
Empirical Software Engineering
https://doi.org/10.1007/s10664-018-9661-2

Revisiting supervised and unsupervised models
for effort-aware just-in-time defect prediction

Qiao Huang1 ·Xin Xia2 ·David Lo3

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Effort-aware just-in-time (JIT) defect prediction aims at finding more defective software
changes with limited code inspection cost. Traditionally, supervised models have been used;
however, they require sufficient labelled training data, which is difficult to obtain, espe-
cially for new projects. Recently, Yang et al. proposed an unsupervised model (i.e., LT) and
applied it to projects with rich historical bug data. Interestingly, they reported that, under the
same inspection cost (i.e., 20 percent of the total lines of code modified by all changes), it
could find about 12% - 27% more defective changes than a state-of-the-art supervised model
(i.e., EALR) when using different evaluation settings. This is surprising as supervised mod-
els that benefit from historical data are expected to perform better than unsupervised ones.
Their finding suggests that previous studies on defect prediction had made a simple prob-
lem too complex. Considering the potential high impact of Yang et al.’s work, in this paper,
we perform a replication study and present the following new findings: (1) Under the same
inspection budget, LT requires developers to inspect a large number of changes necessitating
many more context switches. (2) Although LT finds more defective changes, many highly
ranked changes are false alarms. These initial false alarms may negatively impact practition-
ers’ patience and confidence. (3) LT does not outperform EALR when the harmonic mean
of Recall and Precision (i.e., F1-score) is considered. Aside from highlighting the above
findings, we propose a simple but improved supervised model called CBS+, which lever-
ages the idea of both EALR and LT. We investigate the performance of CBS+ using three
different evaluation settings, including time-wise cross-validation, 10-times 10-fold cross-
validation and cross-project validation. When compared with EALR, CBS+ detects about
15% - 26% more defective changes, while keeping the number of context switches and ini-
tial false alarms close to those of EALR. When compared with LT, the number of defective
changes detected by CBS+ is comparable to LT’s result, while CBS+ significantly reduces
context switches and initial false alarms before first success. Finally, we discuss how to bal-
ance the tradeoff between the number of inspected defects and context switches, and present
the implications of our findings for practitioners and researchers.

Communicated by: Lu Zhang, Thomas Zimmermann, Xin Peng and Hong Mei

� Xin Xia
xin.xia@monash.edu

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-018-9661-2&domain=pdf
http://orcid.org/0000-0002-6302-3256
mailto: xin.xia@monash.edu

Empirical Software Engineering

Keywords Defect prediction · Evaluation metrics · Research bias

1 Introduction

Defect prediction techniques aim to help developers prioritize testing and debugging effort
by recommending likely defective code. Most defect prediction studies propose prediction
models built on various types of features (e.g., process or code features), and predict defects
at coarse granularity level, such as file, package, or module (Turhan et al. 2009; Xia et al.
2016b; Gyimothy et al. 2005; Hassan 2009; Li et al. 2006; Munson and Khoshgoftaar 1992).
Mockus and Weiss (2000) are the first to propose a prediction model which focuses on iden-
tifying defect-prone software changes instead of files or packages. Such prediction is also
referred as just-in-time (JIT) defect prediction by Kamei et al. (2013). JIT defect prediction
is more practical since (1) it leads to smaller amount of code to be reviewed,1 and (2) devel-
opers can review and test these risky changes while they are still fresh in their minds (i.e.,
at commit time).

Different changes would require different amount of effort to inspect, and intuitively, a
change that modifies (i.e., adds or deletes) a larger number of lines of code (LOC) requires
a developer to spend more effort to inspect it. Based on this intuition, effort-aware JIT
defect prediction (Kamei et al. 2013) takes into account the inspection cost of a change
(measured by the number of modified LOC); a prediction model in this setting focuses on
optimizing the number of defects that can be found given a fixed inspection budget (e.g.,
inspecting 20% LOC modified by all changes). Kamei et al. (2013) proposed a state-of-
the-art supervised model called EALR which leveraged linear regression to help developers
review changes more effectively given a fixed inspection budget. They reported that the
EALR model could identify 35% of all defective changes, when 20% LOC modified by all
changes are inspected.

One disadvantage for supervised defect prediction models is that they require a large
amount of labelled instances for training (Zimmermann et al. 2009). Unfortunately, it is dif-
ficult to get sufficient training data for a new project. To address this limitation, Yang et al.
(2016) proposed an unsupervised model for effort-aware JIT defect prediction, which sim-
ply sort the changes by one metric. Their idea is inspired by Koru et al.’s finding that smaller
modules are proportionally more defect-prone and should be inspected first (Koru et al.
2010). For example, considering a metric LT (i.e., lines of code in a file before a change),
Yang et al. hypothesizes that changes with lower LT are in smaller modules and should be
inspected earlier. By performing empirical study on the dataset published by Kamei et al.
(2013), they found that unsupervised model with the metric LT outperforms the state-of-
the-art supervised model (i.e., the EALR model) in terms of Recall. Here Recall means the
proportion of inspected defective changes among all defective changes.2

There are many advantages of the unsupervised model:

– It is straightforward to understand and much easier to implement.
– It does not require any labelled training data, or any machine learning techniques. Thus,

it can be easily applied in a new project and runs much faster.
– Under the same inspection cost (i.e., 20% LOC), it can find more defects.

1The amount of inspected code in an individual change is much less than the code in a file, package, or
module.
2Some previous studies (Hall et al. 2012; Jiang et al. 2013; Rahman and Devanbu 2013) also denoted this
evaluation measure as cost-effectiveness.

Empirical Software Engineering

These advantages suggest that previous studies on defect prediction had made a sim-
ple problem too complex. This is a surprising finding, since intuitively, as a supervised
model extracts prior knowledge (e.g., defect distribution, defective patterns) from historical
changes, it is expected to perform better than a model which has no prior knowledge.

Considering the potential high impact of Yang et al.’s work, in this paper, we perform
a replication study. In particular, we would like to investigate why the unsupervised model
achieves a high Recall. Additionally, to have a holistic view, we consider a number of addi-
tional metrics beyond Recall and use them as yardsticks to compare supervised and unsu-
pervised models considered by Yang et al. Last but not least, we would like to boost the
performance of a supervised model by leveraging the intuition underlying Yang et al.’s work.

Our study focuses on answering the following research questions:

RQ1: Why does Yang et al.’s unsupervised model (LT) perform better than Kamei
et al.’s supervised model (EALR) in terms of Recall?

We explore the distribution of change size (i.e., LOC modified by the change) and find it
highly skewed for every project. Most changes are small while a few are very large. Con-
sidering the same inspection cost (i.e., 20% LOC), on average, LT requires developers to
inspect more than twice or even triple as many as the number of changes inspected when
using EALR in different evaluation settings. Thus, it is of no surprise that Yang et al.’s
unsupervised model finds more defects. However, it is not reasonable to expect develop-
ers to inspect too many changes due to the additional effort required for frequent context
switches (Meyer et al. 2014). Additionally, inspecting many changes can map to a high
number of false alarms which in turn may lead to developer fatigue and tool abandonment
– c.f. Parnin and Orsom (2011) and Kochhar et al. (2016)

RQ2: How do the supervised and unsupervised models compare when different
evaluation measures are considered?

