(M)”, “Large (L)” effect size, respectively [4].

Results. Tables 2 and 3 presents the performance of three su-
pervised approaches considering our two groups of chosen per-
formance measures respectively. Tables 4 and 5 presents the per-
formance of two unsupervised approaches compared to the best
performing supervised approach considering our two groups of
chosen performance measures respectively.

In these tables, we list the statistical test results in the compar-
isons. The “Improvement” row represents the improvement ratio of
each corresponding approach over the other approach. In terms of
the performance measures where a higher value is better (i.e., pre-
cision@20%, recall@20%, F1-score@20% and AUC), the improvement
of approach A over B is computed as 𝐴−𝐵

𝐵
∗ 100%. In terms of the

performance measures where a lower value is better (i.e., PCI20%
and IFA), the improvement of approach A over B is computed as
𝐵−𝐴
𝐵

∗ 100%, to indicate the ratio of decrease. The “p-value”, “Cliff’s
delta” and “Effect size” rows represent the p-values, cliff’s delta
and effect sizes according to the Wilcoxon signed-rank test with a
Bonferroni correction and Cliff’s delta.

From the results shown in Tables 2, 3, 4 and 5 , we make the
following observations:

(1) CBS+ statistically outperforms OneWay and EALR with a
medium or large effect size in terms of precision@20%, F1-score@20%,
PCI20%, and AUC. CBS+ improves OneWay and EALR by 131% and
95% in terms of precision@20%, by 74% and 60% in terms of F1-
score@20%, by 62% and 50% in terms of PCI20%, and by 5% and 33%
in terms of AUC. In terms of IFA, CBS+ statistically outperforms
OneWay however there is no statistically significant difference
with EALR (i.e., p-value > 0.05). In terms of recall@20%, there is
no statistically significant difference between the three supervised
approaches (i.e., p-value > 0.05).

(2) The average performance of CBS+ indicates that: if developers
at Alibaba follow the CBS+ recommendation over a period of two
months, they need to inspect 29% of the changes to identify 48%
of the defective changes with a 37% precision. Additionally, they
need to inspect nearly five changes before finding a truly defective
change.

(3) In terms of the comparison between the best performing su-
pervised approach (i.e., CBS+) and unsupervised approaches, CBS+
statistically outperforms LT and Churn with a large effect size in
terms of precision@20%, F1-score@20%, PCI@20%, and IFA. CBS+ im-
proves LT and Churn by 236% and 118% in terms of precision@20%,
by 186% and 54% in terms of F1-score@20%, by 37% and 66% in terms
of PCI@20%, and by 89% and 97% in terms of IFA. In terms of AUC,
CBS+ significantly outperforms LT however there is no statistically
significant difference with Churn (i.e., p-value > 0.05).

(4) In terms of recall@20%, although Churn statistically outper-
forms CBS+ with a large effect size, Churn sacrifices precision@20%
to achieve a higher recall@20%. When considering precision@20%
and recall@20% together (i.e., F1-score@20%), Churn no longer out-
performs CBS+. In addition, Churn performs very poorly in terms
of IFA, which may negatively impact developers’ patience and con-
fidence when reviewing changes.

(5) Churn achieves a high recall due to the skewed distribution
of change sizes. We check the distribution of churn in each project.
The results show that, for each project, the majority of changes
modify a small number of LOC. Specifically, the churn of most
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Table 2: The performance of the three supervised approaches in terms of our chosen performance measures which consider
inspecting 20% of the changed LOC.

Project Precision@20% Recall@20% F1-score@20% PCI@20%
OneWay EALR CBS+ OneWay EALR CBS+ OneWay EALR CBS+ OneWay EALR CBS+

