BIKER: A Tool for Bi-Information Source Based APl Method

Recommendation
Liang Cai, Haoye Wang, Qiao Huang Xin Xia
Zhejiang University Monash University
China Australia
Zhenchang Xing David Lo
Australian National University Singapore Management University
Australia Singapore

ABSTRACT

Application Programming Interfaces (APIs) in software libraries
play an important role in modern software development. Although
most libraries provide API documentation as a reference, devel-
opers may find it difficult to directly search for appropriate APIs
in documentation using the natural language description of the
programming tasks. We call such phenomenon as knowledge gap,
which refers to the fact that API documentation mainly describes
API functionality and structure but lacks other types of informa-
tion like concepts and purposes. In this paper, we propose a Java
API recommendation tool named BIKER (Bi-Information source
based KnowledgE Recommendation) to bridge the knowledge gap.
We implement BIKER as a search engine website. Given a query
in natural language, instead of directly searching API documen-
tation, BIKER first searches for similar API-related questions on
Stack Overflow to extract candidate APIs. Then, BIKER ranks them
by considering the query’s similarity with both Stack Overflow
posts and API documentation. Finally, to help developers better
understand why each API is recommended and how to use them in
practice, BIKER summarizes and presents supplementary informa-
tion (e.g., API description, code examples in Stack Overflow posts)
for each recommended API Our quantitative evaluation and user
study demonstrate that BIKER can help developers find appropriate
APIs more efficiently and precisely.
Demo Tool Website: http://biker.net.cn/
Demo Video: https://youtu.be/BVu29JIAuXY

CCS CONCEPTS

- Software and its engineering — Software development tech-
niques.

KEYWORDS

API Recommendation, API Documentation, Stack Overflow

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE 19, August 26-30, 2019, Tallinn, Estonia

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5572-8/19/08...$15.00
https://doi.org/10.1145/3338906.3341174

ACM Reference Format:

Liang Cai, Haoye Wang, Qiao Huang, Xin Xia, Zhenchang Xing, and David
Lo. 2019. BIKER: A Tool for Bi-Information Source Based API Method Rec-
ommendation. In Proceedings of the 27th ACM jJoint European Software
Engineering Conference and Symposium on the Foundations of Software En-
gineering (ESEC/FSE °19), August 26-30, 2019, Tallinn, Estonia. ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3338906.3341174

1 INTRODUCTION

In modern software development, the Application Programming
Interfaces (APIs) provided by software libraries bring great con-
venience to software development. However, it is not easy to be
familiar with all APIs in a large library. For example, for Java SE
8 API, there are more than 4K classes and 30K methods. Thus, de-
velopers often need to check the API documentation to learn how
to use an unfamiliar API. However, a common scenario is that de-
velopers only have the requirement of a programming task, while
they do not even know which API is worth learning.

A possible solution for this problem is to use the natural lan-
guage description of the programming task as a query, and use
Information Retrieval (IR) approaches to obtain some candidate
APIs whose documentation is semantically similar to the query.
However, our preliminary experiment has shown that the solution
may fail to find the relevant API if its description does not share
semantically similar words with the query. We call such mismatches
between a task description and the API documentation as task-API
knowledge gap, and our observation is also consistent with previ-
ous studies (e.g., [10]), which pointed out that API documentation
mainly describes API functionality and structure, but lacks other
types of information (e.g., concepts or purposes).

In our previous work [7], to bridge this task-API knowledge gap,
we conducted a survey with 130 Java developers to understand
how developers search for APIs to resolve programming tasks.
We found that, instead of directly checking API documentation,
most developers would choose first to browse several relevant
Stack Overflow (SO) questions and pick out the APIs that seem to
be useful in the discussions. Inspired by this information seeking
process, we proposed an automatic approach named BIKER (Bi-
Information source based KnowledgE Recommendation) which
leverages both SO posts and API documentation to recommend
APIs for a programming task.