We argue that, Recall cannot provide enough information to help practitioners fully evaluate
a prediction model. Thus, we use 4 additional evaluation measures, namely Precision, F1-
score, PCI@20% (i.e., Proportion of Changes Inspected when 20% LOC modified by all
changes are inspected), and IFA (i.e., number of Initial False Alarms encountered before
we find the first defect). We use Recall, Precision and F1-score because they are widely
used in prior software engineering studies (Arisholm et al. 2007; Rahman et al. 2012; Jiang
et al. 2013; Shihab et al. 2013; Valdivia Garcia and Shihab 2014; Huang et al. 2018). We
propose PCI@20% to measure the additional effort needed due to context switches between
changes, since context switching has been shown harmful to developer productivity (Meyer
et al. 2014). We propose IFA because previous studies (Parnin and Orsom 2011; Kochhar
et al. 2016) have shown that developers are not willing to use a prediction model if the first
few recommendations are all false alarms.

By replicating Yang et al.’s experiment with the same dataset and the same evalua-
tion settings (including time-wise cross-validation, 10-times 10-fold cross-validation and
cross-project validation) but more evaluation measures, we find that LT does not outper-
form EALR considering these additional evaluation measures. In some projects, EALR even
significantly outperforms LT considering some of these new evaluation measures.

RQ3: Could the supervised model be enhanced leveraging intuition of Yang et al.’s
unsupervised model?

We propose a simple but improved supervised model called CBS+. It first builds a logistic
classifier to identify defective changes. Then it sorts the identified defective changes in

Empirical Software Engineering

descending order by the ratio between a change’s defect proneness and its size. We inspect
these sorted changes one by one until we reach the limit of inspection cost. If there is still
budget left, we apply the same operation to those identified clean changes.

We investigate the performance of CBS+ and compare it with EALR and LT. When
compared with EALR, CBS+ significantly improves the average Recall by 47% - 108% for
three different evaluation settings, while keeping the results of PCI@20% and IFA close to
those of EALR. When compared with LT, CBS+ achieves comparable results in terms of
Recall, but it significantly reduces context switches and false alarms before first success.

This paper extends our preliminary study which appears as a research paper of ICSME
2017 (Huang et al. 2017). In particular, we extend our preliminary work in the following
directions:

1. We propose CBS+, which is an extended version of the supervised model (i.e., CBS) pro-
posed in our preliminary work (Huang et al. 2017). There are two major differences
between CBS+ and CBS: (1) In CBS, we directly remove the changes that are predicted as
non-defective, while in CBS+, we continue to inspect these changes if there is still bud-
get left after inspecting all the predicted defective changes. (2) In CBS, we sort the list
of changes in ascending order by their size, while in CBS+, we sort the list of changes in
descending order by the ratio between each change’s defect proneness and its size (i.e.,
LA+LD). The motivation of these modifications will be further discussed in Section 4.
Our experiments show that CBS+ performs much better in terms of IFA and achieves
similar results in terms of other evaluation measures when compared with CBS.

2. We strengthen the experimental part by adding two more evaluation settings, including
10-times 10-fold cross-validation and cross-project validation.

3. We investigated the performance of CBS+ with different underlying classifiers and we
found that Random Forest is also a good choice.

4. We conducted a survey with professional developers to further investigate the impact
of inspecting too many changes in practice.

5. We evaluated different prediction models with the evaluation measure Popt that was
used in previous studies (Yang et al. 2016; Fu and Menzies 2017).

6. We further discuss how to balance the tradeoff between Recall and PCI@20% by
tuning a threshold λ in CBS+. Specifically, given a change, if its defect proneness pre-
dicted by CBS+ is no less than the threshold λ, then it would be identified as defective,
and non-defective otherwise. In the discussion, we also compared our approach with a
more recent work by Zhou et al., in which they applied an unsupervised model called
ManualUp for cross-project defect prediction.

Our contributions, which form a super-set of those in our preliminary study, are as
follows:

1. We perform an in-depth analysis of the experiment results in Yang et al.’s work, and
analyze the reason why the unsupervised model outperforms supervised models in
effort-aware JIT defect prediction.

2. We perform a holistic evaluation of supervised versus unsupervised models with two
new considerations: context switches and developer fatigue due to initial false alarms.
We present new findings and highlight limitations of unsupervised models that were
not revealed by prior studies.

3. We propose a simple but improved supervised model called CBS+. While CBS+
performs as well as Yang et al.’s unsupervised model (LT) in terms of Recall, it
significantly outperforms LT in terms of the other evaluation measures.

Empirical Software Engineering

Paper organization The remainder of the paper is organized as follows. We introduce the
background and related work on JIT defect prediction in Section 2. We describe the tech-
nical details of the supervised and unsupervised models proposed by previous studies (i.e.,
EALR and LT) in Section 3. We introduce our improved supervised model in Section 4.
We introduce the evaluation measures in Section 5. We present our experimental setup and
results in Sections 6 and 7, respectively. We discuss how to balance the tradeoff between
the number of inspected defects and context switches, and present the implications of our
findings for practitioners and researchers in Section 8. We examine the threats to validity in
Section 9. We conclude the paper and mention future work in Section 10.

2 Background and related work

In this section, we introduce the background and related work of just-in-time (JIT) defect
prediction and effort-aware JIT defect prediction.

2.1 Just-in-time defect prediction

Traditional defect prediction models focus on identifying defect-prone classes, files or
modules. Such granularity could be too coarse to be applied in practice. For example, a pre-
diction model is more likely to recommend large files to developers for inspection, since
defect proneness increases as file size increases (Koru et al. 2009). However, it is diffi-
cult for developers to recall the logic and technical details hidden in the code when given a
large file with thousands of lines of code. Also, it is difficult to decide which developer
should be assigned to inspect the code since a large file often have multiple authors (Kim
et al. 2008).

To address the above limitations, Mockus and Weiss (2000) are the first to study change-
level defect prediction. They proposed a supervised model to predict defects in a large-scale
telecommunication system at the initial maintenance request (IMR) level, which consists of
multiple changes. Their model used the properties of a change itself, such as lines of code
added and deleted, diffusion of the change, measures of developer experience, etc. Kim et al.
(2008) extracted text feature from various sources (i.e., change log, source code, and file
names), and combined them with features extracted from change metadata and complexity
metrics to build the prediction model for classifying clean or buggy changes. Yin et al.
(2011) empirically studied the incorrect bug-fixes from 4 large operating systems. They
found that at least 14.8% to 24.4% of fixes for post-release bugs are incorrect and affect end
users. They also found that concurrency bugs are the most difficult to fix, and developers
and reviewers of incorrect fixes usually do not have enough knowledge about the involved
code. Shihab et al. (2012) performed an industrial study on the risk of software changes.
They found that the number of lines of code added by the change, the bugginess of the files
being changed, the number of bug reports linked to a change and the developer experience
are the best indicators of change risk. Kamei et al. (2013) referred to the change-level defect
prediction as Just-in-Time Defect Prediction, and they performed a large-scale empirical
study on six open source projects and five commercial projects.

2.2 Effort-aware JIT defect prediction

Previous studies (Menzies and Di Stefano 2004; Mende and Koschke 2010; Arisholm
et al. 2010) have pointed out that defect prediction model should also be effort-aware. For

Empirical Software Engineering

traditional defect prediction at file level, the number of lines of code in a file is used as a mea-
sure of the effort required to inspect the file (Arisholm et al. 2010; Menzies et al.
2010). Kamei et al. (2013) also evaluated the performance of defect prediction model at
change level when considering inspection cost. They used the size of a change (i.e., total num-
ber of LOC added and deleted by the change) to measure the inspection cost of a change.