P1 0.23 0.24 0.40 0.63 0.53 0.53 0.33 0.31 0.45 0.83 0.69 0.39
P2 0.13 0.14 0.27 0.56 0.46 0.42 0.21 0.21 0.32 0.80 0.65 0.30
P3 0.20 0.21 0.42 0.58 0.50 0.46 0.30 0.29 0.43 0.77 0.64 0.30
P4 0.21 0.26 0.49 0.39 0.39 0.49 0.25 0.30 0.49 0.57 0.47 0.31
P5 0.13 0.15 0.35 0.42 0.49 0.47 0.19 0.22 0.40 0.61 0.64 0.26
P6 0.08 0.10 0.22 0.46 0.32 0.34 0.12 0.14 0.23 0.71 0.41 0.22
P7 0.11 0.13 0.22 0.55 0.42 0.40 0.18 0.19 0.28 0.73 0.49 0.27
P8 0.11 0.15 0.30 0.65 0.41 0.45 0.19 0.21 0.35 0.86 0.43 0.21
P9 0.38 0.44 0.74 0.56 0.47 0.64 0.44 0.44 0.68 0.69 0.53 0.41
P10 0.10 0.10 0.26 0.53 0.49 0.54 0.16 0.16 0.35 0.78 0.68 0.28
P11 0.12 0.15 0.30 0.60 0.55 0.49 0.19 0.23 0.37 0.83 0.62 0.26
P12 0.22 0.22 0.48 0.63 0.56 0.50 0.33 0.31 0.48 0.84 0.75 0.32
P13 0.11 0.20 0.32 0.51 0.48 0.56 0.17 0.27 0.40 0.80 0.40 0.29
P14 0.12 0.14 0.37 0.61 0.55 0.42 0.20 0.22 0.39 0.84 0.68 0.20
Average 0.16 0.19 0.37 0.55 0.47 0.48 0.23 0.25 0.40 0.76 0.58 0.29
Improvement 131% 95% -13% 2% 74% 60% 62% 50%
p-value <0.001 <0.001 >0.05 >0.05 <0.001 <0.001 <0.001 <0.001
cliff’s delta 0.87 0.83 0.50 0.00 0.81 0.81 1.00 0.98
Effect size L L L N L L L L
Winner CBS+ OneWay CBS+ CBS+
The best performing approach is highlighted in bold. “L”, “M”, “S” and “N” indicates “Large”,“Medium”, “Small” and “Negligible” effect sizes respectively.

Table 3: The performance of the three supervised ap-
proaches in terms of our chosen performance measures
while not considering the amount of inspection effort.

Project IFA AUC
OneWay EALR CBS+ OneWay EALR CBS+

P1 54.22 7.89 5.00 0.82 0.68 0.81
P2 109.89 9.11 8.44 0.75 0.62 0.74
P3 137.11 32.56 3.78 0.76 0.63 0.79
P4 130.22 2.33 3.67 0.72 0.61 0.81
P5 125.44 8.33 4.67 0.70 0.58 0.81
P6 45.11 7.89 9.56 0.73 0.58 0.74
P7 45.78 5.56 8.22 0.71 0.56 0.71
P8 281.78 1.89 4.33 0.77 0.54 0.78
P9 64.78 0.33 1.89 0.81 0.60 0.91
P10 359.11 12.89 4.33 0.78 0.61 0.81
P11 210.44 6.89 4.78 0.76 0.54 0.81
P12 130.89 1.00 4.33 0.82 0.65 0.82
P13 287.67 1.67 6.89 0.78 0.58 0.83
P14 191.89 12.56 2.11 0.77 0.58 0.81
Average 155.31 7.92 5.14 0.76 0.60 0.80
Improvement 97% 35% 5% 33%
p-value <0.001 >0.05 <0.05 <0.001
cliff’s delta 1.00 0.14 0.45 1.00
Effect size L N M L
Winner CBS+ CBS+

changes is less than 400 LOC. On the other hand, a small number
of changes modify a very large number of LOC, thus, it is clear that
the distribution of change size in each project is highly skewed.

(6) Most of our findings in terms of supervised vs. unsupervised
approaches on Alibaba projects are consistent with the findings
on open source projects by Huang et al. [13], i.e., CBS+ is the
best performing approach. In comparison to Huang et al. [13], we
further considered an additional unsupervised approach (Liu et
al.’s Churn [23]) and an additional performance measure (AUC).
Our novel finding on Alibaba projects is that although Churn
achieves the highest recall@20% compared with other approaches
and achieves a comparable AUC compared with CBS+, Churn un-
derperforms in other performance measures (e.g., very poorly in
terms of IFA) compared with CBS+.
The best performing supervised approach is CBS+. Although unsu-
pervised approaches may achieve a higher recall@20%, they under-
perform in other performance measures compared with CBS+. Thus,
we choose CBS+ as the approach to deploy at Alibaba.

4.2 RQ2: Important features
Method. For different projects, the most important features for
effort-aware JIT defect identification may be different. Therefore,
we calculate the feature importance for the CBS+ approach for each
project. Notice that for the OSS projects, we also perform the two
steps of data preprocessing as described in Section 3.3.

