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Abstract
Because of functionality evolution, or security and performance-related changes, some APIs
eventually become unnecessary in a software system and thus need to be cleaned to ensure
proper maintainability. Those APIs are typically marked first as deprecated APIs and, as
recommended, follow through a deprecated-replace-remove cycle, giving an opportunity to
client application developers to smoothly adapt their code in next updates. Such a mecha-
nism is adopted in the Android framework development where thousands of reusable APIs
are made available to Android app developers. In this work, we present a research-based
prototype tool called CDA and apply it to different revisions (i.e., releases or tags) of the
Android framework code for characterising deprecated APIs. Based on the data mined by
CDA, we then perform an empirical study on API deprecation in the Android ecosystem
and the associated challenges for maintaining quality apps. In particular, we investigate
the prevalence of deprecated APIs, their annotations and documentation, their removal and
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consequences, their replacement messages, developer reactions to API deprecation, as well
as the evolution of the usage of deprecated APIs. Experimental results reveal several find-
ings that further provide promising insights related to deprecated Android APIs. Notably,
by mining the source code of the Android framework base, we have identified three bugs
related to deprecated APIs. These bugs have been quickly assigned and positively appreci-
ated by the framework maintainers, who claim that these issues will be updated in future
releases.

Keywords Android · Deprecated APIs · CDA

1 Introduction

Android is currently dominating the smartphone market, attracting 85% of global sales to
end users worldwide. Among the many potential incentives which drive Android’s compet-
itiveness in comparison to other mobile operating systems, we note the rapid and constant
evolution of the Android framework: McDonnell et al. (2013) have reported that developers
should expect a new release every three months. This is an indication of the pace at which
Android maintainers deal with vulnerability fixes and performance improvements on the
one hand, and the introduction of new features on the other hand. While these framework
code changes empower app developers to continuously provide high-quality apps, they also
bring about compatibility issues. For example, during framework evolution, a class can
be renamed or a method’s signature may be modified (e.g., addition of an extra parame-
ter), eventually impacting the Application Programming Interfaces (APIs), and eventually
breaking the execution of developer apps (Bagherzadeh et al. 2017).

To enable a graceful adaptation of developers to framework changes, API deprecations
are implemented following the so-called deprecate-replace-remove cycle. In this scheme,
APIs that will no longer be maintained in the framework are first flagged as deprecated,
through a proper @deprecated Java annotation, or by inserting @deprecated in the relevant
Javadoc message. Subsequently, the code of deprecated APIs are updated with replace-
ment messages which are meant to help developers refactor their apps in order to migrate
from deprecated APIs to their replacements (Brito et al. 2018b) or support automated refac-
torings (Dig et al. 2007; Perkins 2005). Finally, after some reasonable time (e.g., several
releases of the framework), deprecated APIs are eventually removed from the framework so
as to clean the framework and thereby reducing the maintenance burden on the framework
code base.

Unfortunately, as unveiled by several studies in the research literature (Robbes et al.
2012; Hora et al. 2015), the deprecated-replace-remove cycle is not always respected, lead-
ing to challenges for both framework maintainers and app developers. A number of research
works have then investigated to tackle the challenges associated to API deprecation. For
example, some researchers have explored the quality of documentation for deprecated
APIs (Brito et al. 2016; Ko et al. 2014). Others have studied developer reactions to depre-
cated APIs (Espinha et al. 2014; Sawant et al. 2016). There have been also various works
on automatically migrating client code in response to broken APIs (Chow and Notkin 1996;
Nita and Notkin 2010; Henkel and Diwan 2005; Xing and Stroulia 2007). Nevertheless,
despite the significant attention given to API deprecation in general, it is noteworthy that
the problem has not yet been extensively explored in the Android ecosystem specifically.

Our work aims at understanding and characterising how Android APIs are deprecated in
practice and how developers react to the phenomenon. The overall goal of this research is to
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draw insights that (1) framework maintainers can build on to improve strategies for depre-
cating APIs, and that (2) can be used to assist app developers in dealing with compatibility
issues that can arise after API deprecation.

Towards achieving the goal of this work, we present an empirical study on the depreca-
tion of Android APIs. This study builds on a systematic source code mining of the Android
framework, which is constituted of over 3 million lines of Java code in over 7,000 Java files.
The study also involved analysing 10,000 real-world Android apps to explore questions
related to the management, in practice, of deprecated APIs by developers.

In this work, we first design and implement a prototype tool called CDA, standing for
Characterising Deprecated APIs. Then, we apply CDA to different revisions (i.e., releases
or tags) of the Android framework code and compare the obtained results to understand
the evolution of deprecated Android APIs. Finally, we explore a set of real-world Android
apps attempting to understand the reaction of app developers to deprecated Android APIs.
Our experimental investigation eventually finds that (1) Deprecated Android APIs are not
always consistently annotated and documented; (2) Deprecated Android APIs are regularly
cleaned-up from the framework code base and half of the cleaned APIs are performed in a
short period of time, requiring developers to quickly react on deprecated APIs; (3) Around
78% of deprecated Android APIs have been commented with replacement messages, which
however are rarely updated during the evolution of Android framework code base; (4) Most
deprecated APIs are accessed by app code via popular libraries. (5) During the evolution
of Android apps, deprecated APIs are likely retained rather than removed from the app
code. (6) For the cases app developers do remove deprecated APIs from the app, they are
unlikely replacing the deprecated APIs with their alternatives recommended by the official
documentation, at least not directly at the same place (e.g., under the same caller method).

To summarise, we make the following contributions:

– We design and implement a prototype tool called CDA that automatically characterises
deprecated APIs by mining the source code of Android framework releases.

– We have identified three bugs related to deprecated APIs by parsing the latest revision
of the Android framework code. These bugs have been further submitted to the issue
tracker system1 of the Android Open Source Project (AOSP) and have been quickly
assigned and positively appreciated by the framework maintainers, who claim that these
issues will be updated in future releases.2

– We present a quantitative study on deprecated Android APIs along the evolution of the
Android framework base.

– We harvest a comprehensive list of deprecated Android APIs and provide also their
latest replacement messages that can be leveraged to guide the practical replacements
of deprecated APIs.

We make available online our implementation, along with the scripts to replicate our
experiments at

https://github.com/lilicoding/CDA
It is worth to mention that although CDA targets the Android framework code base, it

is implemented generically and could be easily migrated for the analysis of common Java
repositories. Concretely, the Java file parser and the API to replacement mapping should
work directly to Java projects.

1https://issuetracker.google.com
2The issue IDs of the submitted bugs are 69105065, 69104762 and 69098890.

https://github.com/lilicoding/CDA
https://issuetracker.google.com
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This paper is an extended and improved version of a conference paper (Li et al. 2018b)
presented at the 2018 International Conference on Mining Software Repositories (MSR).
In this extension, we have improved our prototype tool to take into account all the avail-
able Java classes in the Android framework base. Compared to the conference version,
where only a selected set of core Java classes are considered, we consider much more
classes including third-party classes such as the Apache ones (e.g., org.apache.http.*),
sensor-related code such as the ones used to support opengl or nfc, internal classes
such as com.android.internal.*, assistant code such as legacy-oriented test cases (e.g.,
com.android.multidexlegacytestapp), etc. Additionally, since the conference version of this
paper only focuses on deprecated APIs at the method level, a number of deprecated APIs
that are deprecated at the class level are actually missed. Specifically, if a class is deprecated,
all its methods should be considered as deprecated even if they are not explicitly flagged as
such (e.g., via the @Deprecated annotation or the @deprecated Javadoc tag). In this exten-
sion, we have improved our research tool to also take into account such deprecated APIs
that are only flagged at the class level. Because of the improvement of our prototype tool,
the experimental results (i.e., some statistics) presented in the conference paper are slightly
changed (the empirical observations are almost kept the same). Therefore, we re-conduct
all the experiments presented in the conference paper and subsequently update this paper
with the newly obtained results, accordingly. When re-conducting the experiments, we have
additionally considered two major releases (API levels 27-28) of the Android framework,
keep our empirical results update to date.

In addition to the improvement of our prototype tool and the massive refactoring of our
experimental results, we also introduce two new research questions aiming to (1) understand
the evolution of deprecated APIs in terms of their usage in Android apps as well as (2)
harvest practical fixes (conducted by developers of real-world apps) that attempt to replace
deprecated APIs with their alternatives. Finally, based on the harvested fixes, we provide to
the community an online web service3 that takes as input a deprecated API and outputs a
list of diff s showing how the searched API is removed in practice.

The remainder of this paper is organised as follows. Section 2 presents the necessary
background information to allow readers to better understand this work. Section 3 presents
the experimental setup of this work, including the dataset and the research questions as well
as the implementation of our prototype tool CDA. Section 4 details our quantitative studies
towards answering the aforementioned research questions. After that, Section 5 discusses
the potential implications and the possible threats to the validity of this work. The closely
related works are detailed in Section 6, followed by our conclusion to this work in Section 7.

2 Background

In this section, we provide the necessary background information on the concept of Android
APIs and deprecated APIs to help readers better understand our process.

2.1 Android APIs

Android APIs, like any other APIs that are defined as publicly accessible methods in the
code base, are provided to support developers for building shipping quality apps. Those

3The online web service can be accessed via http://35.224.210.36/DAU/

http://35.224.210.36/DAU/
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APIs are usually shipped with Software Development Kits (SDKs) that are frequently
updated as the Android system evolves: since the launch of Android in 2008, Android SDKs
have been released in over 10 versions providing progressively 28 API levels. The latest
Android system version is 9.0 and its API level is 28. This SDK comes with an online portal4

that tracks all documentation written by Android maintainers to help developers correctly
use the provided APIs. Figure 1 presents the screenshot of an example documentation for
API saveLayer(RectF,Paint,int), from which app developers can learn the main functionality
of this API as well as the necessary knowledge to correctly invoke it.