In this paper, we strengthen BIKER by implementing it as a
publicly accessible search engine website. Using BIKER, developers
can use natural language to describe the Java programming task as a
query. Given a query, BIKER will output the top-5 Java API methods

http://biker.net.cn/
https://youtu.be/BVu29JIAuXY
https://doi.org/10.1145/3338906.3341174
https://doi.org/10.1145/3338906.3341174

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

that are most likely to solve the task. To help developers better
understand why these APIs are recommended so that they can make
their decisions more easily, BIKER also provides supplementary
information (i.e., official API description, relevant SO questions and
code snippets) for each recommended APL
To evaluate BIKER, we compare it with two baselines (i.e., RACK [8]

and DeepAPI [6]) using our manually labeled dataset and the dataset
published by RACK. The results show that our tool significantly
outperforms RACK and DeepAPI by at least 42% in terms of MAP
and MRR. We also conduct a user study in which 28 Java devel-
opers are divided into four groups using different tools to answer
10 Java-API-method-related questions randomly sampled from SO.
The results show that our tool can help developers find the correct
APIs for Java programming tasks more efficiently and accurately.
Finally, we release the replication package of BIKER [2] to help
other researchers replicate and extend our work.

2 APPROACH

Figure 1 shows the overall framework of BIKER, which consists of
three main components: building domain-specific language mod-
els for similarity calculation (Section 2.1), searching for relevant
APIs based on SO posts and API documentation (Section 2.2), and
summarizing API supplementary information (Section 2.3).

2.1 Building Language Models for Similarity
Calculation

During the search process of BIKER, a key step is to calculate the se-
mantic similarity between two pieces of texts. To measure a query’s
similarity to a SO post or an API description, we need to build
domain-specific language models. We first build a text corpus by
extracting the text content from SO posts that are tagged with java.
We remove long code snippets enclosed in HTML tag (pre), but
keep short code fragments between (code) tags as natural language
sentences. We use NLTK [4] to tokenize the sentences. Using the SO
corpus, we train a word embedding model using Gensim [9]. Word
embedding model provides the basic model to measure word simi-
larity. Then we build the word IDF (inverse document frequency)
vocabulary. A word’s IDF represents the inverse of the number of
SO posts that contain the word. We reduce each word in the corpus
to its root form (aka. stemming) using NLTK. Thus, the words with
the same root form will have the same IDF value. The more posts
in which a word appears, the less likely the word carries important
semantic information, and thus its IDF is lower. We use IDF as a
weight on top of word embedding similarity.

2.2 Searching for Relevant APIs

Our API search component performs three steps: retrieve similar
SO questions to the query, detect API entities in the SO posts, and
calculate the query’s similarity with SO posts and API descriptions
for ranking the relevance of candidate APIs to the query.

2.2.1 Retrieving Similar Questions. Given a query describing a
programming task, the first step is to retrieve the top-k similar
questions from SO. BIKER first transforms the text of a question’s
title and the query into two bags of words, denoted as T and Q,
respectively. Then an asymmetric similarity score from T to Q

Cai et al.

is computed as a normalized, IDF-weighted sum of similarities
between words in T and all words in Q:
et sim(w, Q) X idf (w))
Sweridfw)

where sim(w, Q) is the maximum value of sim(w, w) for each
word w € Q, and sim(w, w') is the cosine similarity of the word
embedding vectors of w and w'. The asymmetric similarity score
sim(Q — T) is computed analogously, by swapping T and Q in
Equation 1. Intuitively, a word with lower IDF value would con-
tribute less to the similarity score. Finally, the similarity score be-
tween T and Q is computed as the harmonic mean of the two asym-
metric scores:

sim(T — Q) =

2 X sim(T — Q) X sim(Q — T)
sim(T — Q) +sim(Q — T)
The retrieved top-k similar questions will be used to detect candi-
date APIs for recommendation. In this paper, BIKER only retrieves
the top-50 similar questions, since retrieving too many questions
may introduce noise to the recommendation process.

sim(T, Q) = (2)

2.2.2 Detecting API Entities. After retrieving the top-k similar ques-
tions, BIKER uses several heuristic rules to extract API entities from
each question’s answers. These APIs are considered as candidate
APIs for recommendation. If an API is not mentioned in any of the
top-k similar questions, it is less likely to be the right API for the
query. Thus, we do not consider all APIs of a language or library
for recommendation. In this way, a lot of irrelevant APIs would be
filtered out.

To detect API entities, we first manually checked a large num-
ber of API-related questions. We observe that an important API
mentioned by developers is often highlighted with the HTML tag
(code) or referenced by a hyperlink to the API’s corresponding
documentation page. Thus, BIKER detects API entities using the
following two heuristics:

o BIKER checks every hyperlink in each answer and uses regular
expressions to identify the hyperlink to a Java official API docu-
mentation site. Then it uses regular expressions to detect the full
name of the corresponding API method from the hyperlink and
mark this method as a candidate APL

e BIKER builds a dictionary that stores the names of all Java APIs.
Then it checks the text contained in every HTML tag (code) in
each answer. If the text fully matches any API method in the
dictionary, it is marked as a candidate API.