Different from RQ1, in this research question, we perform a
10-times 10-fold cross-validation following prior study [6]. In the
time-aware validation (which in total includes ten folds), only less
than 50% of the data is used for learning models in the first five
folds. A small proportion of data may not reflect the overall data
distribution. Hence, a model trained using such a small proportion
of data may not lead to convincing feature importance results. On
the other hand, in the 10-times 10-fold cross-validation, 90% of the
data can be used to learn models in each fold. We consider that
the feature importance results calculated using 10-times 10-fold
cross-validation are more convincing than using the time-aware
validation method.

In each fold, we build a CBS+ model using the training set. Then,
we calculate the feature importance scores for the model. We ap-
ply the generic feature importance score that is proposed by Tan-
tithamthavorn et al. [33, 43]. The generic feature importance score
is calculated using the following two steps.

First, for each feature, we randomly permutate the values of
the feature in the testing dataset. By doing so, we produce a test-
ing dataset with the feature permutated and all other features as
is. Second, for each feature, we calculate the difference between
the F1-score@20% of the CBS+ model when applying it on the
original testing dataset and the testing dataset with the randomly-
permutated feature. A larger difference indicates that the feature is
more important, and hence, we use the difference as the importance
score of the feature.

Since CBS+ is an effort-aware JIT defect identification approach,
the performance of CBS+ should be evaluated using effort-aware
measures. F1-score@20% summarizes precision@20% and recall@20%.
Thus, different fromTantithamthavorn et al. [43], we use F1-score@20%
rather than misclassification rate to evaluate the performance of
CBS+ in the above-mentioned second step for calculating feature
importance score.
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Table 4: The performance of the unsupervised approaches compared with CBS+ in terms of our chosen performancemeasures
which consider inspecting 20% of the changed LOC.

Project Precision@20% Recall@20% F1-score@20% PCI@20%
LT Churn CBS+ LT Churn CBS+ LT Churn CBS+ LT Churn CBS+

P1 0.12 0.24 0.40 0.21 0.67 0.53 0.15 0.35 0.45 0.43 0.85 0.39
P2 0.12 0.14 0.27 0.29 0.61 0.42 0.17 0.22 0.32 0.46 0.83 0.30
P3 0.15 0.22 0.42 0.29 0.69 0.46 0.20 0.33 0.43 0.53 0.86 0.30
P4 0.18 0.25 0.49 0.27 0.69 0.49 0.21 0.36 0.49 0.45 0.85 0.31
P5 0.10 0.14 0.35 0.26 0.63 0.47 0.14 0.23 0.40 0.49 0.85 0.26
P6 0.05 0.08 0.22 0.18 0.53 0.34 0.08 0.13 0.23 0.34 0.81 0.22
P7 0.07 0.11 0.22 0.23 0.66 0.40 0.10 0.19 0.28 0.38 0.87 0.27
P8 0.09 0.12 0.30 0.32 0.71 0.45 0.13 0.20 0.35 0.54 0.89 0.21
P9 0.16 0.39 0.74 0.14 0.71 0.64 0.14 0.50 0.68 0.42 0.85 0.41
P10 0.07 0.11 0.26 0.27 0.71 0.54 0.11 0.19 0.35 0.52 0.89 0.28
P11 0.09 0.12 0.30 0.26 0.64 0.49 0.13 0.20 0.37 0.44 0.86 0.26
P12 0.15 0.24 0.48 0.28 0.72 0.50 0.19 0.36 0.48 0.49 0.88 0.32
P13 0.09 0.13 0.32 0.30 0.66 0.56 0.13 0.21 0.40 0.56 0.88 0.29
P14 0.09 0.13 0.37 0.24 0.65 0.42 0.13 0.21 0.39 0.45 0.86 0.20
Average 0.11 0.17 0.37 0.25 0.66 0.48 0.14 0.26 0.40 0.46 0.86 0.29
Improvement 236% 118% 92% -27% 186% 54% 37% 66%
p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
cliff’s delta 1.00 0.85 1.00 0.94 1.00 0.69 0.96 1.00
Effect size L L L L L L L L
Winner CBS+ Churn CBS+ CBS+

Table 5: The performance of the unsupervised approaches
compared with CBS+ in terms of our chosen performance
measures while not considering the amount of inspection
effort.