2.2 Deprecated APIs

With the evolution of APIs, some of them may no longer fit with the new requirements
of the SDK, e.g., because of security or performance reasons (Li et al. 2016b). SDK
maintainers thus need to remove such APIs so as to prevent their usage in client apps.
Nevertheless, because of potential compatibility requirements, deprecated APIs cannot be
directly removed as it may otherwise lead to application runtime crashes. In this context,
SDK maintainers adopt a simple convention: any to-be-removed API must first be marked
as deprecated API via a Java annotation @Deprecated. On the one hand, this annotation
indicates that the marked API can be removed in any future release of the SDK and is thus
not recommended to be used in a newly developed app. On the other hand, the annotation
does not prevent its use in legacy apps, allowing such apps to continue to perform to some
extent (e.g., depending on the device and the framework version they are running against).

Listing 1 illustrates two real examples of deprecated Android APIs, namely isNetwork-
TypeValid() and removeStickyBroadcast(), which were implemented in classes Connectivi-
tyManager and Context of the Android framework base, respectively. The description (cf.
lines 3 and 14) explains that these two APIs are deprecated because of function changes (i.e.,
there is no need to validate the network type) and security concerns (i.e., sticky broadcast
provides no security protection).

3 Experimental Setup

Our objective in this work is to mine the Android framework code base for characterising
the deprecated Android APIs. We expect this study to provide actionable guidelines for
both app developers and market maintainers to better deal with apps accessing deprecated
Android APIs. To this end, we present a research tool called CDA to support our analyses on
Characterising Deprecated APIs. Before detailing the design and implementation of CDA
in Section 3.2, we first present the dataset used in this study (cf. Section 3.1). We conclude
the section by presenting some statistical highlights on the Android framework code base
(cf. Section 3.3).

3.1 Dataset

Our dataset targets two artefacts, the Android system code base, and client code. Thus, it
includes:

4https://developer.android.com/index.html

https://developer.android.com/index.html
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Fig. 1 The documentation and deprecation message of saveLayer(RectF,Paint,int)

– GitHub repository data of the Android framework base.5

– A set of 10,000 apps that are randomly selected from AndroZoo (Allix et al. 2016; Li
et al. 2017a). We sample 5,000 apps from the official Google Play market (GPlay) apps
and 5,000 apps from third-party markets (NGPlay).

The Android platform code, hosted in Github since October 2008,6 is actually a mirror
of the Google source code repository7 maintained by Google. As of Oct. 2018, it has been
forked over 5 000 times, and has seen the contributions of over 700 developers, while being
watched for changes by almost 900 developers. The 167 git development branches have
integrated changes from 377,474 commits. Each commit representing a revision state of
the code base, the successive changes provide a good historical view on how do the APIs
evolve. Previous studies have already investigated this evolution in other contexts (Li et al.
2016c; Coelho et al. 2015; Palomba et al. 2018).

Over 600 revisions in the framework development are tagged as releases. Consecutive
releases can be made available without the API level being changed. We therefore assume
that such releases (i.e., within the same API level) will be similar in terms of API structure.
In this study, for the sake of simplicity, we pick one release (generally the latest) that is
associated to each API level, to build the evolution dataset to be investigated. Note that API
levels 11, 12 and 20 are irrelevant to our study as they do not actually correspond to new
releases of the code base.8 Eventually, as illustrated in Table 1, we are able to consider 22
releases (associated to 22 API levels) for our study.

In addition to the Android platform framework base, we also collect Android apps to
investigate how deprecated APIs are addressed by app developers. To this end, we inspect
10,000 apps: 5,000 from the official Google Play store (hereinafter referred as GPlay)
and 5,000 from third-party markets9 (hereinafter referred as NGPlay) such as AppChina.10

5https://github.com/android/platform frameworks base
6commit: 54b6cfa9a9e5b861a9930af873580d6dc20f773c
7https://android.googlesource.com/platform/frameworks/base.git
8There are no releases (or tags) for API levels 1-3, 11 and 12 while the API level 20 is reserved for wearable
devices.
9We hypothesise that these apps may be handled differently w.r.t. deprecated APIs compared to GPlay ones.
10The full list of involved third-party markets includes AppChina, Anzhi, MI.com, 1Mobile, Angeeks,
Slideme, F-Droid, Praguard, Torrents, Freewarelovers, Proandroid, Hiapk, Genome, APK Bang.

https://github.com/android/platform_frameworks_base
https://android.googlesource.com/platform/frameworks/base.git
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Listing 1 Examples of deprecated Android APIs

Table 1 Selected Android SDK (or API) Revisions. Because there is no release for API levels 1-3, 11 and 12
and level 20 is reserved for other purposes, in this work, we do not take into account these three API levels

API Level Code name Selected release Date

28 Pie android-9.0.0 r9 2018-08-30

27 Oreo android-8.1.0 r48 2018-08-30

26 Oreo android-8.0.0 r36 2017-08-17

25 Nougat android-7.1.0 r7 2017-03-30

24 Nougat android-7.0.0 r7 2016-08-23

23 Marshmallow android-6.0.1 r9 2015-12-15

22 Lollipop android-5.1.1 r9 2015-06-10

21 Lollipop android-5.0.2 r3 2014-12-17

19 KitKat android-4.4w r1 2014-05-07

18 Jelly Bean android-4.3 r3.1 2013-09-05

17 Jelly Bean android-4.2 r1 2012-11-09

16 Jelly Bean android-4.1.2 r2.1 2012-09-26

15 Ice Cream Sandwich android-4.0.4 r2.1 2012-03-20

14 Ice Cream Sandwich android-4.0.2 r1 2011-12-07

13 Honeycomb android-3.2.4 r1 2011-09-09

10 Gingerbread android-2.3.7 r1 2011-09-12

9 Gingerbread android-2.3.2 r1 2010-12-07

8 Froyo android-2.2.3 r2.1 2010-11-04

7 Eclair android-2.1 r2.1s 2010-02-10

6 Eclair android-2.0.1 r1 2009-11-18

5 Eclair android-2.0 r1 2009-10-15

4 Donut android-1.6 r2 2009-11-03
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These apps are randomly11 selected from the AndroZoo app repository, which contains over
7 million Android apps and is known to be so far the largest app set publicly available
to our community. Apps from this dataset have been previously leveraged for a variety of
research studies (Hecht et al. 2015; Li et al. 2015; Li et al. 2017b; Yang et al. 2017). Since
GPlay and NGPlay apps may come with different quality and maintenance requirements,
they may have different usages of deprecated APIs and may receive different reactions from
app developers (Wang et al. 2018). By considering apps from these two sets, we might be
able to observe such difference w.r.t. deprecated Android APIs.

Figure 2 further summarises the distribution of randomly selected apps based on their
assembly date, i.e., the time when the core code classes.dex was created (i.e., the last mod-
ified time). For both GPlay and NGPlay apps, the assembly time ranges from 2010 to
2016, indicated diversity in the apps. Figure 3 further confirms this diversity via the size
of selected apps, where both small (less than 1 MB) and big apps (more than 20 MB)
are considered. The median and mean size of considered apps are 4.7 MB and 9.1 MB,
respectively.

3.2 CDA

The design of CDA is straightforward: the main process is summarised in Algorithm 1.

11By using gshuf — head -5000 command.
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Fig. 2 Distribution of randomly selected apps based on their assembled date (i.e., dex date)

CDA first parses all Java files in a given release of the Android framework code reposi-
tory and builds a mapping between Java classes, methods and their documentation (cf. line
6). Then, for each class, CDA checks if it is annotated as deprecated via the Deprecated Java
annotation. Since documentation and source code annotation must be consistent, CDA fur-
ther parses the comments to match the keyword @deprecated. If a given class is annotated
by Deprecated or documented via @deprecated, we consider all its methods are flagged as
such. After that, CDA goes one step further to perform similar checks to all its methods. If
a given method is annotated by Deprecated or documented via @deprecated, either at the
class level or at the method level, we consider it as deprecated.

Based on the aforementioned observations, in a first phase, CDA can pinpoint incon-
sistency cases where a deprecated API is documented but not annotated (line 18) or is
annotated but not documented (line 22). In a second phase, when the API is consistently
deprecated, CDA goes one step further to infer the potential replacements of deprecated
APIs, attempting to build another mapping between deprecated APIs and their potential
replacements which we can later leverage to recommend changes to client app code. Such
a mapping can even be leveraged for automated refactoring of Android apps to mitigate the
usage of deprecated APIs.

Unlike the original approach presented in the conference version, for which a conser-
vative way is adopted (i.e., matching simply the “Use @link Method” pattern), we have
improved the strategy with more strict rules to locate replacement messages. More specifi-
cally, CDA obeys the following rules to locate replacement messages: (1) the replacement
method must be presented after @deprecated. (2) the replacement method must come before

0 5 10 15 20 25

Megabyte

Fig. 3 Distribution of randomly selected apps based on their size (in MB)
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@hide if exists. Our manual observation reveals that @hide is usually presented after @dep-
recated and it can contain method links (i.e., “@link Method”), which could have been
considered as replacement methods in our previous approach. (3) the replacement method
must be given via the following patterns: use/see/call “@link Method” instead. (4) Finally,
if no replacement message can be obtained based on the aforementioned rules, and @see
is presented after @deprecated, we consider the message given by @see as the possible
replacements as well, which usually provide useful hints for developers to refer to in order
to replace the deprecated APIs. Because of these improvements, it is expected that fewer
replacement messages will be disclosed compared with the original approach.

Once this process is completed for the first release, CDA loops on all subsequent releases
and records the results for our empirical investigation on the evolution.