2.2.3 Calculating Similarity Score for Ranking Candidate APIs. Af-
ter obtaining a list of candidate APIs from the top-k similar ques-
tions, BIKER calculates the similarity score between each candidate
API and the query. Given an API and a query Q, their similarity
score is a combination of two scores, namely SimSO and SimDoc.
Specifically, SimSO measures the similarity between the query and
the question title T of a top-k similar question in which the API is
mentioned, and SimDoc measures the similarity between the query
and the API’s description in the official API documentation.

Suppose that among all the top-k similar questions, the API is
mentioned in n questions, then SimSO is computed as:

iy sim(Ti, Q)
n

SimSO(API, Q) = min(1, x log, n) (3)

BIKER: A Tool for Bi-Information Source Based APl Method Recommendation

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

®

Offline
Processing

Word IDF

T
'
'
'
1 Vocabulary
I

|

H

Word
Embedding

Model /

Building
Language Model

b T—

__|. _______________________________

stackoverflow

|

Similar
Questions
Retrieval

Top-k
Questions

Candidate
APIs.

API Entities
Detection

/] |

AN Summarizing APT ~ T T T T
i rmation
Official API description
Title of Similar Questions
Code Snippets from SO Posts

Recommended
Results

Relevant APIs
Score

Calculation

Searching
Similarity

Official API
Documentation

Ranked
List of APIs

Figure 1: Overall framework of BIKER

where sim(T;, Q) represents the similarity score between the
query and the title of the i-th question that mentions the API, and
sim(Tj, Q) is calculated based on Equation 2. SimSO considers two
aspects. First, the score should be related to the similarity between
each question and the query. Thus, it calculates the average of the
similarity score between each question’s title and the query. Second,
if the API is mentioned in multiple questions, it is more likely to be
the right API for the query. Thus, the score is further boosted based
on the number of questions. We add a logarithm transformation
log, n to control the scale of boosting. For example, the score would
be boosted by 20% if the API is detected in 4 questions. We also
restrict that the boosted score should not exceed 1.

The SimDoc is also calculated based on Equation 2 given the
query Q and the API description D. Finally, the similarity score
between the query and the API is the harmonic mean of the corre-
sponding SimSO and SimDoc.

2.3 Summarizing API Supplementary
Information

After obtaining the ranked list of candidate APIs, BIKER summa-
rizes supplementary information for each API in the list. We do
this following the findings of our developer survey (see [7]) which
suggest that developers usually need to check more information
about API description and API usage examples to decide which API
should be chosen for their tasks. Thus, the supplementary informa-
tion summarized by BIKER considers three aspects, including the
official API description, the title of similar questions and the code
snippets that contain the corresponding APL

3 TOOL IMPLEMENTATION AND USAGE

We implement BIKER in the form of a search engine website. The
following subsections describe BIKER’s knowledge base, implemen-
tation and usage.

3.1 Knowledge Base

We extracted 1,347,908 questions tagged with Java from the official
data dump [3] of SO (published on: Dec 9th, 2017). Then we built
a text corpus based on the text content in these questions and
their answers to train a word embedding model and construct
an IDF vocabulary with the text corpus. To create the knowledge
base of API-related questions for similar questions retrieval, we
select the questions with positive score and at least one positive-
scored answer to the question contains API entities. In this way, we
collected 125,847 API-related questions. Finally, we downloaded the
Java SE 8 API documentation [1] and parsed the HTML file of each
API class to extract all API methods, along with their descriptions.

API Method Recommendation without Worrying about the Task-API Knowledge Gap.

run linux commands in java code:

EXAMPLE:

way {0 fnd 0s name us

Java Fastest way {0 read through fext le with 2 millon lines?

Figure 2: The homepage of BIKER

Rank 1 : java.lang.Runtime.exec
Java Doc :
Executes the specified string command in a separate process.

Relevant Questions :

1. Run cmd commands through java

2. Unable to execute Unix command through Java code
3. use cmd commands in java program

Code Snippets 1:
Process p = Runtime.getRuntime().exec(command);

Code Snippets 2:
Runtime.exec(-whatever cmd command you need to execute-)

Code Snippets 3:
String command1 = "mv $FileName /bgw/feeds/ibs/incoming/";
Runtime.getRuntime().exec(command1);

Figure 3: The top-1 recommendation result for the query
“run linux commands in java code”

In total, we extracted 31,736 methods and built a dictionary mapping
the name of each method with its description in the documentation.