Project IFA AUC
LT Churn CBS+ LT Churn CBS+

P1 42.22 51.89 5.00 0.78 0.81 0.81
P2 26.89 81.67 8.44 0.65 0.74 0.74
P3 38.00 138.89 3.78 0.73 0.77 0.79
P4 24.00 234.11 3.67 0.70 0.78 0.81
P5 28.00 213.22 4.67 0.71 0.78 0.81
P6 42.00 44.00 9.56 0.67 0.76 0.74
P7 25.44 45.33 8.22 0.64 0.75 0.71
P8 120.56 249.33 4.33 0.69 0.76 0.78
P9 16.89 94.67 1.89 0.81 0.91 0.91
P10 46.67 362.44 4.33 0.70 0.79 0.81
P11 25.89 207.11 4.78 0.67 0.76 0.81
P12 22.22 120.89 4.33 0.72 0.81 0.82
P13 152.67 283.89 6.89 0.74 0.79 0.83
P14 50.56 162.33 2.11 0.69 0.76 0.81
Average 47.29 163.56 5.14 0.71 0.78 0.80
Improvement 89% 97% 13% 3%
p-value <0.001 <0.001 <0.001 >0.05
cliff’s delta 1.00 1.00 0.81 0.33
Effect size L L L S
Winner CBS+ CBS+

Table 6: Summary of studied ten open source projects.

Project #Changes #Defective Def Ratio
ActiveMQ 7,753 1,697 22%
Camel 17,374 2,957 17%
Derby 9,775 1,772 18%
Geronimo 16,152 2,309 14%
Hadoop Common 27,077 1,951 7%
HBase 14,581 3,323 23%
Mahout 2,762 539 20%
OpenJPA 6,368 810 13%
Pig 3,089 549 18%
Tuscany 21,595 2,157 10%
Total 126,526 18,064 14%

Then, we calculate the importance ranks of the features. In each
run of 10-fold cross-validation, we have 10 importance scores for
each feature. In total, we have 100 importance scores for each
feature. Following prior studies [6, 42, 48], we apply the Scott-
Knott ESD (SK-ESD) test on the feature importance scores. The
SK-ESD test is an enhanced variant of the Scott-Knott test [34].
The SK-ESD enhances the Scott-Knott test in two folds [42]. First,
the SK-ESD relaxes the assumption of normally distributed data
(as required by the Scott-Knott test) by mitigating the skewness of
input data. Second, the SK-ESD takes the effect size of the input

Table 7: Ranks of the studied features in theAlibaba projects
and OSS projects.

Projects NS ND NF Entropy LA LD LT FIX NDEV AGE NUC EXP SEXP

P1 3 - 1 - 4 4 2 4 3 4 - 4 -
P2 5 - 1 - 4 4 4 2 4 5 3 3 4
P3 5 - 1 - 4 5 2 3 5 5 - 4 -
P4 8 - 1 - 6 8 2 6 7 8 3 4 5
P5 5 - 1 - 4 6 3 2 5 6 4 4 -
P6 4 - 1 - 4 3 4 2 4 4 4 4 -
P7 5 3 1 - 3 4 4 2 5 - - 4 4
P8 8 6 1 - 5 7 9 2 3 8 4 7 -
P9 5 4 1 3 - 7 2 7 6 - - 6 -
P10 4 4 1 5 3 5 6 2 5 - - 5 5
P11 4 5 2 - 3 6 7 1 5 6 3 5 -
P12 7 6 1 - 3 7 2 4 5 7 - 7 7
P13 7 4 1 - 6 8 3 2 6 8 - 5 -
P14 6 - 1 - 4 6 2 1 5 5 3 3 -

ActiveMQ 3 - 1 - 8 8 4 6 7 9 - 5 2
Camel 6 - 1 7 6 6 2 5 3 4 - 4 -
Derby 7 - 1 8 4 8 5 6 7 2 7 3 -
Geronimo 6 - 1 - 8 7 3 5 5 9 - 4 2
HBase 5 - 1 6 7 5 5 2 4 5 3 6 7
Hadoop C. 7 - 1 6 9 8 3 4 2 9 - 5 9
Mahout 2 - 1 4 5 6 6 6 3 4 6 6 6
OpenJPA 5 - 1 - 5 4 2 5 4 4 3 1 2
Pig 1 - 1 4 4 5 5 6 2 3 - 3 -
Tuscany 5 - 1 - 6 3 4 5 7 6 6 2 2

data into consideration and merges any two statistically distinct
groups that have a negligible effect size into one group.