3.3 Statistics

Table 2 presents statistics on the quantity of code elements that are parsed and analysed by
CDA for the different releases of the Android framework. We note that successive releases
are constantly increasing in all the different metrics (i.e., the number of files, classes, lines
of code, and API methods). Eventually, between level 4 and level 28 (the two extreme API

Table 2 Statistic overview of selected releases. Deprecated APIs are considered as long as they are annotated
or documented

API # Java # Total # Public # Static # Deprecated

Level Classes LoC Methods Methods Methods Methods

28 9078 3644369 311259 261593 15299 4309

27 8032 3303839 293223 249299 13579 3341

26 7816 3244981 290872 247442 14015 3383

25 6805 2927464 275264 237666 12456 2884

24 6680 2864293 272554 235991 12092 2865

23 5685 2538626 255411 224930 10207 1916

22 5311 2376430 247793 219729 9493 1645

21 5206 2333200 245446 218233 9324 1477

19 4120 1381169 68365 46625 7292 928

18 3814 1271452 63217 43111 6765 945

17 3835 1248085 62191 42182 6383 910

16 3837 1265976 63232 42779 6396 879

15 3418 1151084 56678 38094 5972 588

14 3387 1137869 55978 37711 5938 596

13 3109 1028975 50806 34324 5498 574

10 2745 872561 43581 29588 4908 431

9 2647 849373 42616 29234 4480 432

8 2913 896503 44947 31460 4678 498

7 2805 841184 42475 29882 4310 462

6 2803 831461 42245 29700 4280 463

5 2807 837932 42368 29776 4288 463

4 2659 774426 39621 27861 3929 354
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levels in our study), the framework code has substantially grown: the number of classes has
tripled, while the number of code lines has almost quintupled; the phenomenon is even more
acute in methods which have grown 7-fold. These figures suggest that as time goes by, the
framework code base is growing and is potentially becoming more and more complex to
analyse and maintain.

Metrics in Table 2 reveal the number of deprecated APIs sharply increases in the frame-
work code base, although the ratio of deprecated APIs vs. the total number of methods
remains low (cf. Fig 4). Between level 19 and 21, the ratio has drastically dropped. Indeed,
as shown in Table 2, the total number of methods in level 21 has almost quadrupled
comparing to that of level 19 while the number of deprecated methods are only slightly
increased.

4 Empirical Investigation

Our investigations explore the data mined by CDA to answer the following research
questions:

– RQ1: Are deprecated APIs properly annotated and documented in the Android frame-
work code base?

– RQ2: To what extent are deprecated APIs stable in the Android framework code base?
– RQ3: How often do maintainers swap deprecated API code with replacement mes-

sages? Can such messages evolve over time?
– RQ4: Do app developers quickly react to the deprecation of APIs in the Android

framework code base?
– RQ5: For the cases where developers do react to deprecated APIs, how long does it take

for them to make the update?
– RQ6: When dealing with deprecated APIs, how often do app developers replace them

with their alternatives recommended by the Android maintainers?

All the experiments discussed in this section are performed on a Core i7 CPU running a
Java VM with 16GB of heap size.

Fig. 4 Distribution of deprecated API rate. For each API level, all its deprecated APIs, including the ones
that are deprecated in previous levels, are considered
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4.1 Code Annotation and Documentation

Code annotation and documentation are both necessary to properly indicate that an API
is deprecated. If an API is deprecated without an explicit mention in the documentation
(i.e., Annotated-Not-Documented), users will not be clearly informed by this deprecation,
nor will they know the alternative, and thus may still use deprecated APIs. Similarly, if
an API is deprecated without an explicit annotation in the source code (i.e., Documented-
Not-Annotated), although its deprecation can still be highlighted on the documentation site
(cf. Figure 1), such API will be compiled and integrated into the released SDKs and thus
popular IDEs such as Android Studio and Eclipse cannot perform checks and warnings to
developers about this deprecation. As indicated in Fig. 1, API saveLayer is actually depre-
cated. However, since this method is not properly annotated, when accessing this method
via Android Studio, as presented in Fig. 5, the method will not be marked as deprecated
(e.g., with a cross-line). In contrast, API clipRegion(), which is annotated by an explicit
deprecation annotation, is correctly flagged by Android Studio as deprecated.

We would like to remind the readers that modern IDEs might be able to also cross out
such APIs that are only marked as deprecated in the Javadoc comment. However, we argue
that the consistency between the @deprecated tag in Javadoc and the @Deprecated annota-
tion in Java code is very important. First of all, the @deprecated Javadoc tag is not part of
the Java standard. Hence, there is no guarantee that all compilers will always issue warn-
ings based on the @deprecated tag. Second, the @deprecated Javadoc tag cannot be read by
Java code at runtime (e.g., via reflection), making it inconsistent with the actual behaviour
it was intended to be.

In this study, we are interested in checking whether deprecated APIs provide consistent
documentation and annotation. Surprisingly, CDA unveils a significant number of cases
where the documentation is not consistent with deprecation annotation presence/absence.
This inconsistency has been confirmed by the Android team as an actual problem of the
Android framework code base. Table 3 summarises statistics of cases found in the various
framework releases. We note that deprecated APIs are generally well documented. Nev-
ertheless, there do exist a number of cases where inconsistency appears. Generally, the
number of Annotated-Not-Documented cases of inconsistencies are smaller than that of
Documented-Not-Annotated. This finding suggests that Android framework developers are
not yet aware of the inconsistency problem of deprecated APIs. This observation is further
confirmed by the fact that inconsistent deprecations appear to be rarely fixed during the
evolution of the Android framework code base. For the rare cases where inconsistent depre-
cations disappear during the evolution, our further analysis reveals that all of them are due
to the removal of deprecated APIs themselves.

Previously, we have written issue reports describing the inconsistency cases (2
Annotated-Not-Documented and 34 Documented-Not-Annotated deprecated APIs) that
CDA has identified for the selected set of Java classes from the Android framework base

Fig. 5 Android Studio does not provide indication to such deprecated methods (e.g., saveLayer as indicated
in Fig. 1) that are not properly annotated
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Table 3 Inconsistency between annotation and documentation for deprecated Android APIs. We have sub-
mitted two issues (one for each inconsistent type) to the Android open source project and have received
positive acknowledgements on confirming these two issues

Inconsistent Type L4 L5 L6 L7 L8 L9 L10 L13 L14 L15 L16

Annotated-Not-Documented 17 13 13 12 12 4 2 16 16 16 49

Documented-Not-Annotated 109 102 102 102 132 105 105 72 75 64 230

Inconsistent Type L17 L18 L19 L21 L22 L23 L24 L25 L26 L27 L28

Annotated-Not-Documented 48 42 19 41 42 85 118 118 122 114 125

Documented-Not-Annotated 232 236 233 311 308 343 348 349 280 280 341

(i.e., version 26, tag android-8.0.0 r9). These issue reports were submitted to the Android
issue tracker system under developer.android.com and source.android.com components,
respectively. The submitted issues were assigned and confirmed by Android maintainers in
a day: the engineering team has acknowledged the issues and promised to fix them for next
releases.12 In addition to the aforementioned issue reports, we have also reported the newly
harvested results to Google and are now waiting for the response.

4.2 Clean-up and Survival of Deprecated APIs

We now investigate whether the code base is eventually cleaned-up from deprecated APIs,
and what is otherwise the survival time of an API once it is marked as deprecated. To this
end, we perform pairwise comparisons between every consecutive API level releases of the
framework. As illustrated in Fig. 6, compared with the total number of deprecated APIs
available in a given API level, the majority of deprecated APIs are actually retained in the
framework until the latest API level of this study (i.e., level 28). During the evolution of the
framework, only 808 out of 5,118 deprecated APIs (around 16%) are removed.

Table 4 summarises the added and removed APIs for each update (i.e., the code changes
between a consecutive pair of releases considered in our study). Almost all of the updates
(except for L5 → L6) have performed some clean-up for deprecated APIs. This finding
suggests that it is important that app developers take steps to address deprecated APIs used
in their client code, or they may otherwise face runtime crashes (hence bad user experience,
and poor ratings) on latest devices (Li et al. 2018a).

We further go one step deeper to check how deprecated Android APIs are removed from
the framework code base. Our investigation reveals that, apart from the physically removed
deprecated APIs, around 15% of the remaining APIs are tagged as hidden (i.e., marked via
@hide in the comment of the method). Those APIs are not “actually” physically removed

12As footnoted before, the issue IDs of the submitted bugs are 69105065, 69104762 and 69098890, where
the status of these issues so far are Fixed, Assigned and Assigned, respectively.
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Fig. 6 The number of deprecated APIs (in accumulation) retained in the framework

from the framework but will be excluded from the public Android SDK (i.e., app developers
cannot access them) and they are known to be subject to removal during the evolution of
framework code (Li et al. 2016c).

As shown in Table 4 (i.e., the second column), in addition to removal, there are new
Android APIs recurrently flagged as deprecated as well. We therefore investigate the life
expectancy of such Android APIs once they are marked as deprecated by maintainers. We
model life expectancy as the number of releases where a deprecated API survives in the
code base before being removed. We also consider a release as a code “generation13”.
Figure 7 presents the violin plot on the life expectancy distribution of deprecated Android
APIs. The median number of generations a deprecated API is removed in the code base is 3
(mean = 4.171). Given the fact that the Android framework code base evolves at a fast pace
(a generation occurs every 3 months (McDonnell et al. 2013)), app developers need to react
quickly on replacing deprecated APIs in their client code before they become inaccessible
in updated devices.

It can be observed from the results shown in Fig. 8, 188 deprecated APIs (around 4%
of total deprecated APIs) are removed after one update. Although this rate is low, we are
still surprised that this situation does happen during the evolution of the Android framework
code base. Because of the limited time window, app developers may not yet be informed
(i.e., the deprecation cycle is ignored) and hence may still leverage those deprecated APIs,
resulting in immediate crashes on devices running next framework versions.