3.2 Tool Implementation

Figure 2 shows the homepage of BIKER. When a developer sends
a textual query to the server, the query will be processed in the
background. By default, BIKER returns the top-5 APIs that are most
likely to solve the task, along with supplementary information for
each API. For example, given the query “run linux commands in
Jjava code”, Figure 3 shows the top-1 recommended API and its
supplementary information. Among these pieces of information,
BIKER first presents the official API description so that developers
can quickly check the API’s functionality. Then, BIKER presents
the title of similar SO questions whose answers mentioned this API
These questions are ranked by their titles’ similarity scores with
the query in descending order. In case a developer is interested to

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

further investigate the discussion in a SO question, the developer
can click the title which is a hyperlink to the corresponding SO
webpage of the question. To reduce information overload, at most
three similar questions would be presented. Finally, BIKER checks
each similar question’s answers and extracts code snippets contain-
ing the APL Specifically, given an API, a code snippet is extracted
if it satisfies both the following conditions: 1) The number of lines
of code is no more than five; 2) The API’s class name and method
name are both contained in the code snippet. To reduce information
overload, it presents at most three code snippets. Thus, developers
can check these code snippets to understand how to use the APL

3.3 Usage Scenarios

In this section, we present several examples to illustrate how devel-
opers would interact with BIKER. For queries like “how to get the
length of a string”, developers can quickly find the correct answer
(i.e., String.length) when browsing the name and document descrip-
tion of the top-1 recommended APL However, in many cases, it is
not easy to quickly figure out whether the recommended API is
useful by only checking its name and document description. For
example, given the query “How to free memory in Java”, although
the top-1 recommended API (i.e., System.gc) is the right answer,
its document description (i.e., “Runs the garbage collector”) is not
semantically overlapping with the query. The developer may not un-
derstand the API usage if he/she is not familiar with Java’s garbage
collector. However, since all of the three related SO questions are
asking similar topics like how to free Java object or heap, the de-
veloper can click one of these questions and he/she will learn the
mechanism of Java’s memory management by reading the posts.

In some cases, the code snippets recommended by BIKER may
help developers further understand the API usage and make it easier
to apply the API to developers’ own code. For example, given the
query “How to round a number to n decimal places in Java”, the top-1
recommended API (i.e., Math.round) is the right choice. For this
API, BIKER recommended code snippets for rounding a number to
2 decimal places, which can be easily extended to n decimal places
with a simple modification.

One drawback of BIKER is that it only recommends individual
API, while some programming tasks may require an API sequence.
To find the appropriate sequence, developers can leverage the code
snippets provided by BIKER. For example, given the query “Re-
move trailing zeros from double”, the top-1 recommended API (i.e.,
BigDecimal.stripTrailingZeroes) seems to be the right answer since
its name is straightforward and the key phrase in its documentation
(i.e., with any trailing zeros removed) also seems to meet the task
requirement. However, this API would transform a number like
600.0 into a scientific notation, which may cause some bugs when
directly printing the result. To fix this issue, developers need to call
BigDecimal.toPlainString after stripping the trailing zeros, which
can be easily found in BIKER’s recommended code snippets.

Note that sometimes developers may not be able to clearly de-
scribe the query. For example, when a developer wants to know
the Java API for sorting, if he/she inputs “sorting algorithm”, BIKER
cannot output relevant APIs since the query is too short and the
purpose is not that specific. A better query could be “sort a list”
or “sorting algorithm java api”. In future work, we plan to improve
BIKER by guiding developers to clarify their queries.

Cai et al.

4 EVALUATION
4.1 Quantitative Evaluation

To evaluate the effectiveness of BIKER, we manually selected 413
Java-API-related questions from SO and labeled the ground-truth
APIs for these questions based on their accepted answers. We com-
pare BIKER with two baselines (i.e., RACK [8] and DeepAPI [6])
using our dataset and the dataset published by RACK. The results
show that our tool significantly outperforms RACK and DeepAPI
by at least 42% in terms of MAP and MRR. Readers can check our
previous work [7] for more details about the evaluation results.

To evaluate the efficiency of BIKER, we record its query pro-
cessing time. On average, BIKER takes 2.8 seconds to process each
query. The major computation cost for query processing is due
to the step of similar questions retrieval, where BIKER needs to
compare the query with the titles of about 120 thousand questions.
To improve the time efficiency, we can reduce the size of questions
to be compared with some heuristic rules (e.g., only comparing
with the question whose vote score is larger than k) or accelerate
similarity score computation (i.e., matrix multiplication) by parallel
computation using GPU [5].