Finally, we count the number of Alibaba projects andOSS projects
where a feature is ranked as top-most and one of the top-3 impor-
tant features. By doing so, we investigate whether the two groups
of projects have different conclusions on the top-most and top-3
most important features for effort-aware JIT defect identification.
Results. Table 7 presents the ranks of the studied features in the Al-
ibaba and OSS projects. The top-, second- and third-most important
features are highlighted in an orange, green and blue background,
respectively. The “-” symbol means that the feature is correlated
with other features and it is removed. Note that for both Alibaba
and OSS projects, we observe that REXP is correlated with other
features (e.g., EXP). Thus, that feature is dropped. Table 8 presents
the number of studied Alibaba and OSS projects where each of the
studied features is ranked as a top-most or top-3 important feature.

From Table 8, we notice that considering the top-most important
features, NF (i.e., number of files) is the dominant one for both
Alibaba and open-source projects.

Considering the top-3 important features, we have different con-
clusions for the Alibaba and open-source projects. NF, FIX and LT
are ranked as one of the top-3 important features for 14, 10 and 8
Alibaba projects (more than half of the studied Alibaba projects),
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respectively. Hence, NF, FIX and LT are the most important features
for the Alibaba projects. On the other hand, apart from NF, none of
the other features is ranked as one of the top-3 important features
for more than half of the studied OSS projects. From Table 7, we
notice that apart from NF, EXP and SEXP are ranked higher than
the other features. EXP is ranked as a top-most, second-most and
third-most important feature in 1, 1 and 2 projects. SEXP is ranked
as a second-most important feature in 4 projects.
The two groups of projects have the same top-most important feature
(i.e., NF)—indicating that diffusion factors are the most important for
effort-aware JIT defect identification for both groups of projects. But
the two groups of projects show a difference in terms of the second-
and third-most important features.

Table 8: Number of studied Alibaba and OSS projects where
a feature is ranked as a top-most or top-3 important feature.

Features Top-1 Top-3
Alibaba OSS Alibaba OSS

NS 0 1 1 3
ND 0 0 1 0
NF 13 10 14 10
Entropy 0 0 1 0
LA 0 0 4 0
LD 0 0 4 1
LT 0 0 8 4
FIX 2 0 10 1
NDEV 0 0 2 4
AGE 0 0 0 2
NUC 0 0 4 2
EXP 0 1 2 4
SEXP 0 0 0 4

4.3 RQ3: Association analysis
Project-specific context factors. In total, we investigate 11 project-
specific factors (as shown in Table 1) that are usually used in
prior studies [57, 58, 60]. These factors are the number of changes
(Changes), the number of defective changes (Defective), ratio of
defective changes (Def_ratio), the number of branches (Branches),
the number of developers (Devs), total lines of code (LOC), the num-
ber of files (Files), the median size of changes (Median_size), the
mean size of changes (Mean_size), i.e., the size of a change repre-
sents the total changed number of lines (LA+LD) in the change, the
user base (Users, i.e., “Internal” indicates that the project is used
by internal users within the company, “External” indicates that
the project is used by the external users), the lifecycle stage of the
project (Lifecycle, i.e., ., pre-initial version or post-initial version),
“Pre-initial” means the first version of the project has not been re-
leased. “Post-initial” means the first stable version of the project
has been released, and the project has the opportunity to receive
the users’ reported bugs). For each numeric project-specific factor
(i.e., all the project-specific factors except for Users and Lifecycle),
we separated the values into four groups based on the first, second,
and third quartiles (i.e., least, less, more, most), as suggested by
prior work [16].

Mixed effect model. We use a mixed-effect logistic regression
model [44] to investigate the association between project-specific
factors and the likelihood of a defective change. A mixed-effect
modeling approach is able to capture the variation of the inter-
pretation of models among different projects [10]. Different from
classic logistic regression models, a mixed-effect logistic regression
model contains both fixed effects (independent factors at the change

level, i.e., the explanatory factors) and random effects (independent
factors at the project level, i.e., the context factors). Explanatory
factors are used to explain the data at the change level, while con-
text factors refer to the project-specific factors. Using explanatory
variables and context factors, a mixed-effect model expresses the
relationship between the outcome (i.e., the likelihood of a defective
change) and the change-level features, while accounting for the
different project-specific factors. The mixed-effect model is built as
follows:

Step 1: Combining datasets of the studied projects. The mixed ef-
fect model analyzes the association between project-specific factors
and the likelihood of a defective change in Alibaba projects. To
that end, we combine all the changes from the studied projects.
After that, we add the project-specific factors into the dataset of
combined changes. Thus, the combined dataset contains change
and project-specific factors for all the studied projects.