Finally, we look into the number of generations Android APIs get deprecated after their
introduction to the framework, i.e., from their birth to their deprecation. Figure 9 illustrates
the violin distribution of the generations between removed and retained deprecated APIs.
The fact that these two distributions are significantly different suggests that the newer APIs
get deprecated, the more likely they will be removed. This result is actually expected as
the longer an Android API stay in the framework, the more dangerous to remove it from
the framework even if it becomes deprecated. Indeed, the APIs existed longer in the SDK
will have a higher chance to be used by client apps. Removing those APIs might break the
execution of the client apps, resulting in app crashes and thereby poor user experience, for
which framework maintainers would not want to confront.

13The actual time can be computed based on the released time of selected tags (e.g., android-7.0.0 r7 is
released on 2016-08-23 while android-6.0.1 r9 is released on 2015-12-15).
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Table 4 The number of added and removed deprecated APIs for each update

Update Addition Removal Update Addition Removal

L4 → L5 112 3 L16 → L17 115 84

L5 → L6 0 0 L17 → L18 53 18

L6 → L7 2 3 L18 → L19 34 51

L7 → L8 67 31 L19 → L21 568 19

L8 → L9 19 85 L21 → L22 173 5

L9 → L10 1 2 L22 → L23 402 131

L10 → L13 207 64 L23 → L24 1016 67

L13 → L14 32 10 L24 → L25 19 0

L14 → L15 6 14 L25 → L26 529 30

L15 → L16 320 29 L26 → L27 56 98

L16 → L17 115 84

4.3 Replacements for Deprecated APIs

In order to facilitate the usage updates of deprecated APIs in Android apps, and conse-
quently to preserve backward compatibility, APIs should always be deprecated with clear
replacement messages (i.e., how can this method be replaced by other ones?) Monperrus
et al. (2012). However, in practice, there is evidence that API elements are usually dep-
recated without such messages (Robbes et al. 2012; Brito et al. 2016; Hora et al. 2015):
developers thus may not be provided with suggestions of how to avoid the use of depre-
cated APIs. We explore in this study the availability of replacement messages for Android
deprecated APIs.

Since version 1.2, Java documentation recommends that developers should include “Use
{@link Method}” to indicate the replacement API when deprecating a given API. CDA

Fig. 7 Violin distribution of the
life expectancy of deprecated
Android APIs. Age corresponds
to the number of generations
(i.e., X-axis) before a deprecated
API is removed from the Android
framework since it is deprecated
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Fig. 8 Life expectancy of deprecated Android APIs. Age corresponds to the number of generations (e.g., G1
means one generation, or one release) before a deprecated API is removed from the Android framework

searches this pattern14 in the Javadoc and builds a mapping between deprecated APIs and
their replacements. Table 5 presents some examples from the built mapping. Replacement
messages often refer to other API methods, but may also refer to some object fields (e.g.,
#onReceive).

Figure 10 illustrates the distribution of deprecated APIs with/without replacement mes-
sages for the considered API level releases. A median percentage of 64.29% deprecated
APIs have been explicitly documented with replacement messages. The latest release (i.e.,
level 28) has replacement messages for 78.6% (i.e., 3386) of total deprecated methods.
This replacement rate has slightly increased compared to the one we have computed based
on non-class-level deprecated methods. This growth may be contributed by the fact that,
when considering the class-level deprecated methods, one replacement at the class level will
directly apply to all its methods, which consequently will increase the likelihood of having
replacement message for a given deprecated APIs.

Despite that the majority of deprecated APIs have been provided with replacement mes-
sages, it is still surprising to see that around 20% to 35% of deprecated APIs are deprecated
without giving replacement messages. Towards understanding the rationale behind this,
we resort to a manual process to go through the comments of deprecated APIs and have
observed the following reasons:

– Hidden or internal APIs may be deprecated without giving alternatives. As shown in
Fig. 11, around 35% of deprecated APIs without replacement messages are hidden or
internal ones. Since those APIs are not meant to be used by app developers, framework
maintainers may treat it differently compared with other APIs.

– Interestingly, there are some APIs that are not hidden/internal but have been only
used by hidden/internal APIs. For example, method requestWifiBugReport()15 of class
com.android.server.am.ActivityManagerService has only been accessed by internal
components. When deprecating these APIs, it is also possible that no replacement
messages will be given.

– The methods in the testing code (e.g., unit test cases) are less likely deprecated with
replacement messages. Indeed, testing code (because it will not be shipped to the final
product) may not be maintained in the same way as that of the core Java classes. In

14Following the rules illustrated in Section 3.2.
15Comment Message: This method is only used by a few internal components and it will soon be replaced
by a proper bug report API (which will be restricted to a few, pre-defined apps).
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Fig. 9 Violin distribution of the number of generations Android APIs get deprecated (between removed and
retained deprecated APIs)

this extension, we have considered much more Java modules, which may have received
different attention to their deprecation-then-updating qualities. Nonetheless, we argue
that even the least important module should be maintained in the same way, so as to
help to keep the coding style consistent and reduce the likelihood of making mistakes
when maintaining the code.

– Some deprecated APIs are simply flagged as “Do not use” without mentioning any
alternatives. These APIs may reflect the functions that are no longer needed in the
framework.

We now investigate whether the replacement messages provided for deprecated APIs
are reliable. Concretely, we check that the provided replacement messages are stable (i.e.,
whether they evolve as well). To this end, we conduct a study on two aspects:16 (1) Will
deprecated APIs that have no replacement messages be complemented later with replace-
ment messages? (2) Will the replacement messages of deprecated APIs be updated by new
replacements?

We find that: (1) It is unlikely that replacement messages will be added to such depre-
cated APIs that initially have no replacement message. We only find 22 APIs (cf. Table 6
with five examples); and (2) seldom, an existing replacement message will be updated: we
identified only 72 API cases (cf. Table 7 with five examples) where the original replacement
messages are updated with new ones. This finding suggests that framework maintainers
need to be extremely careful about the documentation, especially w.r.t the replacement mes-
sages since this documentation will remain available for a long time and will likely have an
effect on app developers code.

4.4 Developer Reactions

We study the reactions of app developers to the deprecation of Android APIs. More specif-
ically, we would like to know if deprecated APIs are still used by app developers. Since

16In this experiment, only the APIs that are explicitly deprecated at the method level are considered. When
deprecating APIs at the class level, i.e., deprecating classes, it will unlikely to provide replacement messages
to their methods.
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Table 5 Examples in the constructed mapping

Deprecated API Replacement message

Android.database.sqlite.SQLiteClosable: void onAll-
ReferencesReleasedFromContainer()

#releaseReferenceFromContainer()

android.webkit.WebSettings: void setDe-
faultZoom(ZoomDensity)

ZoomDensity#MEDIUM

android.app.admin.DeviceAdminReceiver:
void onReadyForUserInitializa-
tion(Context,Intent)

#onReceive

android.content.Context: void removeStickyBroadcast(Intent) #sendStickyBroadcast

android.database.Cursor: void deactivate() #requery

Fig. 10 Distribution of deprecated APIs per release with/without replacement messages

Fig. 11 Distribution of hidden/internal deprecated APIs that are deprecated without providing replacement
messages
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Table 6 Five samples of Newly Added Replacement Messages

API Added replacement message

<android.os.FileUtils: boolean copyFile(File,File)> #copy(File, File)

<android.os.FileUtils: boolean copyToFile(InputStream,File)> #copy(InputStream,OutputStream)

<android.media.AudioManager: boolean isWiredHeadsetOn()> AudioManager#getDevices(int)

<android.graphics.Canvas: Matrix getMatrix()> #isHardwareAccelerated()

<android.telephony.NeighboringCellInfo: void setRssi(int)> #NeighboringCellInfo(int,String,int)

app assembly time (the compilation of the DEX file in the APK) is not reliable (e.g., it is
easily manipulable) (Wang et al. 2015), we resort to API level generations as the measure
of time. For each app, we extract its API level based on the targetSDK attribute declared in
app manifest files. The target SDK version informs the system that the app has been tested
against the target version, which hence should not cause any compatibility issues. After the
extraction of targeted SDK version, CDA goes through all the method calls of the anal-
ysed app to check if some used APIs have been deprecated in releases prior to the declared
targeted SDK version. Specifically, given a compiled Android app, CDA leverages Soot,
a well-known bytecode manipulation and optimization framework, to transform its byte-
code to Jimple code, a 3-address intermediate representation designed to simplify analysis
and transformation of Java/Android bytecode. All the method calls are then compared at
the Jimple level. If a method call is matched with the signature17 of an Android API, we
consider an Android API usage is identified.

Among our randomly sampled set of 10,000 apps, CDA highlights that 61.97% apps
are making use of deprecated APIs. Among the flagged 6,197 apps, the GPlay subset con-
tributes 3,941 apps while NGPlay contributes 2,256 apps. This finding is very interesting as
we would have expected that there should be less apps in Google Play accessing deprecated
APIs than that of other markets as normally Google Play provides high-quality apps com-
paring to other alternative markets. Moreover, as shown in Fig. 12, Google Play apps also
utilise more deprecated APIs than that of alternative markets. We ensure that this difference
is significant by conducting a Mann-Whitney-Wilcoxon (MWW) test,18 where the resulting
p-value confirms that there is a significant difference between Google Play and alternative
markets apps at a significance level19 of 0.001. Cohen’s d, which is of practical interest to
estimate the magnitude of the difference, further suggests that the effect size between these
two sets of deprecated API usages is median (equals to 0.67).