Considering tight development and release, and limited human resources, previous stud-
ies on effort-aware defect prediction focused on finding more defects with limited code
inspection cost. Besides, previous studies (Hamill and Goseva-Popstojanova 2009; Koru
et al. 2009; Ostrand et al. 2004) have shown that about 80% of the defects are contained
in about 20% of the files. Motivated by these work, Kamei et al. (2013) assumed that the
available resources only account for 20% of the effort it would take to inspect all changes,
and they proposed a supervised model called EALR. Instead of predicting defect-proneness,
EALR would predict the defect-density for each change. Then it ranks changes in descend-
ing order by the predicted defect-density, and the top changes are inspected one by one until
the accumulated inspection cost reaches the threshold of 20%. They used Recall (i.e., the
proportion of inspected defective changes among all the defective changes) to evaluate the
performance of the prediction under effort-aware setting.

More recently, Yang et al. (2016) proposed an unsupervised model for effort-aware JIT
defect prediction. Their model is based on the assumption that changes in smaller files
should be inspected first, which is inspired by Koru et al.’s finding that smaller modules
are proportionally more defect-prone and should be inspected first (Koru et al. 2010). They
reported that using the same data provided by Kamei et al. (2013), their unsupervised model
could achieve higher Recall when compared with supervised model. Following Yang et al.’s
work, Yan et al. (2017) applied the unsupervised model to effort-aware file-level defect
prediction, and they found that the conclusion of Yang et al. does not hold under within-
project setting for file-level defect prediction. Different from Yan et al.’s work, we focus on
investigating why Yang et al.’s unsupervised model achieves high Recall in effort-aware JIT
defect prediction.

3 Effort-aware JIT defect predictionmodels

In this section, we introduce the technical details of the supervised model proposed
by Kamei et al. (2013), and unsupervised model proposed by Yang et al. (2016) for
effort-aware JIT defect prediction.

3.1 Supervisedmodel by Kamei et al. (EALR)

Kamei et al. considered 14 metrics derived from the source control repository data of a
project to represent a change. Table 1 presents the name and description of each metric.
These metrics can be grouped into five dimensions: diffusion (NS, ND, NF and Entropy),
size (LA, LD and LT), purpose (FIX), history (NDEV, AGE and NUC) and experience (EXP,
REXP and SEXP).

The metrics in diffusion dimension characterize the distribution of a change. Previous
studies showed that a highly distributed change is more likely to be defective (D’Ambros
et al. 2010; Hassan 2009; Mockus and Weiss 2000; Nagappan et al. 2006b). The metrics
in size dimension characterize the size of a change, and a larger change is more likely
to be defective since more code has to be changed or implemented (Moser et al. 2008;
Nagappan and Ball 2005). The purpose dimension only consists of FIX, and it is believed

Empirical Software Engineering

Table 1 Summary of change
metrics Metric Description

NS Number of subsystems touched by the current change

ND Number of directories touched by the current change

NF Number of files touched by the current change

Entropy Distribution across the touched files

LA Lines of code added by the current change

LD Lines of code deleted by the current change

LT Lines of code in a file before the current change

FIX Whether or not the current change is a defect fix

NDEV Number of developers that changed the files

AGE Average time interval between the last and current change

NUC Number of unique last changes to the files

EXP Developers experience

REXP Recent developer experience

SEXP Developer experience on a subsystem

that a defect-fixing change is more likely to introduce a new defect (Graves et al. 2000; Guo
et al. 2010; Purushothaman and Perry 2005). The metrics in history dimension can tell us
how developers interacted with different files in the past. As stated by Yang et al. (Yang et al.
2016), a change is more likely to be defective if the touched files have been modified by
more developers (Matsumoto et al. 2010), by more recent changes (Graves et al. 2000), or by
more unique last changes (D’Ambros et al. 2010; Hassan 2009). The experience dimension
measures a developer’s experience based on the number of changes made by the developer
in the past. In general, a change made by a more experienced developer is less likely to
introduce defects (Mockus and Weiss 2000).

Based on these 14 metrics, Kamei et al. (2013) built a linear regression model learned
from a training dataset to predict the risk score (i.e. defect-proneness) of new changes in
the testing dataset. However, the score does not consider the inspection cost of each change,
and the performance would be bad under the effort-aware setting (Kamei et al. 2013). To
solve this problem, they proposed an effort-aware linear regression (EALR) model, which
tries to learn the relationships between the various characteristic metrics of a change c (i.e.,
change metrics shown in Table 1) and its defect-density D(c) from the training dataset. The
defect-density D(c) is defined as follow:

D(c) = Y (c)

Effort(c)
(1)

Here Y(c) is 1 if the change c is defective and 0 otherwise, and Effort(c) is the amount
of effort required to inspect the change.

Then the EALR model would predict the value of D(c′) for a new change c′ in the testing
dataset, and sort these changes in descending order by their risk scores. Note that they only
use 12 metrics (excluding LA and LD) as independent variables to build the EALR model,
since lines of code added/deleted (i.e., LA and LD) together make up the effort value in the
dependent variable of EALR model (Kamei et al. 2013).

In practice, it is difficult for a linear regression model to accurately predict the value of
D(c), which would negatively impact the performance of prediction. Kamei et al. (2013)

Empirical Software Engineering

reported that the EALR model could detect 35% of all defective changes when developers
inspect 20% of LOC modified by all changes.

3.2 Unsupervisedmodel by Yang et al. (LT)

More recently, Yang et al. (2016) leveraged the same metrics in Kamei et al.’s work (2013)
to build an unsupervised model. The unsupervised model only uses one metric M among all
the available metrics and sort the changes in descending order according to the reciprocal
of M . More formally, given a change c and the metric value M(c), the model would predict
a risk score R(c) = 1

M(c) . Changes will be sorted in descending order according to the pre-
dicted risk score. To follow Kamei et al.’s work, the unsupervised model also excluded LA
and LD from the candidate metrics. Among all the other 12 candidate metrics, the unsu-
pervised model with LT metric achieves the best performance in most cases, and it also
significantly outperforms the EALR model in terms of Recall. Sorting based on LT follows
Koru et al.’s finding, which reveals that smaller modules are proportionally more defect-
prone and should be inspected first (Koru et al. 2010). Thus, we also choose LT as the
underlying metric for unsupervised model in our experiment.

4 CBS+: an improved supervisedmodel

In this section, we propose a simple but improved supervised model called CBS+. We first
introduce the motivation of CBS+, then we present its technical details with a pseudocode.

The major problem of EALR is that the relationship between the change metrics and
defect density (see (1)) may not be linear. Thus, it is difficult to accurately predict a spe-
cific value of defect-density using a linear model. However, as shown in Kamei et al.’s
work (2013), it is relatively easy to build a classifier to predict whether a change is defec-
tive or not. They reported that the classifier can find about 70% of all defective changes. To
leverage the advantages of such a classifier, while benefiting from Koru et al.’s findings, we
propose CBS+ (i.e., Classify-Before-Sorting). CBS+ assumes that among changes that are
classified to be potentially buggy, small ones should be inspected first, since they give the
best bang for the buck. On the other hand, for those changes that are classified to be poten-
tially clean, CBS+ just puts them aside unless there is still budget left after inspecting all
the predicted defective changes.