Step 2: Correlation and redundancy analysis.The highly correlated
and redundant features would produce incorrect interpretations
for a mixed effect model as noted by prior studies [10, 35]. In this
step, we remove the highly correlated and redundant change fac-
tors in the combined dataset using the same approach as used in
RQ2. As a result, Entropy, REXP, SEXP and NUC are removed from
the combined dataset due to the high correlation. Furthermore, we
remove redundant factors that can be predicted by combining other
features. Our redundancy analysis found no redundant factors.

Step 3: Building a mixed effect model.There are two types ofmixed-
effect models: (1) random intercept models, and (2) random slope
and intercept models [38]. A random intercept model has differ-
ent intercepts for context factors and fixed slopes for explanatory
factors. A random slope and intercept model has different inter-
cepts for context factors and different slopes for explanatory factors.
We choose to use the random slope and intercept model, because
we assume that change-level features from different projects have
different relationships with the likelihood of a defective change.

In our random slope and intercept model, we use project names
as the random effect, and use NF as the random slope against the
project in ourmodel. In thismanner, different projects have different
baseline likelihood of a defective change, and NF has a different
relationship with the likelihood of a defective change. We select NF
as a random slope because NF is the most important change factor
for our used approach (as we found in RQ2). Other change-level
factors are used as fixed effects. We build the mixed-effect model
using the glmer function of the lme44 R package.

Results. Table 9 presents the results of our mixed effect model.
We discuss the results with respect to (1) the goodness-of-fit of our
mixed effect model, (2) the association between project-specific
factors and the likelihood of a defective change, (3) the association
between change factors and the likelihood of a defective change.

Goodness-of-Fit. To measure how well our mixed effect model
fits the combined dataset, we use the conditional coefficient of de-
termination for generalized logistic regression and mixed-effect
models (i.e., 𝑅2 or 𝑅2

𝐺𝐿𝑀𝑀
) [15, 30]. We calculate such coefficient

using the 𝑅2
𝐺𝐿𝑀𝑀

implementation of the r.squaredGLMM func-
tion of MuMIn5 R package. This function reports two values: the

4https://cran.r-project.org/web/packages/lme4/lme4.pdf
5https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf
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Table 9: Summary of the mixed effect model.

Type Variable Variance Coef. 𝜒2 Pr(> 𝜒2)
Random slope NF 1.82 - 4572.88 ***

Random intercept

Mean_size 0.01 - 57.20 ***
LOC 0.06 - 54.99 ***
Changes <0.01 - 32.31 ***
Def_ratio <0.01 - 16.62 ***
Median_size 0.07 - 3.10 o
Users <0.01 - 0.41 o
Files <0.01 - 0.08 o
Lifecycle 0.08 - <0.01 o
Branches 0.13 - <0.01 o
Developers <0.01 - <0.01 o
Defective <0.01 - <0.01 o

Fixed effect

FIX - 0.86 2237.76 ***
LT - 0.28 1496.30 ***
LA - 0.43 1082.89 ***
AGE - -0.04 68.19 ***
NDEV - 0.17 62.14 ***
LD - 0.51 53.36 ***
NS - 0.24 24.64 ***
EXP - -0.02 7.76 **
ND - 0.07 3.60 o

Statistical significance of 𝜒2 :
o: p>= 0.05; *: p<0.05; **: p<0.01; ***: p<0.001

𝑅2 goodness of the model with just fixed effects (i.e., only using
change factors), and the 𝑅2 goodness of the full mixed effect model.

As a result, we found that the 𝑅2 of our mixed effect model is 0.46,
while the 𝑅2 of the model with just fixed effects is 0.35. This finding
indicates that our mixed effect model can explain the variability of
the combined dataset by 46%. Additionally, our mixed effect model
can explain the variability of the data 31% better than the model
with just fixed effects.