4.2 User Study

To further investigate how developers interact with BIKER and
whether it can help developers find correct APIs more efficiently
and accurately, we conducted a user study with 28 participants
from both university and IT companies. All of them have Java de-
velopment experience in either commercial or open source projects,
with an average of 2.9 years of development experience. These
participants are divided into four groups using different tools to
answer 10 Java-API-related questions randomly sampled from our
testing dataset. Readers can check our previous work [7] for more
details about the sampled questions and group settings. On average,
compared with the other three groups (i.e., web search only, using
DeepAPI and using BIKER with only API name recommendation
but no supplementary information), the group using the full version
of BIKER can improve answer correctness by 11%-23% and save
answering time by 28%-49%.

5 CONCLUSION AND FUTURE WORK

In this paper, we present BIKER, a tool implemented as a search
engine website to automatically recommend relevant APIs for a
programming task described in natural language. Inspired by the
information seeking process of developers, we leverage both Stack
Overflow posts and API documentation to improve the effective-
ness of BIKER, and summarize supplementary information for each
recommended API to help developers better understand the API us-
age and determine their relevance to the query task. In future work,
we plan to extend BIKER to support more programming languages
(e.g., Python) and provide more customized search options.

ACKNOWLEDGMENTS

This research was partially supported by the National Key Research
and Development Program of China (2018YFB1003904), NSFC Pro-
gram (No. 61602403), Project of Science and Technology Research
and Development Program of China Railway Corporation (P2018X002),
and the Fundamental Research Funds for the Central Universities.

BIKER: A Tool for Bi-Information Source Based APl Method Recommendation

REFERENCES

[1] 2017. Java SE 8 API documentation downloading site. http://www.oracle.com/

technetwork/java/javase/documentation/jdk8-doc-downloads-2133158 html.

[2] 2017. The replication package of BIKER. https://github.com/tkdsheep/BIKER-

ASE2018.

[3] 2017. Stack Overflow Data Dump. https://archive.org/download/stackexchange.
[4] Steven Bird and Edward Loper. 2004. NLTK: the natural language toolkit. In
Proceedings of the ACL 2004 on Interactive poster and demonstration sessions.

Association for Computational Linguistics, 31.

[5] Kayvon Fatahalian, Jeremy Sugerman, and Pat Hanrahan. 2004. Understanding
the efficiency of GPU algorithms for matrix-matrix multiplication. In Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware. ACM,

133-137.

=
&

sium on Foundations of Software Engineering. ACM, 631-642.

Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep
API learning. In Proceedings of the 2016 24th ACM SIGSOFT International Sympo-

ESEC/FSE *19, August 26-30, 2019, Tallinn, Estonia

[7] Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. 2018. API

[

[10

method recommendation without worrying about the task-API knowledge gap. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. ACM, 293-304.

Mohammad Masudur Rahman, Chanchal K Roy, and David Lo. 2016. Rack:
Automatic api recommendation using crowdsourced knowledge. In Software
Analysis, Evolution, and Reengineering (SANER), 2016 IEEE 23rd International
Conference on, Vol. 1. IEEE, 349-359.

Radim Rehiifek and Petr Sojka. 2010. Software Framework for Topic Modelling
with Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks. ELRA, Valletta, Malta, 45-50. http://is.muni.cz/publication/
884893/en.

Christoph Treude and Martin P Robillard. 2016. Augmenting api documentation
with insights from stack overflow. In Software Engineering (ICSE), 2016 IEEE/ACM
38th International Conference on. IEEE, 392-403.

http://www.oracle.com/technetwork/java/javase/documentation/jdk8-doc-downloads-2133158.html
http://www.oracle.com/technetwork/java/javase/documentation/jdk8-doc-downloads-2133158.html
https://github.com/tkdsheep/BIKER-ASE2018
https://github.com/tkdsheep/BIKER-ASE2018
https://archive.org/download/stackexchange
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

	Abstract
	1 Introduction
	2 Approach
	2.1 Building Language Models for Similarity Calculation
	2.2 Searching for Relevant APIs
	2.3 Summarizing API Supplementary Information

	3 Tool Implementation and Usage
	3.1 Knowledge Base
	3.2 Tool Implementation
	3.3 Usage Scenarios

	4 Evaluation
	4.1 Quantitative Evaluation
	4.2 User Study

	5 Conclusion and Future Work
	Acknowledgments
	References