Empirical Software Engineering

Algorithm 1 presents the pseudo-code to build a classifier as proposed by Kamei et al.
(2013). We first follow Kamei et al. to use under-sampling strategy to deal with data imbal-
ance (i.e., they randomly removed instances of the majority class until the training data is
balanced) (Line 8). In practice, we can also use other sampling strategies, such as over-
sampling or a combination of over-sampling and under-sampling. However, our preliminary
experiment results show that under-sampling always achieves the better performance in pre-
dicting defective changes when compared with other sampling strategies. Besides, using
under-sampling, the amount of training data is also substantially reduced, thus reducing
time and memory cost during training. Then we remove several metrics (Line 9). Follow-
ing Kamei et al., we remove the metrics ND and REXP, since they found that NF and ND,
and REXP and EXP are highly correlated. Usage of highly correlated features may decrease
classifier accuracy. We also remove the metrics LA and LD since they will be used for sort-
ing. After that, we follow Kamei et al. to perform standard log transformation to several
metrics (Line 10). Finally, we build a classifier by using logistic regression (Line 11).

Algorithm 2 presents the pseudo-code of CBS+. Using the classifier built on training
dataset, we first identify potentially defective and non-defective changes in testing dataset
(Lines 9-17). In practice, given a new change, the logistic classifier would output a value
between 0 and 1 to represent the defect proneness of this change. We use the input param-
eter λ as a threshold of defect proneness to decide whether a change is defective or not.
By default, we set λ as 0.5, which means that a change would be classified as potentially
defective if its predicted defect proneness is no less than 0.5; otherwise it will be classified
as potentially non-defective. Then we separately sort the list of predicted defective changes

Empirical Software Engineering

and non-defective changes by the ratio between each change’s defect proneness p and its
size (i.e., LA+LD) (Lines 18-19). Finally, we append the sorted non-defective list to the end
of the defective list, and return the defective list for inspection (Lines 20-21).

Note that CBS+ is an extended version of the supervised model (i.e., CBS) proposed in
our preliminary work (Huang et al. 2017). The major differences between CBS+ and CBS
are as follows:

1. In CBS, we directly remove the changes that are predicted as non-defective. However,
in some cases (e.g., when a higher value is set for the threshold λ), only a few changes
would be predicted as defective and we would have a lot of budget left after inspect-
ing these changes. Since our classifier is imperfect, for those changes that are predicted
as non-defective, some of them may be false negatives (i.e., they are actually defective
changes). Thus, in CBS+, we continue to inspect these changes if there is still budget
left after inspecting all the predicted defective changes. Note that when evaluation mea-
sures are calculated (see Section 5), the ground truth labels of these changes are used
to identify true/false positives and negatives.

2. In CBS, we sort the list of changes in ascending order by their size (i.e., LA+LD) so that
smaller changes would be inspected first. Since smaller changes are less likely to be
defective (Moser et al. 2008; Nagappan and Ball 2005), it would be highly possible that
many highly ranked changes are false alarms. These initial false alarms may negatively
impact practitioners’ patience and confidence. To solve this problem, in CBS+, we
sort the list of changes in descending order by the ratio between each change’s defect
proneness p and its size (i.e., LA+LD). In this way, most small changes are still highly
ranked, while among these small changes, the change that has high defect proneness
would be inspected first.

5 Evaluationmeasures considered

In this section, we introduce the following 5 evaluation measures used in our paper to eval-
uate the performance of both supervised and unsupervised models. Suppose we have a
dataset with M changes and N defects. After inspecting 20% LOC, we inspected m changes
and found n defects. Besides, when we find the first defective change, we have inspected k

changes. Then the 5 evaluation measures are defined and computed as follows:

Recall Proportion of inspected defective changes among all the actual defective changes.
This is the evaluation measure used by many previous studies (Kamei et al. 2013; Yang et al.
2015, 2016, 2017; Xia et al. 2016c). They focused on achieving high Recall so that more
defective changes could be detected. Recall is computed as:

Recall = n/N (2)

Precision Proportion of inspected defective changes among all the inspected changes. A
low Precision indicates that developers would encounter more false alarms, which may have
negative impact on developers’ confidence on the prediction model. Precision is computed
as:

Precision = n/m (3)

F1-score A summary measure that combines both Precision and Recall - it evaluates if an
increase in Precision (Recall) outweighs a reduction in Recall (Precision). In many cases,

Empirical Software Engineering

high Recall indicates the sacrifice of Precision, and vice versa (Han et al. 2011). There-
fore, to fairly evaluate the prediction model, F1-score is also widely used in prior software
engineering studies (Arisholm et al. 2007; Rahman et al. 2012; Jiang et al. 2013; Shi-
hab et al. 2013; Valdivia Garcia and Shihab 2014; Huang et al. 2018). Note that if all the
inspected changes are not defective, then both Precision and Recall would be 0, and F1-
score would be NaN (i.e., not a number) since it divides zero. In this case, we set F1-score
to be 0 since the prediction model achieves the worst performance. F1-score is computed
as:

F1score = 2 ∗ Precision ∗ Recall

P recision + Recall
(4)

PCI@20% Proportion of Changes Inspected when 20% LOC modified by all changes are
inspected. A high PCI@k% indicates that, under the same number of LOC to inspect, devel-
opers need to inspect more changes. Note that the definition of inspection cost in prior
papers (Kamei et al. 2013; Yang et al. 2016) only considers the size of a change, and some
problems may arise when a prediction model requires developers to inspect a large number
of changes. Suppose Alpha team needs to review 10K changes where each change modifies
only 1 LOC, and Delta team needs to review only 1 change while it modifies 10K LOC.
The number of LOC that needs to be inspected by the two teams are the same (i.e., 10K
LOC in total). However, developers in Alpha team would frequently switch between differ-
ent changes and this may increase the actual time and effort spent. For example, Meyer et al.
(2014) conducted a survey with 379 professional software developers and they found that
developers perceive their days as productive when they complete many or big tasks without
significant interruptions or context switches. Also, a large number of changes may cover
many different localities (e.g., hundreds of files and modules), thus requiring more coor-
dination and communication between developers with different expertise. The additional
effort required due to context switches and additional communication overhead among
developers should not be ignored. To the best of our knowledge, this is the first paper that
takes these factors into consideration to evaluate effort-aware JIT defect prediction models.
PCI@20% is computed as:

PCI@20% = m/M (5)

IFA Number of Initial False Alarms encountered before we find the first defect. Inspired
by previous studies on fault localization (Parnin and Orsom 2011; Kochhar et al. 2016;
Xia et al. 2016a), we assume that if the top-k changes recommended by the model are
all false alarms, developers would be frustrated and are not likely to continue inspecting
the other changes. For example, Parnin and Orsom (2011) investigated how developers use
and benefit from automated debugging tools through a set of human studies. They found
that developers would stop inspecting suspicious statements, and turn back to traditional
debugging, if they couldn’t get promising results within the first few statements they inspect.
IFA is computed as:

IFA = k (6)

6 Experiment setup

In this section, we first describe the statistics of our dataset. Then we introduce the
experiment setting. Finally, we present the motivation of our research questions.

Empirical Software Engineering

6.1 Data statistics

Table 2 summarizes the statistics of the studied projects. This dataset is published by Kamei
et al. (2013), and also used in Yang et al.’s work (2016). We can see that the changes of
each project are gathered in a long period of time, written in different programming lan-
guages. The number of changes in each project ranges between 4,455 and 98,275. A change
is labeled as defective if it induces one or more defect. For each project, only a small
percentage of all changes are defective (about 5% to 36%).