Association between project-specific factors and the likelihood of a
defective change. We use the 𝜒2 value of each project-specific factor
(i.e., the context factors in our mixed effect model) to measure the
association of a factor with the likelihood of a defective change
as suggested by Bolker et al. [2]. Such 𝜒2 value is obtained from
the Likelihood Ratio Test (LRT) that measures the association of a
factor with the likelihood of a defective change. The larger the 𝜒2

value, the larger the association that a factor has with the likelihood
of a defective change.

Table 9 presents a summary of the model statistics for our mixed
effect model. The summary shows that the mean size of changes
(Mean_size), total lines of Code (LOC), the number of changes
(Changes), and the ratio of defective changes (Def_ratio) have a
significant association with the likelihood of a defective change.
These four project-specific factors have the largest 𝜒2 and a statis-
tical significance.

This finding indicates that among our considered project-specific
factors, the size factors (i.e., total LOC, total changes and mean
size of changes) and the data distribution of defective changes of a
project have the largest associationwith the likelihood of a defective
change. For example, large projects tend to have a higher likelihood
of a defective change. The findings in this subsection suggest that a
mixed effect model considering project-specific factors can provide
a deeper understanding of the characteristics of defect-introducing
changes.

Association between change factors and the likelihood of a defective
change. In terms of the change factors, Table 9 shows that the NF,
FIX, LT, and LA have the highest association with the likelihood of
a defective change. Note that in RQ2, we investigated the important

change factors that impact the performance (i.e., F1-score@20%) of
CBS+. In this RQ, we investigate the association between different
factors (including project-specific factors and change factors) and
the likelihood of a defective change on the combined projects of
Alibaba. Our finding in this RQ suggests that the NF, FIX, LT, and
LA factors are highly associated with the likelihood of defective
changes. Such finding is consistent with the finding in RQ2 (i.e.,
the important change factors for CBS+).
Project-specific context factors have an association with the likeli-
hood of a defective change in Alibaba projects. The size factors (i.e.,
total LOC, total changes and mean size of changes) and the data
distribution of defective changes of a project have a significant as-
sociation with the likelihood of a defective change for the Alibaba
projects.

5 HUMAN STUDY
In this section, we wish to investigate the effectiveness of our effort-
aware JIT defect identification tool when it is applied in a real-
life industrial setting. To do so, we developed an effort-aware JIT
defect identification tool based on CBS+. The extent of developers’
approval of the warnings by our JIT defect identification tool is
unknown. We believe that seeking developers’ opinions would
provide a practical view of the effectiveness of our effort-aware JIT
defect identification approach. Thus, we used this tool to investigate
its effectiveness in a real-life industrial setting. In summary, we
focus on the following central question in our discussion:

How effective is our effort-aware JIT defect identification
tool in a real-life industrial setting at Alibaba?

Method. Our user study was conducted on one project. We only
choose one project because conducting a user study on several
projects would cost a large amount of developers’ effort and time.
Developers in the user study were each asked to review a list of
changes and we performed a personal interview whenever needed.
We choose project P1 as described in Table 1, since the developers
in this project are available and willing to do the user study. In
this project, we have five participating developers who are active
developers in this project. They vary in experience levels, ranging
from one to seven years of work experience in the company.

Responses on each change. For each change in the user study, the
participating developers were asked to mark each change as defec-
tive, clean, or unknown. Before performing the user study, the par-
ticipating developers were told that defective means that a change
will introduce risks (e.g., may lead to future bugs). Such risks would
cause a negative impact on their products and processes. Develop-
ers believe that additional attention is needed in the form of careful
code or design reviewing or more testing. Clean means that the
developer considers the change to be of low risk. Unknown means
that the developer has no strong opinion towards that change or
that the developer does not have enough experience to make a
choice. The detailed steps of the user study are:

Step 1: Taking the changes in the recent month (i.e., 205 changes
from 20 June to 20 July, 2018) as the reviewing scope, we created a
list of defective changes using our tool. And we assumed an inspec-
tion effort budget that is 20% of the changed LOC, following prior
work (e.g., [12]). The total changed LOC of the warned changes can-
not be larger than the inspection budget (i.e., 20% of total changed
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LOC in the testing dataset). Note that we removed the truly defec-
tive changes that have already been marked as defective by SZZ
before 20 July (i.e., 11 changes), since these defective changes have
been fixed. As a result, our tool warned about 33 changes being
defective.