Towards understanding the reason why Google Play apps access deprecated APIs, we
further record all the callers of deprecated APIs. Our investigation reveals that actually most
of the deprecated APIs are accessed by third-party libraries.20 Indeed, the number of depre-
cated APIs accessed by libraries (i.e., 256,325) is almost doubled by that of app code (i.e.,
141,359). Table 8 further highlights the top 10 caller packages that have invoked deprecated
APIs in Google Play and Third-party market apps, respectively. Library android.support

17Declared class name, method name, and arguments.
18We have appended zero to third-party markets (i.e., NGPlay) to balance the number of elements.
19Given a significance level α = 0.001, if p-value < α, there is one chance in a thousand that the difference
between the datasets is due to a coincidence.
20In this work, we consider the common libraries revealed by Li et al. (2016a) as the white-list to flag
whether a caller belongs to libraries. This white-list contains over 1,000 common libraries mined from over
1.5 million Android apps.
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Table 7 Five samples of updated replacement messages

Replacement message (original) Replacement message (new)

#SslCertificate(String,String,Date,Date) #SslCertificate(X509Certificate)

#setTextZoom(int) #setTextZoom

#getTextZoom() #getTextZoom

#BitmapDrawable(Resources) #BitmapDrawable(android.content.res.Resources,
android.graphics.Bitmap)

#onInflate(Activity,AttributeSet,Bundle) #onInflate(Context,AttributeSet,Bundle)

remains to be the top leveraged one in both Google Play and third-party apps. This is
expected as the main reason why the android.support library is introduced is to safely access
historical APIs that are deprecated from the latest framework version. Indeed, the Android
framework regularly deprecates APIs, which could be eventually removed from the system,
app developers are recommended to include this library for solving possible backwards-
compatibility issues. Apart from that, the usage of other libraries is quite different between
Google Play and third-party apps. For example, library com.google is the second top lever-
aged library in the Google Play set while is only the sixth in the third-party set. Nevertheless,
the fact that the number of deprecated APIs are significant in both app sets suggests that
common libraries, especially such ones that are provided by well-known parties such as
Google, are not frequently updated in developer app code.

In addition to the frequency enumerated in Table 8, we have also investigated the number
of deprecated APIs accessed by each library. Figure 13 further illustrates the distribution of
the number of deprecated APIs leveraged by each library, where only such libraries that have
accessed into at least one deprecated API are considered. The median and mean numbers of
accessed APIs are 6 and 13.01, respectively. This result further backups our previous find-
ing: many deprecated APIs are actually accessed by Android app code via popular libraries.
The fact that app developers are not recurrently updating the libraries used in their apps
could be explained by the empirical findings disclosed by Derr et al. (2017): app developers
are hesitated to update libraries in order to avoid ostensible re-integration efforts and ver-
sion incompatibility problems, based on a survey of 203 app developers from Google Play
on their usage of libraries and requirements for more effective library updates.

We explore the gap between the targeted SDK level and the API deprecation level, indica-
tive of time delay, i.e., delay = targetSDK − deprecationLevel. This delay represents
the number of generations where app developers are still able to call deprecated APIs. In this
work, the targeted SDK version is chosen to compute the delay. Ideally, the supported SDK
ranges (from minimal SDK version to the latest version) should be considered. However, it

Fig. 12 Distribution of the
number of deprecated APIs
utilised per app
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Table 8 The top 10 packages calling into deprecated Android APIs (the total times appearing in the consid-
ered apps), which account for over 90% and 80% of total deprecation usages in Google Play and Third-party
Markets, respectively

GPlay Apps NGPlay Apps

android.support 105,182 android.support 22,739

com.google 43,040 com.tencent 12,582

com.facebook 5,301 com.umeng 5,432

org.apache 4,381 com.baidu 5,127

com.unity3d 3,452 com.alipay 3,194

com.biznessapps 2,621 com.google 3,080

com.adobe 2,495 com.unity3d 2,851

com.good 1,143 com.sina 1,265

com.flurry 1,084 com.adobe 1,002

com.paypal 1,072 cn.jpush 993

is hard to represent the results over a range of SDK versions, while the minimal SDK ver-
sions provided by app developers are usually small and hence may not be representative to
recently deprecated APIs. Indeed, as shown in Fig. 14, the distribution of minimal SDK ver-
sions and targeted SDK versions are significantly different (as confirmed by a WMM test).
The median minimal version is only at 9, which was released in 2010. Cohen’s d (equals
to 1.88) suggests also a large effective size between these two sets. Instead of choosing
the minimal SDK version, we leverage the targeted SDK version to compute the delay. We
believe this version is more suitable for our experiments. Since our idea in this work is to
check how app developers react to deprecated APIs at the development time, the targeted
SDK version actually reflects the desired version that the app is developed for.

The delay computed based on thousands of deprecated APIs ranges from 1 to 21.
Figure 15 further presents the distribution of API level delays between Google Play and
third-party market apps. The callers of deprecated APIs are also separated into two folds:
app code and common library code. Interestingly, although most deprecated APIs are lever-
aged by library code, their accessing delay is however shorter than that of app code for
Google Play apps. This difference is also further confirmed by a MWW test.

Besides a small number of deprecated APIs, most APIs accessed by Android apps should
be normal APIs, i.e., they are not deprecated at the API level that the apps target. Since
the Android framework evolves fast, those normal APIs might become deprecated in future
as well. Towards verifying this assumption, we explore again the gap between the targeted

Fig. 13 Distribution of the
number of deprecated APIs
leveraged by common libraries
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Fig. 14 Distribution of the
minimal and targeted SDK
versions of the selected Android
apps
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SDK level and the API level when the API is deprecated despite it is not deprecated at
the targeted SDK level, i.e., generationGap = deprecationLevel − targetSDK . This
gap represents the number of generations that app developers need to be aware of so as
to be able to react on the deprecations on time. Figure 16 illustrates the distribution of
the generation gaps of the APIs to-be deprecated. Normally, half of the selected APIs (or
eventually deprecated APIs) will be deprecated in less than six generations (between one
year to two years). This evidence suggests that app developers should continuously update
their apps. Otherwise, even if a given app is well developed at the moment (i.e., it does
not access into any deprecated API), it could still become less-maintained. As time goes
by, the number of deprecated APIs accessed by Android apps (if without any change)
will likely increase, resulting in a bigger probability of being incompatible with the latest
devices.

Figure 17 further illustrates the distribution of the number of APIs that will become
deprecated per app. The fact that over half of the apps have accessed into around 95 APIs
that will be deprecated eventually emphasises that Android apps need to be continuously
updated.
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Fig. 15 Distribution of delays between the usage of deprecated APIs in Google Play and third-party market
apps. The red line indicates the mean value of each violin plot. Suffixes APP and LIB indicate that the
caller of deprecated APIs are from the app code and third-party library code, respectively
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Fig. 16 Distribution of the
generationGaps among the
selected apps
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4.5 Evolution of the Usage of Deprecated APIs

Based on the targeted API level declared in Android apps, our experimental results towards
answering the previous research question reveal that app developers may still use such APIs
that are already deprecated at the time of implementing. In this research question, we go
one step further to investigate how long will it take for app developers to make the update
when dealing with deprecated APIs. In other words, we would like to keep track of the code
changes during the evolution of Android apps. To do so, we need to collect a set of Android
app lineages, where each lineage is formed with the different versions of the same Android
app. To this end, we resort to AndroZoo again to harvest such datasets.

We randomly select 500 app lineages from the the dataset provided by Gao et al. (2018),
in which the authors have re-constructed the app lineages by considering all the Andro-
Zoo apps. The 500 app lineages contain in total 8,989 Android apps. Each lineage contains
at least 10 apps that (1) share the same package name; (2) are signed by the same cer-
tificate; and (3) are released to the same app market (e.g., Google Play). The apps inside
a lineage are also ordered based on their declared versions. In this work, we consider the
different versions as generations. For example, given an app lineage com.facebook.katana
{g1, g2, ..., g32}, we call the first app version as the first generation of the app and the last
version as the 32nd generation of the app. The targeted SDK versions of lineage apps can
be updated when the app itself is updated. Among the 500 lineage apps, around 18% of
them have involved with cases where the targeted SDK versions are updated. Often, the
updates in terms of the SDK versions are in a small range. This phenomenon is expected as
the targeted SDK version changes can lead to significant refactorings of the app code. App
developers may not be interested in doing that as it not only introduces more works to them
but also increases the possibility of introducing bugs to the app code. Moreover, the larger
changes of the SDK version, the more refactorings might need to be applied to the app code,

Fig. 17 Distribution of the
number of APIs that will become
deprecated per app

0 50 100 200 300



Empirical Software Engineering

resulting in even more works for developers to deal with. Finally, since there is no enforce-
ment from the Android system to restrict the usage of deprecated APIs, app developers are
not motivated to update the SDK versions. Even without changing the SDK version, most
apps should still be able to run on modern devices since the majority of deprecated APIs are
not really removed from the framework.

Figure 18 presents the distribution of the number of generations among the 500 app
lineages we have randomly selected for this experiment. The number of app generations
ranges from 10 to 108, with a median and mean generations at 14 and 17.9, respectively.
This distribution illustrates the diversity of our randomly selected app lineages as well.