6.2 Experiment setting

In this paper, we follow Yang et al. (2016) to evaluate each prediction model using the
following three evaluation settings:

Time-wise cross-validation In this setting, a prediction model is evaluated within the same
project while the chronological order of changes is considered additionally. For each project,
we first sort all changes in chronological order according to the commit date. Then we
gather the changes submitted in the same month into one group. Suppose we have N groups
of changes in a project, we use changes in group i and group i+1 (1 ≤ i ≤ N − 5) as
training data to build the supervised model. Then we use changes in group i+4 and group
i+5 as testing data to evaluate both supervised and unsupervised model. Finally, we would
get N − 5 prediction effectiveness results for each prediction model and we also record the
median result. As stated by Yang et al. (2016), they chose the period of two consecutive
months because the release cycle of most projects is typically 6 to 8 weeks. Besides, using
two consecutive months guarantees each training set will have enough instances for building
supervised models, and also allows us to have enough runs for each project.

10 times 10-fold cross-validation In this setting, a prediction model is also evaluated
within the same project. For each project, we first randomly shuffle the dataset and divide
it into ten folds of approximately equal size. Then, each fold is used as a testing dataset to
evaluate the prediction model build on the other nine folds (i.e., training dataset). The entire
process is repeated ten times to alleviate possible sampling bias during random shuffle and
splitting. Thus, we would get 10×10 = 100 prediction effectiveness results for each predic-
tion model and we follow Yang et al. (2016) to record the median result. Note that 10-fold

Table 2 Statistics of the studied projects

Project Period Language # of % of Mean LOC # of changes # of modified

Changes Defects per change per day files per

change

Bugzilla 08/1998-12/2006 Perl 4,620 36% 37.5 1.5 2.3

Columba 11/2002-07/2006 Java 4,4,55 31% 149.4 3.3 6.2

Eclipse JDT 05/2001-12/2007 Java 35,386 14% 71.4 14.7 4.3

Eclipse 20/2001-12/2007 Java 64,250 14% 72.2 26.7 4.3

Platform

Mozilla 01/2000-12/2006 C++ 98,275 5% 106.5 38.9 5.3

PostgreSQL 07/1996-05/2010 Ruby 20,431 25% 101.3 4.0 4.5

Empirical Software Engineering

cross-validation cannot guarantee the changes used for testing are always created later than
changes for training. In real application, we cannot use data in the future to build the super-
vised model and predict the data in the past. However, 10-fold cross-validation is a standard
evaluation setting when there is only one independent dataset, and it was used by previous
studies for defect prediction. For example, Moser et al. (2008) used this setting to evaluate
the efficiency of change metrics and static code attributes for defect prediction. Considering
that Yang et al. (2016) also used 10-fold cross-validation, we strictly follow them to keep
this setting in our work for a more comprehensive comparison. Overall, the main goal of
this paper is to replicate Yang et al.’s work and ensure that our new finding is not due to a
different validation setting.

Cross-project validation In this setting, a prediction model is evaluated across different
projects. Given n projects, each time we choose 1 project as a target project for testing, and
the other n − 1 projects are used as source projects to train the prediction model. Since
it is difficult to decide which source project is the best choice for model training in real
application, we simply merge the changes in all of the n − 1 source projects to train the
prediction model.

Finally, since there are multiple runs for each prediction model in every evaluation
setting, we apply the Wilcoxon signed-rank test (Wilcoxon 1945) with Bonferroni correc-
tion (Abdi 2007) at 95% significance level on two competing models. We consider that
one model performs significantly better than the other model at the confidence level of
95% if the corresponding Wilcoxon signed-rank test result (i.e., p-value) is less than 0.05.
We also use the Cliff’s delta (δ) (Cliff 1996) to quantify the amount of difference between
two approaches. The amount of difference is considered negligible (| δ |< 0.147), small
(0.147 ≤| δ |< 0.33), moderate (0.33 ≤| δ |< 0.474), or large (| δ |≥ 0.474). Note that in
time-wise cross-validation and 10 times 10-fold cross-validation, we calculate p-value and
Cliff’s delta for each project, since there are multiple runs for each project in these two set-
tings. In cross-project validation, we group the results of all projects to calculate p-value
and Cliff’s delta, since the prediction model only runs once for each project in this setting.

6.3 Research questions

We investigate the following three research questions:

RQ1: Why does Yang et al.’s unsupervised model (LT) perform better than Kamei
et al.’s supervised model (EALR) in terms of Recall?

In intuition, supervised models extract prior knowledge from historical changes, and
intuitively are likely to perform better than unsupervised models which have no prior knowl-
edge. Thus, we are interested to explore the reason why the unsupervised model in Yang et
al.’s work (2016) could outperform supervised models in terms of Recall.

RQ2: How do the supervised and unsupervised models compare when different
evaluation measures are considered?

Yang et al. (2016) used Recall to evaluate a prediction model when using 20% effort. How-
ever, Recall does not consider the number of false alarms and context switches. False alarms
may negatively impact developers’ patience and confidence, while context switches may
reduce developers’ productivity. Thus, we argue that more evaluation measures should be
used to assess defect prediction models. To gain more insights, in addition to Recall, we use
another 4 evaluation measures, namely Precision, F1-score, PCI@20% and IFA, which have

Empirical Software Engineering

been introduced in Section 5. Using these additional evaluation measures, we can compare
the supervised and unsupervised models more comprehensively.

RQ3: Could the supervised model be enhanced leveraging intuition of Yang et al.’s
unsupervised model?

Based on the intuition that defective changes with smaller sizes should be inspected first,
we propose a simple but improved supervised model called CBS+. We first compare it with
EALR to investigate whether it achieves better performance in terms of different evaluation
measures. Then we compare it with Yang et al.’s unsupervised model.

7 Experiment results

7.1 RQ1: Why does Yang et al.’s unsupervisedmodel (LT) perform better than Kamei
et al.’s supervisedmodel (EALR) in terms of Recall?

To answer this RQ, we investigate two specific sub-questions. The first sub-question
explores the distribution of change size in each project. Our preliminary experiment found
that many changes in the dataset only modify a few or even zero lines of code (e.g., a change
that only renames a file). On the other hand, some other changes modify a large number of
LOC. For example, in the Columba project, the largest change modifies about 87K LOC,
which accounts for about 13% of the total LOC (i.e., 665K) in the whole project. Since
the unsupervised model prefers small changes (i.e., changes with small LT are not likely
to modify too many LOC), it is possible that a large number of small changes would be
inspected while the requirement of low inspection cost is still satisfied. The second sub-
question investigates the number of changes required to inspect when using the supervised
model and unsupervised model. We would like to see whether the unsupervised model
requires developers to inspect more changes.

Question 1: What is the distribution of change size in each project?

To gain an overview of the distribution of change size (i.e., LOC added and deleted) in each
project, we use violin plot (Hintze and Nelson 1998) to visualize it. Figure 1 presents the

Fig. 1 Distribution of change size in each project

Empirical Software Engineering

visualization results. Since the absolute values of some changes’ sizes are quite huge (e.g.,
more than 100K LOC are modified), we applied a standard log transformation (base 2) to
the figure’s y-axis, which represents the size of a change. The results show that, for each
project, the majority of changes only modify a small number of LOC. Specifically, the sizes
of most changes are less than one thousand LOC. On the other hand, a small number of
changes modify a huge number of LOC (e.g., 30K LOC in the figure), and they account for
the majority of LOC modified in total. Thus, it is clear that the distribution of change size
in each project is highly skewed.

Question 2: Given the same LOC budget, how many changes do the unsupervised
and supervised model require developers to inspect?