Step 2:We sent a survey with the same list of these 33 changes to
5 participating developers on 21 July, 2018. We asked them to finish
the survey separately. During the survey, developers were asked to
inspect the diff of each change on the code review system. We also
provided the code review url of each change on the code review
system. On the url, developers can inspect detailed diff information
of each change.

Step 3: For each change, each participating developer was asked
to mark whether they consider a change as defective, clean, or
unknown. After collecting the responses by the 5 participating
developers, we synthesized their responses.

Table 10: Synthesized responses of user study 1. “Def”means
defective, “Cle” means clean, “Dis” means disagree and
“Unk” means unknown.

#Def #Cle #Dis #Unk
Synthesized responses 11 21 1 0

Synthesizing the responses of the 5 developers. Different develop-
ers may have different responses on each change due to their var-
ious understanding and experience. Thus, we have to synthesize
their responses to obtain a more comprehensive result. Following
the idea of prior study [20], we synthesize the responses by the 5
developers as follows:

(1) For a defective classification, at least 2 respondents indicated
that the change is defective, and the number of defective responses
must be larger than that of the clean responses (e.g., a change with
2 defective, 1 clean and 2 unknown respondents would be consid-
ered as a defective change); (2) For a clean classification, the same
process as (1) is used but in reverse; (3) For an unknown classifica-
tion, at least 3 responses indicated that the change is unknown.(4)
Otherwise, if there are 2 defective responses, 2 clean responses and
1 unknown response, the change is marked as “disagreed”.

Results. Table 10 presents the synthesized responses of the five
participating developers. Among the 33 changes in our survey, 11
changes are determined as defective, 21 changes are determined
as clean and 1 change is determined as disagreed. This indicates
that developers concur with our tool’s defective warning 33% of
the time.

The results indicate that our tool helped developers focus on
only 33 of the 205 changes. These 33 changes would cost 20% of
the entire effort required to inspect all the changes. As a result,
11 defective changes from the 33 warned changes by our tool are
correctly identified.

From the user study, we find that our tool helps developers focus on
a small number of the warned changes. The tool’s warned defective
changes are correct in the 33% of the time.

6 THREATS TO VALIDITY
Threats to internal validity relate to potential errors in our imple-
mentation. One potential threat to validity is the potential errors

in our approach implementation. To mitigate the threat, we im-
plemented the selected five approaches following their original
description [7, 13, 17, 23, 55]. We also double-checked the imple-
mentation and fully tested our code, still there could be errors that
we did not notice.

Threats to external validity relate to generalizability of our re-
sults. We analyzed 14 projects and interviewed five developers at
Alibaba. All our participating developers were volunteers and they
have their own daily jobs at Alibaba. There is the possibility of
project and developer selection bias in our user study. Additionally,
since only one company is selected in our case study, the gener-
alizability of our findings might be a threat to the validity of our
findings. Actually, we would like to note that we do not seek to
claim the generality of our findings in other companies. In con-
trast, the key message of our work is that we show our empirical
findings on effort-aware JIT defect identification at Alibaba. Other
companies can be aware of our empirical method and findings on
effort-aware JIT defect identification in practice. They can borrow
our method and findings for reference before they attempt to adopt
JIT defect identification.

7 CONCLUSION
This paper explores the effectiveness of effort-aware JIT defect
identification in an industrial setting. To that end, we conducted
a case study on 14 Alibaba projects with 196,790 changes. In our
case study, we investigated the effectiveness of five state-of-the-art
effort-aware JIT defect identification approaches, including three su-
pervised approaches (i.e., CBS+, OneWay, EALR) and two unsuper-
vised approaches (i.e., LT and Code Churn). Then, we investigated
the important change features for the best performing effort-aware
approach. Additionally, we investigated the association between
project-specific factors and the likelihood of a defective change. Fi-
nally, we developed a tool based on the best performing effort-aware
approach (i.e., CBS+). By applying the developed tool at Alibaba,
we conducted a user study to investigate the tool’s effectiveness in
the real-life industrial setting.

In summary, we make the following conclusions: (1) CBS+ out-
performs all state-of-the-art supervised effort-aware JIT defect iden-
tification approaches on Alibaba projects. (2) The important change
factors that impact the performance of effort-aware JIT defect iden-
tification approach differ between Alibaba projects and open source
projects. (3) Project-specific factors have an association with the
likelihood of a defective change in Alibaba projects. (4) The user
study shows that our tool helps developers focus on a small number
of the warned changes. The warned defective changes are correct
in the 33% of the time.
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