Based on the selected app lineages, we first look at the problem whether app developers
remove deprecated APIs during the evolution of their Android apps. Figure 19 illustrates
the distribution of the number of deprecated APIs that are (1) stayed in the app until the
last generation and (2) removed eventually from the app. The median and mean numbers
of deprecated APIs are 75.5 and 78.5 for retained ones and 19.5, 34.45 for removed ones,
respectively. Cohen’s d (equals to 0.92) suggests a large effective size between these two
distributions. Clearly, most deprecated APIs are retained in the app rather than removed,
demonstrating that deprecated APIs have not received enough attention from app develop-
ers. Similar findings have also been observed by researchers on other platforms such as the
JDK (Sawant et al. 2018c) and the Smalltalk ecosystem (Robbes et al. 2012). Furthermore,
among the removal cases of deprecated APIs, around 15% of the attempts remove APIs
immediately in a subsequent app version and have happened in over half of the selected lin-
eages. Unfortunately, all the involved deprecated APIs, which are removed immediately in
some lineages, have appeared to be the cases that the APIs are removed after at least two
generations (or app versions). This empirical finding suggests that, at least based on the 500
randomly selected app lineages, we cannot observe any pattern indicating a sense of urgent
fixes to deprecated Android APIs.

Tables 9 and 10 further respectively list the top 10 retained and removed deprecated APIs,
among the evolution of the 500 selected app lineages. The fact that the two lists of APIs
are totally different from each other shows that app developers may have special focuses
when dealing with the replacement of deprecated APIs. There are various reasons that may
attract the attention of app developers for those deprecated APIs that are actively updated.
For example, it could be the case that those APIs have clear alternative APIs mentioned in
the Android documentation, or those APIs are later removed from the framework so that
developers have to remove them in order to make their app compatible to the latest devices.

Towards verifying these hypotheses, we conduct two more experiments attempting to
understand the rationale behind. Our observation reveals that, although the top 10 retained
and removed lists are different, the majority of APIs (over 90%) are actually shared by

Fig. 18 Distribution of the
number of generations in each
app lineage
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Fig. 19 Distribution of the
number of deprecated APIs that
are (1) stayed in the app until the
last generation and (2) removed
eventually from the app
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these two sets, i.e., it is likely that a given deprecated API is retained by some developers
while removed by others. Apart from the majority APIs that are both retained and removed
by app developers, the numbers of retained and removed APIs that have been documented
with replacements are more or less the same (also around 80%), indicating that having clear
alternatives is not the main reason for app developers to address deprecated APIs.

In terms of actual removal of deprecated APIs, in our experiments, there are only 20
APIs that are accessed by the apps of the selected lineages that have been removed from the
framework. Interestingly, all the 20 APIs have been involved with removal in the selected
app lineages. This evidence suggests that app developers are more likely to deal with such
deprecated APIs that are eventually removed from the framework. Surprisingly, 17 out of
the 20 APIs have been also retained by some app lineages. We speculate that this might be
correlated to the quality of app lineages. Indeed, as argued by Gao et al. (2019), some app
developers tend to write poor quality apps. Even with critical features such as crypto-API
usages, developers are frequently making mistakes.

Figure 20 further illustrates the distribution of generations that app developers take to
remove deprecated APIs. All the 10 APIs share more or less a similar trend: for at least
half of the cases, app developers take around five generations to remove a deprecated API,
suggesting that app developers do not frequently update deprecated APIs. Furthermore, the
average generation (indicated by the red dots) that the API is removed is always bigger than

Table 9 The top 10 retained deprecated APIs

API Frequency

<android.view.View: void setBackgroundDrawable(android.graphics.drawable.Drawable)> 409

<android.content.res.Resources:
android.graphics.drawable.Drawable getDrawable(int)>

397

<android.app.Notification: void
setLatestEventInfo(Context,CharSequence,CharSequence,PendingIntent)>

389

<android.net.NetworkInfo: int getType()> 385

<android.view.Display: int getWidth()> 377

<android.view.Display: int getHeight()> 373

<android.content.res.Resources: int getColor(int)> 347

<org.apache.http.params.HttpConnectionParams:
void setConnectionTimeout(org.apache.http.params.HttpParams,int)>

353

<org.apache.http.params.HttpConnectionParams:
void setSoTimeout(org.apache.http.params.HttpParams,int)>

350

<android.content.res.Resources: int getColor(int)> 347
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Table 10 The top 10 removed deprecated APIs

API Frequency

<android.app.Notification: void <init>(int,java.lang.CharSequence,long)> 160

<android.widget.PopupWindow: void setWindowLayoutMode(int,int)> 111

<android.app.Activity: void setProgress(int)> 107

<org.apache.http.params.HttpConnectionParams:
void setSocketBufferSize(org.apache.http.params.HttpParams,int)>

106

<org.apache.http.conn.ssl.SSLSocketFactory: org.apache.http.conn.ssl.SSLSocketFactory
getSocketFactory()>

106

<android.content.ContentProviderClient: boolean release()> 100

<org.apache.http.params.HttpParams: org.apache.http.params.HttpParams
setParameter(java.lang.String,java.lang.Object)>

99

<android.accessibilityservice.AccessibilityServiceInfo: java.lang.String getDescription()> 99

<android.accessibilityservice.AccessibilityServiceInfo:
boolean getCanRetrieveWindowContent()>

99

<android.text.Html: java.lang.String toHtml(android.text.Spanned)> 96

the median generation. Except for the top 10 APIs, this trend is also generally true for all
the deprecated APIs, as illustrated in Fig. 21.
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Fig. 20 Distribution of generations app developers take to remove deprecated APIs (only the top 10 depre-
cated APIs shown in Table 10 are illustrated). The APIs illustrated in this figure (i.e., A01-A10) follow the
same sequence as that enumerated in the table (e.g., A01 stands for method <init>() of class Notification
while A10 stands for method getTypeName() of class NetworkInfo
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Fig. 21 Distribution of generations app developers take to remove deprecated APIs (all the involved APIs
are considered)

4.6 Updating Deprecated APIs

Although we found in our study that over half of the deprecated APIs come with
replacement messages indicating alternatives, we have no confirmation that the proposed
alternatives are indeed suitable for app developers and the scenarios in which they used
the deprecated APIs. Building on a large dataset of apps with several release versions per
app (i.e., app lineages), we can investigate how do app developers deal with deprecated
APIs, e.g., the deprecated APIs are simply removed from the app or will developers actually
replace them with their alternatives recommended by the document?

Towards answering the aforementioned research question, we conduct another
exploratory study of the previously selected lineage apps. In this term, we conduct pair-
wise comparisons between two subsequent app versions in a lineage, aiming to extract code
changes (i.e., diff s) that have involved with the removal of deprecated APIs. Given a pair of
two subsequent apps (e.g., gx → gx+1), if a deprecated API is removed from the body of
a method m in gx and the method m is still presented in gx+1, we consider that the devel-
oper has been aware of the deprecated nature of the API and has performed a dedicated
treatment. Consequently, we extract the changed code and represent it into a diff snippet.

Listing 2 illustrates an example of an extracted diff snippet, which are extracted
from app lineage air.com.playsino.bingo.thanksgiving. Because API getWidth() of class
android.view.Display is deprecated, developers remove it from the app (cf. Line 9). As
demonstrated in the diff code, the similar functionality is achieved by accessing into another
API called getSize() of the same class (cf. Line 13 and then line 10). It is worth mention-
ing that the replacement API, namely getSize(), is actually recommended and explicitly
highlighted in the Android documentation.

Overall, among the 500 app lineages, we are able to extract 6,043 code diffs that have
involved in removing 360 deprecated APIs. Among the 360 APIs, 232 of them further tar-
get the removal of such APIs that have possible replacement messages mentioned in the
Android documentation, suggesting that app developers are more likely to deal with such
deprecated APIs that have recommended alternatives.

However, among the 232 APIs, because of class-level deprecation, we are only able to
locate recommended replacement methods for 105 of them. If an API is deprecated at the
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Listing 2 An example of code diff mined from lineage air.com.playsino.bingo.thanksgiving (versions
AC1752 and 24C7BA)

class level, its replacement message is likely given at the class level as well and the recom-
mended replacement is likely classes that do not provide explicit replacement messages for
specific methods.

Among the 6,043 code diffs involved in removing deprecated APIs, 2,890 of them are
relevant to the 105 APIs that have recommended alternatives highlighted in the Android
documentation. We then go one step deeper to check to what extent app developers use
the recommended alternative methods to replace the deprecated ones in order to remove
them. Unfortunately, only 31 out of the 2,890 cases (less than 1%) have actually replaced
the deprecated APIs with the recommended ones. This evidence suggests that app devel-
opers are not really (or at least are unlikely) following the recommendation of the official
documentation to deal with deprecated APIs.

Furthermore, we compare the 31 cases (contributed by 13 distinct APIs), for which the
deprecated APIs have been replaced with their recommended alternatives (under the same
caller methods), with the top 10 removed deprecated APIs shown in Table 10. Surprisingly,
none of the top 10 APIs has appeared in the 31 code diffs. This result once again con-
firms our previous observation that app developers are not likely replacing the deprecated
APIs with their alternatives (at least not in the same caller methods) following the official
documentation.

Towards understanding why deprecated APIs are removed while their recommended
alternatives are not leveraged, we manually look into some samples. Our preliminary
investigation finds that the aforementioned issue might be caused by the following reasons.

– R1: Replaced by library or wrapper code. Instead of directly using the recommended
alternatives to replace the deprecated counterparts, to simplify the updates, app devel-
opers might directly leverage library methods or wrap the changes into independent
methods. In this case, since the recommended alternatives are not explicitly presented
in the code diff, our naive approach will not be able to spot that. Listing 3 presents such
an example, where deprecated API getOrientation() is actually replaced by a method
from an amazon ad library.

– R2: Alternative implementation. In addition to the recommended alternatives, there
will be other means that app developers can achieve the same function (remove the
deprecated APIs) while not using the recommended APIs. For example, as shown
in Listing 3, deprecated API getOrientation() is not replaced by its recommended
alternative method (which is getRotation()) but by a direct access to a field.
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Listing 3 Sample code snippets demonstrating how are deprecated APIs removed without leveraging the
recommended alternatives

– R3: Function no longer supported. In many cases, the deprecated features are sim-
ply removed. For example, as also demonstrated in Listing 3, getDescription() is a
deprecated API that is removed during an app update. However, without giving any
alternative implementation about the deprecated feature (i.e., getDescription()), the
update even changes the return value to always be null, indicating that app developers
are no longer interested in this method.