Based on the observations above, we would like to validate whether Yang et al.’s unsuper-
vised model (LT) requires developers to inspect more changes than Kamei et al.’s supervised
model (EALR) when 20% LOC are inspected. Table 3 shows the number of changes
inspected when using EALR and LT for three different evaluation settings. Note that in
time-wise cross-validation and 10-times 10-fold cross-validation, since there are multiple
runs for each project, we report the median number of inspected changes. The row Aver-
age represents the average number of inspected changes across the six projects. The row
Comparison represents how many times the average result of LT is larger than EALR. The
results show that, LT requires developers to inspect more than twice or even triple as many
changes as those required by using EALR. Thus, it is of no surprise that LT can find more
defective changes. On the other hand, LT does not proportionally increase the number of
inspected defective changes. For example, according to the evaluation results under time-
wise cross-validation in Yang et al.’s work, on average, EALR can find 31% of all defective
changes, while LT can find 43% of all defective changes, which only improves the Recall
by 39%. Finally, Yang et al. did not discuss the negative impact of the large number of false
alarms and context switches during the manual inspection process. We further discuss this
concern in RQ2.

Table 3 The median number of
changes to be inspected given the
same LOC budget (20%) when
using the supervised model
(EALR) and unsupervised model
(LT)

Project Time-wise 10-times 10-fold Cross-project

cross-validation cross-validation validation

EALR LT EALR LT EALR LT

BUG 24 36 195 255 1,712 2,359

COL 66 125 178 343 1,687 3,605

JDT 290 568 708 2,434 2,370 26,062

PLA 411 963 1,318 3,906 17,562 40,748

MOZ 460 1,245 1,563 5,672 19,584 56,578

POS 89 157 603 1,438 3,147 15,105

Average 223 516 761 2,341 7,677 24,076

Comparison 2.3x 3.1x 3.1x

Empirical Software Engineering

7.2 RQ2: How do the supervised and unsupervisedmodels compare when different
evaluationmeasures are considered?

Tables 4, 5, and 6 present the evaluation results of Kamei et al.’s supervised model (EALR)
and Yang et al.’s unsupervised model (LT) under the three different evaluation settings,
respectively. For 10 times 10-fold cross-validation and time-wise cross-validation, given
a target project and evaluation measure, we regard a prediction model to win against a
competing model, if the earlier significantly outperforms the latter model with moderate or
large improvement in terms of Cliff’s delta. In the tables, we highlight these winning cases
in bold, with (M) and (L) indicating that the improvement is moderate or large. The row
AVG reports the average result over the six projects. The row Wins reports the number of
projects for which the corresponding prediction model wins against the other model. For
cross-project validation, since the p-value and Cliff’s delta are calculated using the grouped
results of all projects, we directly report the Winner in the last row, along with the magnitude
of its improvement measured using Cliff’s delta (i.e., moderate or large) over the other
model. If there is no winner, we mark it by a hyphen.

For time-wise cross-validation, LT wins in terms of Recall in five out of the six projects,
which is consistent with the results presented in Yang et al.’s work. On the other hand,
EALR wins in terms of Precision in five out of the six projects. When considering Recall
and Precision together (i.e., F1-score), the differences between the results of LT and EALR
in every project are small or even negligible. As for PCI@20% and IFA, EALR significantly
outperforms LT in at least five out of the six projects, which suggests that when using
EALR, developers could be able to focus on a smaller number of changes and succeed in
finding the first defective change earlier. We also notice that the IFA of unsupervised model
is quite large. On average across the six projects, the top-50 changes recommended by
unsupervised model are all false alarms. According to a survey by Kochhar et al. (2016) that
investigates practitioners’ expectations on automated fault localization, most practitioners
find it unacceptable if the first 10 suspicious program elements returned by a tool are all
false alarms. Thus, this raises a question on the practicality of the unsupervised model. As a
comparison, the IFA of EALR is much more reasonable. For every project, EALR can find
the first defective change when inspecting the top-10 suspicious changes. Note that for some
projects, the IFA results achieved by EALR can be zeros, which means that the first change

Table 4 Comparison results of EALR and LT for time-wise cross-validation

Time-wise cross-validation

Project Recall Precision F1-score PCI@20% IFA

EALR LT EALR LT EALR LT EALR LT EALR LT

BUG 0.299 0.449(M) 0.364 0.333 0.325 0.378 0.312(L) 0.516 1 2

COL 0.400 0.440 0.250(M) 0.190 0.299 0.265 0.440(L) 0.677 0(L) 16

JDT 0.347 0.452(L) 0.155(M) 0.112 0.210 0.181 0.345(L) 0.611 1(L) 32

PLA 0.290 0.432(L) 0.157(M) 0.110 0.198 0.178 0.295(L) 0.590 0(L) 123

MOZ 0.190 0.363(L) 0.045(M) 0.035 0.072 0.062 0.232(L) 0.554 4(L) 137

POS 0.331 0.432(L) 0.235(M) 0.176 0.255 0.246 0.373(L) 0.647 1(L) 6

AVG 0.310 0.428 0.201 0.159 0.227 0.218 0.333 0.599 1 53

Wins 0 5 5 0 0 0 6 0 5 0

Empirical Software Engineering

Table 5 Comparison results of EALR and LT for 10 times 10-fold cross-validation

10-times 10-fold cross-validation

Project Recall Precision F1-score PCI@20% IFA

EALR LT EALR LT EALR LT EALR LT EALR LT

BUG 0.441 0.476 0.386(L) 0.314 0.405 0.384 0.422(L) 0.552 0(L) 8

COL 0.404 0.591(L) 0.317(L) 0.236 0.357 0.336 0.398(L) 0.771 0(L) 34

JDT 0.208 0.530(L) 0.158(L) 0.115 0.177 0.189(M) 0.200(L) 0.688 0(L) 92

PLA 0.280 0.467(L) 0.193(L) 0.113 0.225(L) 0.182 0.205(L) 0.608 0(L) 524

MOZ 0.148 0.370(L) 0.050(L) 0.034 0.074(L) 0.062 0.159(L) 0.577 1(L) 526

POS 0.284 0.502(L) 0.248(L) 0.180 0.262 0.266 0.295(L) 0.704 1(L) 21

AVG 0.294 0.489 0.225 0.165 0.250 0.237 0.280 0.650 0 201

Wins 0 5 6 0 2 1 6 0 6 0

recommended by EALR is truly defective and the number of initial false alarms encountered
is zero.

For 10-times 10-fold cross-validation and cross-project validation, the results are similar
to those for time-wise cross-validation. Generally, in these two settings, LT significantly out-
performs EALR by a substantial margin in terms of Recall, while performing relatively bad
in terms of Precision. LT performs much worse in terms of PCI@20% and IFA. On average,
EALR requires developers to inspect less than 30% of all changes, while LT requires devel-
opers to inspect about 65% of all changes, which is more than twice as many changes as
those required by EALR. When using LT in these two evaluation settings, developers would
encounter hundreds or even thousands of false alarms before the first defective change. On
the contrary, when using EALR, developers would only encounter no more than one initial
false alarms in most cases.

Note that the IFA results achieved by LT and EALR under time-wise cross-validation are
different from those reported in our previous work (Huang et al. 2017). The reason is that
the source code in our previous work mistakenly calculated IFA as the number of initial false

Table 6 Comparison results of EALR and LT for cross-project validation

Cross-project validation

Project Recall Precision F1-score PCI@20% IFA

EALR LT EALR LT EALR LT EALR LT EALR LT

BUG 0.380 0.435 0.377 0.312 0.379 0.364 0.371 0.511 0 67

COL 0.371 0.641 0.299 0.242 0.331 0.351 0.379 0.809 0 220

JDT 0.111 0.582 0.238 0.114 0.151 0.190 0.067 0.737 0 695

PLA 0.242 0.494 0.130 0.115 0.169 0.186 0.273 0.634 0 5004

MOZ 0.158 0.367 0.041 0.033 0.066 0.061 0.199 0.576 2 4911

POS 0.196 0.533 0.319 0.180 0.243 0.270 0.154 0.739 3 167

AVG 0.243 0.509 0.234 0.166 0.223 0.237 0.241 0.668 1 1844

Winner LT (Large) EALR (Medium) − EALR (Large) EALR (Large)

Empirical Software Engineering

alarms encountered before we find the second defective change. In this journal paper, we
fixed this bug and updated the results of IFA. In general, the new IFA results of all models
are lower than those reported in our ICSME paper. However, this error does not affect our
conclusion, i.e., the IFA achieved by LT is much larger than EALR.