We would like to remind the readers that the approach we leveraged to check if a given
deprecated API is replaced by its recommended alternative is quite naive, i.e., only the caller
method of the removed deprecated API is checked. It is highly likely that the replacement
may be put in other methods that are overlooked by our approach (cf. R1 in Listing 3 would
be one of such examples). Indeed, among 2000 updates (i.e., app pairs) randomly sampled
from the 500 app lineages, we found that around 70% of them have included the replace-
ment in the updates with different locations (via a global analysis), which is much larger
than that of same locations where deprecated APIs are accessed into. These replacement
methods additionally included in the updated app version may not be the cases of replac-
ing deprecated APIs but due to the introduction of new features, which is unfortunately
non-trivial to confirm. Nonetheless, we believe this rate presents at least an upper bound of
possible replacements to deprecated APIs. We encourage our fellow researchers to invent
advanced techniques to improve the precision of identifying actual patches applied to update
deprecated Android APIs.

Moreover, our straightforward approach only checks the syntactic similarity of the dep-
recated APIs and their recommended counterparts, semantic changes will, unfortunately, be
missed. Let us take getOrientation() API in Listing 3 again as an example, except for the two
samples (cf. R1 and R2), our preliminary investigation has also found actual fixes for this
API, i.e., it is replaced by API getRotation(), as recommended by the Android documenta-
tion (cf. Listing 4). The fact that getOrientation() is fixed in different means (either follow
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the recommendation or not) suggests that the replacement of deprecated APIs is unlikely
achieved through a systematic approach.

Online Web Service Based on these 6,043 code diffs, which have involved in removing
360 deprecated APIs, we further present to the community an online web service aiming at
helping developers understand how other developers deal with deprecated APIs. As demon-
strated in Fig. 22, the online web service takes as input a deprecated API and outputs a
list of code diffs (13 diffs for API android.net.wifi.WifiManager.startScan as shown in the
screenshot), for which app developers can leverage to understand quickly how the searched
API is removed by other developers in practice. As of future work, we commit to harvesting
more code diffs from a large set of app lineages.

5 Discussion

This section discusses implications of this study and promising research directions that
could be built on the characterization of Android APIs (cf. Section 5.1). We also enumerate
some potential threats to validity in our findings (cf. Section 5.2).

5.1 Implications

The findings of this study raise a number of issues and opportunities for the research and
practice communities.

=⇒ Tool support for deprecating APIs.
As unveiled by our investigations and reported in Section 4.1, deprecated APIs

suffer from inconsistency issues in documentation and annotation. Most probably,
API deprecation remains a manual process undertaken by framework developers.
Given the consequences of inconsistency issues in practice for app developers, it is
necessary that Android maintainers adopt specific tools to deal with API depreca-
tion. Generally, it is important for not only the maintainers of Android framework
base but also for the maintainers of any other repositories that need to deal with API
deprecation to request tool support. It is non-trivial to devise a single tool that can

Listing 4 Sample code snippets demonstrating how is deprecated API getOrientation() replaced by its
recommended alternative (i.e., getRotation()
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Fig. 22 A sample usage of the online web service

fully solve the problem of API deprecating (Henkel and Diwan 2005). Our commu-
nity might need to split the problem into small tasks and implement dedicated tools
to resolve them separately. Our research prototype, namely CDA, is actually our first
step towards providing such a tool set for helping repository maintainers better deal
with API deprecation.

=⇒ A deprecate-replace-hide-removemodel.
So far, the practice in dropping legacy APIs from the code base consists in

applying the so-called deprecate-replace-remove model, where the legacy APIs are
eventually removed after a certain period of time. This model appears to be suitable
for most cases, but would still lead to crashes for some legacy client apps which
still call into removed APIs. In order to avoid such unnecessary crashes, the Android
framework base has introduced another means to deal with deprecated APIs. That
is, instead of directly removing deprecated APIs, it first flags them as hidden APIs
that can still live for a while in the framework side (i.e., available in the runtime
virtual machine) but are no longer available in the client SDK. Thus, legacy apps,
which still call into hidden APIs (removed from the SDK), can successfully run
on updated devices. Meanwhile, new apps that are developed based on latest SDK
would not face the problem of accessing “removed” APIs because those APIs are
indeed removed from the developer’s point of view. This scheme has already been
shown to be effective for other APIs in the Android framework code base. Thus, we
recommend that the community adopts a new process model for deprecating APIs,
namely deprecate-replace-hide-remove model. We remind the readers that hidden
APIs could be promoted to public APIs eventually (Hora et al. 2016), which however
should not contradict the proposed deprecate-replace-hide-remove model as those
hidden APIs will unlikely be originated from deprecated ones.
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It is worth mentioning that app developers may be interested in using hidden
APIs, e.g., a dedicated library has been provided to the community for app develop-
ers to access hidden APIs,21 simply removing hidden APIs may result in problems to
the apps developed by such developers. Nevertheless, as argued by Li et al. (2016c),
hidden APIs should be avoided in the first place. Therefore, while applying the
deprecate-replace-hide-remove model, the usage of hidden APIs should also be reg-
ulated. Actually, starting in Android 9 (API level 28), the Android platform restricts
the usage of certain hidden APIs22. If a given app attempts to access a hidden API
that is restricted for the app’s target API level, the Android system will throw an
error. enforcing developers to avoid the usage of hidden APIs when developing new
apps. However, to allow the execution of historical apps, the same hidden API might
be still accessible if the app targets a lower API level.

=⇒ Advanced fix mining for dealing with deprecated APIs.
In this work, we attempt to automatically mine fixes of deprecated APIs from

app lineages that contain the practical changes made by app developers. So far, our
approach only look at the evolution of the caller method that has accessed into dep-
recated APIs. Given two subsequent app versions (ax, ax1 ) in a lineage, deprecated
APIs could indeed be removed from ax by developers but their fixes may not nec-
essarily be placed in the same place (i.e., the same caller method). As a result, our
current fix mining approach may have overlooked a lot of true fixes. Therefore, we
argue that there is a need to design advanced fix mining approaches towards learning
the practical fixes from app developers.

=⇒ Recommendation System for fixing deprecated APIs..
Ideally, if we apply our fixing mining approach to a large set of app lineages,

we would be able to collect a large set of code diffs demonstrating how are depre-
cated APIs fixed by developers in practice. The large set of code diffs can further be
leveraged to implement a recommendation system for automatically recommending
appropriate fix templates for helping developers fix deprecated APIs. Towards build-
ing a reliable recommendation system, one research challenge that is still needed to
be addressed is to invent a new algorithm to rank the results, i.e., the most relevant
code diff should be recommended first.

=⇒ Automatic fix of deprecated APIs usage in apps.
Our study in this work constructs a mapping between deprecated APIs and their

replacement alternatives. An opportune research direction could be to invent an auto-
mated approach for fixing the usage of deprecated APIs across apps in the wild. This
direction involves challenges beyond simple refactoring of API call sites: indeed,
alternatives can be other API methods with different parameters (how to initialize
arguments based on context variables?), suggested classes (how to infer object ini-
tialization and specific internal method calls?), or fields of existing objects (how to
identify the right object, and use the appropriate field in replacement code?). Nev-
ertheless, we believe that leveraging the mapping produced in this work and a large
dataset of apps (with millions of code samples) can help systematically learn patterns
for fixing the usage of deprecated APIs.

21https://github.com/anggrayudi/android-hidden-api
22https://developer.android.com/about/versions/pie/restrictions-non-sdk-interfaces

https://github.com/anggrayudi/android-hidden-api
https://developer.android.com/about/versions/pie/restrictions-non-sdk-interfaces
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5.2 Threats to Validity

First, our investigation is conducted based on a subset of selected releases of the Android
framework base, where the selected subset of releases may not be representative for the
whole evolution of deprecated APIs and hence introduce threats into the external validity.
Nevertheless, to alleviate this threat, we have considered all the possible API level releases.

Second, the representability of our approach could potentially be also impacted by the
selection of app sets and lineages. For example, there is a chance that dormant apps may be
selected to our dataset. Because dormant apps may come with low-quality and are not under
active development, their developers may not react to the usage of deprecated APIs or care
about the affection of deprecation, resulting in bias in our experimental results. Nonetheless,
this threat is mitigated by performing random sampling from so far the largest and most up-
to-date research dataset (a.k.a. AndroZoo) in our community. It is worth to mention that even
with reputed apps, as disclosed by Gao et al. (2019), their lineages may not be always good
for supporting evolutionary studies such as mining usage patterns of cryptographic APIs.
We hence encourage our fellow researchers in the community to working on this problem
and inventing reliable means for supporting representative evolutionary studies in Android.

Third, our library-based investigation is based on a whitelist provided by Li et al. (2016c),
where certain libraries could be still missing, making our corresponding findings biased
to some extent. Nevertheless, the whitelist we have leveraged contains over 1,000 libraries
including at least the popular ones (e.g., all the popular libraries presented in Table 8 are
included).

Fourth, the replacement messages of deprecated APIs are inferred via a heuristic-based
approach, where the heuristics are summarised based on manual observation. Despite that,
we have added more conservative rules to the heuristics, our approach is still subject to
mistakes that may further introduce to both false positive and false negative results. The
underline challenge prevents from properly inferring replacement messages is that Android
developers do not follow a single means to provide replacement messages. Even for some
parts of the APIs, where developers do follow similar patterns to introduce replacement
messages, they also frequently make mistakes, making it also difficult to automatically infer
replacement messages. In this work, we aim to ensure the correctness of the inferred replace-
ment messages via manual verification, which however is non-trivial to achieve in practice.
As of our future work, we plan to explore new possibilities to automatically and correctly
infer replacement messages for deprecated Android APIs.