7.3 RQ3: Could the supervisedmodel be enhanced leveraging intuition of Yang et
al.’s unsupervisedmodel?

We first compare the evaluation results of CBS+ with EALR. Tables 7, 8, and 9 present the
comparison results of EALR and CBS+ for three different evaluation settings.

– For time-wise cross-validation, CBS+ can find about 15% more defective changes on
average across the six projects, which significantly outperforms EALR in terms of
Recall with an average improvement of 47%. The average PCI@20% of CBS+ is quite
close to that of EALR for each project, which suggests that CBS+ does not require
inspection of additional changes. Also, CBS+ achieves the same results as EALR in
terms of IFA, and the result of IFA for each project is less than 10.

– For 10-times 10-fold cross-validation, CBS+ can find about 24% more defective
changes and wins in terms of Recall, Precision and F1-score for every project. We also
notice that EALR wins in terms of PCI@20% in three out of the six projects, which
indicates that CBS+ also sacrifices PCI@20% to achieve higher Recall. Considering
that CBS+ improves Recall by 118% - 209% in these three projects, we believe the sac-
rifice on PCI@20% is acceptable since CBS+ only requires developers to inspect about
1.5 - 1.75 times as many changes as those required by EALR.

– For cross-project validation, CBS+ can find about 26% more defective changes and
wins in terms of Recall and F1-score. For the other three measures, CBS+ achieves
comparable results when compared with EALR. In summary, CBS+ almost dominates

Table 7 Comparison results of EALR and CBS+ for time-wise cross-validation

Time-wise cross-validation

Project Recall Precision F1-score PCI@20% IFA

EALR CBS+ EALR CBS+ EALR CBS+ EALR CBS+ EALR CBS+

BUG 0.299 0.452(M) 0.364 0.452(M) 0.325 0.448(L) 0.312 0.375 1 1

COL 0.400 0.488(M) 0.250 0.339(M) 0.299 0.390(M) 0.440 0.366 0 0

JDT 0.347 0.452(L) 0.155 0.214(L) 0.210 0.299(L) 0.345 0.301 1 1

PLA 0.290 0.524(L) 0.157 0.207 0.198 0.304(L) 0.295 0.368 0 0

MOZ 0.190 0.440(L) 0.045 0.101(L) 0.072 0.159(L) 0.232 0.252 4 4

POS 0.331 0.441(L) 0.235 0.372(L) 0.255 0.389(L) 0.373 0.323 1 1

AVG 0.310 0.466 0.201 0.281 0.227 0.332 0.333 0.331 1 1

Wins 0 6 0 5 0 6 0 0 0 0

Empirical Software Engineering

Table 8 Comparison results of EALR and CBS+ for 10-times 10-fold cross-validation

10-times 10-fold cross-validation

Project Recall Precision F1-score PCI@20% IFA

EALR CBS+ EALR CBS+ EALR CBS+ EALR CBS+ EALR CBS+

BUG 0.441 0.572(L) 0.386 0.503(L) 0.405 0.533(L) 0.422 0.419 0 0

COL 0.404 0.519(L) 0.317 0.461(L) 0.357 0.487(L) 0.398 0.354 0 0

JDT 0.208 0.530(L) 0.158 0.238(L) 0.177 0.329(L) 0.200(L) 0.323 0 0

PLA 0.280 0.609(L) 0.193 0.247(L) 0.225 0.351(L) 0.205(L) 0.361 0 0

MOZ 0.148 0.458(L) 0.050 0.112(L) 0.074 0.180(L) 0.159(L) 0.212 1 2

POS 0.284 0.497(L) 0.248 0.444(L) 0.262 0.470(L) 0.295 0.278 1 0

AVG 0.294 0.531 0.225 0.334 0.250 0.392 0.280 0.325 0 0

Wins 0 6 0 6 0 6 3 0 0 0

EALR, since it can find more defective changes, while achieving comparable results in
terms of PCI@20% and IFA.

As a summary, when compared with EALR, CBS+ detects about 15% - 26% more defec-
tive changes, while keeping the number of context switches and initial false alarms close to
those of EALR.

Then we compare the evaluation results of CBS+ with those of LT. Tables 10, 11, and 12
present the comparison results of LT and CBS+ for three different evaluation settings.

– For time-wise cross-validation, CBS+ wins in terms of Recall in two out the six projects
and finds about 4% more defective changes on average across the six projects, which
slightly improves the average Recall by 9%. As for each of the other four evaluation
measures, CBS+ wins in at least five out of the six projects.

– For 10-times 10-fold cross-validation, LT wins in terms of Recall in one out of the six
projects while CBS+ wins in terms of Recall in three out the six projects. On average,
CBS+ can find 4% more defective changes. Also, CBS+ wins in terms of all the other
four evaluation measures for every project.

Table 9 Comparison results of EALR and CBS+ for cross-project validation

Cross-project validation

Project Recall Precision F1-score PCI@20% IFA

EALR CBS+ EALR CBS+ EALR CBS+ EALR CBS+ EALR CBS+

BUG 0.380 0.285 0.377 0.621 0.379 0.391 0.371 0.169 0 0

COL 0.371 0.566 0.299 0.402 0.331 0.470 0.379 0.431 0 0

JDT 0.111 0.549 0.238 0.214 0.151 0.308 0.067 0.369 0 0

PLA 0.242 0.551 0.130 0.238 0.169 0.333 0.273 0.340 0 0

MOZ 0.158 0.569 0.041 0.058 0.066 0.104 0.199 0.518 2 6

POS 0.196 0.508 0.319 0.364 0.243 0.424 0.154 0.349 3 2

AVG 0.243 0.505 0.234 0.316 0.223 0.338 0.241 0.363 1 1

Winner CBS+ (Large) − CBS+ (Large) − −

Empirical Software Engineering

Table 10 Comparison results of LT and CBS+ for time-wise cross-validation

Time-wise cross-validation

Project Recall Precision F1-score PCI@20% IFA

LT CBS+ LT CBS+ LT CBS+ LT CBS+ LT CBS+

BUG 0.449 0.452 0.333 0.452(M) 0.378 0.448 0.516 0.375(M) 2 1

COL 0.440 0.488 0.190 0.339(L) 0.265 0.390(L) 0.677 0.366(L) 16 0(L)

JDT 0.452 0.452 0.112 0.214(L) 0.181 0.299(L) 0.611 0.301(L) 32 1(L)

PLA 0.432 0.524(L) 0.110 0.207(L) 0.178 0.304(L) 0.590 0.368(L) 123 0(L)

MOZ 0.363 0.440(M) 0.035 0.101(L) 0.062 0.159(L) 0.554 0.252(L) 137 4(L)

POS 0.432 0.441 0.176 0.372(L) 0.246 0.389(L) 0.647 0.323(L) 6 1(L)