Fifth, the developer reactions study is conducted based on the targetedSDK version,
which has been used by app developers to test against the functionality of the apps, result-
ing in a limited view of the use of deprecated APIs as ideally the full range of supported
SDK versions should be considered. Nevertheless, our empirical findings should not be sig-
nificantly impacted as the targetedSDK version generally represents the framework version
the corresponding app is developed upon.

Sixth, the deprecated API update study is based on a naive assumption that app devel-
opers will replace deprecated APIs with their recommended alternatives at the same place
where the deprecated APIs are accessed into (i.e., under the same caller method). Unfor-
tunately, there is no guarantee that this assumption will be true in practice. Also, it is
non-trivial to locate the code that updates the deprecated APIs outside of their caller meth-
ods, where comprehensive control-flow and data-flow analyses are expected. We hence left
it for our future work.

Finally, our empirical investigations are performed purely on software artefacts (e.g., the
source code and documentation of the Android framework base, or the bytecode of Android
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apps), the corresponding findings may only reflect the output of those artefacts and hence
may not reflect the opinions of framework maintainers and app developers. To alleviate this,
in our future work, we plan to contact both framework maintainers and app developers for
a more comprehensive understanding on how are deprecated APIs treated in practice.

6 RelatedWork

Recent studies have explored the problem of deprecating APIs from various aspects. In this
section, we discuss some of the most representative ones.

6.1 API Deprecation

As a common knowledge, deprecated APIs should follow the deprecate-replace-remove
cycle where an API is first marked as deprecated and then replaced by a new API and
eventually removed from the source code base (Zhou and Walker 2016; Dig and Johnson
2005; Kapur et al. 2010). However, many deprecated APIs are not removed despite having
remained as deprecated for years. For example, Zhou and Walker (2016) present a retro-
spective analysis of deprecated APIs and find that the traditional deprecate-replace-remove
cycle is often not respected in open source Java frameworks and libraries. They also argue
that, because of API deprecation, coding examples on the web can easily become outdated.
Consequently, they present a prototype tool named Deprecation Watcher to automatically
flag coding examples of deprecated APIs so that developers can be informed of such usages
before spending time and energy into interpreting them. Kapur et al. (2010) further reveal
that deprecated entities do not always get removed eventually while removed entities are
not always deprecated beforehand.

By analysing the Javadoc messages, source code, issue tracker and commit histories,
Sawant et al. have observed 12 reasons that may trigger API producers to deprecate a fea-
ture (Sawant et al. 2018b). Furthermore, towards understanding developers’ needs on API
deprecation, the authors have conducted semi-structured interviews and surveys with Java
producers and developers. Their experimental results disclose that the current deprecation
mechanism in Java is not sufficient to address all the needs of Java developers (Sawant et al.
2018a). As one of the largest Java projects, the experience we obtained through mining the
Android framework code base can be also useful to complement their work towards better
understanding the developers’ needs of deprecated API features.

For some Java systems on Maven Central Repository, deprecated APIs are even never
removed, as discovered by Raemaekers et al. (2014). Unfortunately, in their study, only
@Deprecated annotation is considered, i.e., @deprecated Javadoc tag is ignored, which
could have missed some deprecated APIs. As demonstrated in this work, it is quite com-
mon that these inconsistencies appear in Java source code repository such as the Android
framework code base.

Brito et al. (2016) argue that APIs should always be deprecated with clear replace-
ment messages so that client systems can correspondingly update. However, based on their
investigation, this philosophy is not always respected. Similarly, Ko et al. (2014) investi-
gate the relationship between API documentation quality and the resolved deprecated APIs.
Their empirical investigation reveals that deprecated APIs with documented replacement
messages are more likely to be updated comparing to such deprecated APIs that have no
documentation indicating their alternatives.
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Espinha et al. (2014) provide a systematic and extensible study on the deprecation of web
APIs. Their experimental results show that many web developers are not able to keep their
app up-to-date even with a long deprecation time given. Taking Google Maps API version
2 as an example, Google gives three years for its developers to upgrade but turns out that
three years are not enough. The authors then argue that three years are rather short but too
long that leaves developers too relaxed to migrate their code. This interesting finding could
also happen in Java-based systems including the Android framework code base. However,
to explore this direction is out of the scope of this work, we therefore consider it as our
future work.

Similar to the study of Espinha et al. (2014), other researchers have also worked in this
direction attempting to understand developer reactions to deprecated APIs (Hou and Yao
2011; Robbes et al. 2012; Hora et al. 2015). For example, Sawant et al. (2016) investigated
more than 25,000 clients of five popular Java APIs on Github. They empirically found that
client project maintainers did not update their API versions as long as the execution is not
broken. This finding is actually in line with ours where app developers are not motivated to
update the target SDK version of their apps as long as the apps work fine in modern mobile
devices.

6.2 API Evolution

McDonnell et al. (2013) investigate the stability and adoption of Android APIs and find
that Android APIs evolve fast and app developers do not follow the evolution momentum.
For example, they disclose that around 28% of APIs used by Android apps are outdated
where the median lagging time is 16 months. Linares-Vásquez et al. (2014) further explore
the relationship between fault- and change-prone APIs and the success of Android apps and
empirically demonstrates that there is a negative impact between these two parts (Bavota
et al. 2015). Furthermore, they also empirically show that change-prone Android APIs are
more likely discussed on social media such as Stack Overflow (Linares-Vásquez et al.
2014).

Li et al. (2016c) explore the evolution of inaccessible Android APIs, where both internal
and hidden APIs are considered. Like our approach, they also investigate the inaccessible
APIs based on the historical changes of the Android framework code base. They have taken
into account 17 prominent releases and reveal that inaccessible APIs are commonly imple-
mented in the Android framework. In this work, we find another reason, which is yet not
disclosed by their approach, that certain deprecated APIs are eventually marked as hidden.
This modification is quite intelligent as from app developer’s point of view those deprecated
APIs have been removed from the SDK while from the framework’s point of view those
deprecated APIs are still retained to avoid potential compatibility issues.

In addition to Android framework code base, several approaches are also proposed to
investigate the evolution of general framework code (Dagenais and Robillard 2011; Wu et al.
2010; Meng et al. 2012; Hou and Yao 2011; Dig and Johnson 2006) or library code (Cos-
sette and Walker 2012). For example, Hou and Yao (2011) are interested in exploring the
Intent behind API evolution, so as to counter the negative impacts of API evolution. Dage-
nais and Robillard (2011) present a client-server tool called SemDiff that automatically
recommends adaptations such as replacing no longer existed methods to client programs by
mining the evolution of framework changes. Similarly, Wu et al. (2010) introduce AURA,
a hybrid approach that integrates call dependency analysis with text similarity comparison
together, to automatically identify change rules to further benefit client programs to keep
their code up-to-date. Meng et al. (2012) present a novel approach named HiMa, which
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performs pairwise comparisons for each consecutive revisions recorded in the evolutionary
history and aggregates revision-level rules to construct framework-evolution rules. Although
HiMa takes more computing powers than AURA, it achieves higher precision and recall in
most circumstances.

Finally, our fellow researchers are also interested in automatically migrating client code
to cope with evolving APIs (Dig et al. 2008; Štrobl and Tronı́ček 2013; Bogart et al. 2016;
Brito and Xavier 2018a). For example, Chow and Notkin (1996) propose a semi-automated
approach for updating client projects in response to library changes. Their approach presents
a toolset that relies on changed functions annotated by library maintainers to automatically
update client projects. The authors further introduce the so-called twinning technique for
allowing programmers to specify a class of program changes (i.e., a mapping) without mod-
ifying the target program directly (Nita and Notkin 2010). This mapping can then be lever-
aged to transition a program from using one API to using an alternative API. Instead of man-
ually annotating the changes of given libraries, Henkel and Diwan (2005) presents a proto-
type tool called Catchup!, which aims at capturing and replaying refactoring actions within
an integrated development environment. Xing and Stroulia (2007) attempt to automati-
cally recognise the API changes and proposes plausible replacements to the “obsolete” API
based on working examples of the framework code base. All of these approaches have pro-
posed promising techniques to handle deprecation in the evolution of software frameworks.
Specifically, we believe these approaches can be also applied to resolve the deprecation
problem of Android APIs, i.e., to automatically update deprecated APIs in Android apps.

7 Conclusion

In this work, we have conducted an exploratory study of deprecated Android APIs. In partic-
ular, we have built a prototype research tool called CDA and applied it to different revisions
(i.e., releases or tags) of the Android framework code base to investigate all the deprecated
APIs (how are they annotated and documented? or how are they cleaned up or survived
during the evolution of the framework base?) and infer the mapping with their potential
replacement alternatives. Finally, we explore a set of real-world Android apps attempting to
understand the reaction of app developers to deprecated Android APIs.

Our experimental investigation eventually finds that (1) Deprecated Android APIs are
not always consistently annotated and documented, which can have severe consequences in
app development and user experience; (2) The Android framework code base is regularly
cleaned-up from deprecated APIs, often in a short period of time; (3) In general, over half
of the deprecated APIs in the Android framework are commented to provide alternatives,
although they will be rarely updated. (4) In practice, most usage sites of deprecated APIs
in app code are located in popular libraries, although, library developers are more likely
to update deprecated APIs than app developers. (5) During the evolution of Android apps,
deprecated APIs are likely retained rather than removed from the app code. (6) For the cases
app developers do remove deprecated APIs from the app, they are unlikely replacing the
deprecated APIs with their alternatives recommended by the official documentation, at least
not directly at the same place (e.g., under the same caller method).
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