AVG 0.428 0.466 0.159 0.281 0.218 0.332 0.599 0.331 53 1

Wins 0 2 0 6 0 5 0 6 0 5

Table 11 Comparison results of LT and CBS+ for 10-times 10-fold cross-validation

10-times 10-fold cross-validation

Project Recall Precision F1-score PCI@20% IFA

LT CBS+ LT CBS+ LT CBS+ LT CBS+ LT CBS+

BUG 0.476 0.572(L) 0.314 0.503(L) 0.384 0.533(L) 0.552 0.419(L) 8 0(L)

COL 0.591(M) 0.519 0.236 0.461(L) 0.336 0.487(L) 0.771 0.354(L) 34 0(L)

JDT 0.530 0.530 0.115 0.238(L) 0.189 0.329(L) 0.688 0.323(L) 92 0(L)

PLA 0.467 0.609(L) 0.113 0.247(L) 0.182 0.351(L) 0.608 0.361(L) 524 0(L)

MOZ 0.370 0.458(L) 0.034 0.112(L) 0.062 0.180(L) 0.577 0.212(L) 526 2(L)

POS 0.502 0.497 0.180 0.444(L) 0.266 0.470(L) 0.704 0.278(L) 21 0(L)

AVG 0.489 0.531 0.165 0.334 0.237 0.392 0.650 0.325 201 0

Wins 1 3 0 6 0 6 0 6 0 6

Table 12 Comparison results of LT and CBS+ for cross-project validation

Cross-project validation

Project Recall Precision F1-score PCI@20% IFA

LT CBS+ LT CBS+ LT CBS+ LT CBS+ LT CBS+

BUG 0.435 0.285 0.312 0.621 0.364 0.391 0.511 0.169 67 0

COL 0.641 0.566 0.242 0.402 0.351 0.470 0.809 0.431 220 0

JDT 0.582 0.549 0.114 0.214 0.190 0.308 0.737 0.369 695 0

PLA 0.494 0.551 0.115 0.238 0.186 0.333 0.634 0.340 5004 0

MOZ 0.367 0.569 0.033 0.058 0.061 0.104 0.576 0.518 4911 6

POS 0.533 0.508 0.180 0.364 0.270 0.424 0.739 0.349 167 2

AVG 0.509 0.505 0.166 0.316 0.237 0.338 0.668 0.363 1844 1

Winner − − − CBS+ (Large) CBS+ (Large)

Empirical Software Engineering

– For cross-project validation, the Recall achieved by LT and CBS+ may vary a lot for
different projects. For example, LT can find 15% more defective changes in Bugzilla
project, while CBS+ can find 20% more defective changes in Mozilla project. On aver-
age, the Recall achieved by CBS+ is quite close to that by LT. On the other hand, CBS+
significantly outperforms LT by a substantial margin in terms of PCI@20% and IFA,
which suggests that CBS+ significantly reduces the amount of false alarms and the
amount of changes required to be inspected for each project.

As a summary, when compared with LT, the number of defective changes detected by
CBS+ is comparable to LT’s result, while CBS+ significantly reduces context switches and
number of initial false alarms before first success.

8 Discussion

8.1 Comparison with Fu andMenzies’s work

Most recently, Fu and Menzies (2017) also revisited unsupervised model in effort-aware JIT
defect prediction. They replicated Yang et al.’s work (2016) and pointed out that supervised
model performs better in terms of Precision and F1-score. They also proposed a supervised
model called OneWay, which leverages the training data to automatically choose the best
metric for the unsupervised model in Yang et al.’s work.

Compared with their work, we present more findings considering additional perspectives,
as shown below:

1. We investigate why the unsupervised model performs better in terms of Recall. We point
out that the distribution of change size in every project is highly skewed. The unsuper-
vised model leverages this property to achieve higher Recall by requiring developers to
inspect more than twice as many changes as those required by using EALR.

2. We propose 2 additional evaluation measures (i.e., PCI@20% and IFA), which con-
siders the negative impact of frequent context switches between different changes, and
developer fatigue leading to likelihood of tool abandonment due to occurrences of many
false alarms before success (i.e., a buggy change is identified).

We also compare our approach CBS+ with OneWay. Tables 13, 14, and 15 present the
comparison results of CBS+ and OneWay (denoted as “OW” in the table).

– For time-wise cross-validation, when compared with OneWay, CBS+ wins in terms of
Recall in two out of the six projects and achieves comparable results in the other four
projects. CBS+ wins in terms of Precision, F1-score and IFA in at least five out of the
six projects.

– For 10-times 10-fold cross-validation, OneWay wins in terms of Recall in one out of
the six projects, while CBS+ wins in terms of Recall in three out of the six projects. On
average, CBS+ slightly performs better in terms of Recall. Also, CBS+ wins in terms
of the other evaluation measures in all of the six projects.

Empirical Software Engineering

Table 13 Comparison results of OneWay and CBS+ for time-wise cross-validation

Time-wise cross-validation

Project Recall Precision F1-score PCI@20% IFA

OW CBS+ OW CBS+ OW CBS+ OW CBS+ OW CBS+

BUG 0.362 0.452 0.394 0.452(M) 0.369 0.448 0.396 0.375 4 1(M)

COL 0.561 0.488 0.227 0.339(L) 0.315 0.390(M) 0.649 0.366(L) 24 0(L)

JDT 0.422 0.452 0.117 0.214(L) 0.183 0.299(L) 0.553 0.301(L) 32 1(L)

PLA 0.407 0.524(L) 0.110 0.207(L) 0.167 0.304(L) 0.537 0.368(L) 201 0(L)

MOZ 0.327 0.440(L) 0.041 0.101(L) 0.074 0.159(L) 0.449 0.252(L) 113 4(L)

POS 0.451 0.441 0.224 0.372(L) 0.294 0.389(L) 0.555 0.323(L) 14 1(L)

AVG 0.422 0.466 0.186 0.281 0.234 0.332 0.523 0.331 65 1

Wins 0 2 0 6 0 5 0 5 0 6

Table 14 Comparison results of OneWay and CBS+ for 10-times 10-fold cross-validation

10-times 10-fold cross-validation

Project Recall Precision F1-score PCI@20% IFA

OW CBS+ OW CBS+ OW CBS+ OW CBS+ OW CBS+

BUG 0.494 0.572(L) 0.370 0.503(L) 0.424 0.533(L) 0.479 0.419(L) 36 0(L)

COL 0.659(L) 0.519 0.275 0.461(L) 0.385 0.487(L) 0.738 0.354(L) 96 0(L)

JDT 0.531 0.530 0.116 0.238(L) 0.190 0.329(L) 0.679 0.323(L) 94 0(L)

PLA 0.467 0.609(L) 0.114 0.247(L) 0.183 0.351(L) 0.605 0.361(L) 527 0(L)

MOZ 0.371 0.458(L) 0.034 0.112(L) 0.063 0.180(L) 0.577 0.212(L) 521 2(L)

POS 0.508 0.497 0.191 0.444(L) 0.285 0.470(L) 0.685 0.278(L) 25 0(L)

AVG 0.505 0.531 0.183 0.334 0.255 0.392 0.627 0.325 217 0

Wins 1 3 0 6 0 6 0 6 0 6

Table 15 Comparison results of OneWay and CBS+ for cross-project validation

Cross-project validation

Project Recall Precision F1-score PCI@20% IFA

OW CBS+ OW CBS+ OW CBS+ OW CBS+ OW CBS+

BUG 0.432 0.285 0.392 0.621 0.411 0.391 0.405 0.169 445 0

COL 0.702 0.566 0.273 0.402 0.393 0.470 0.786 0.431 962 0

JDT 0.582 0.549 0.114 0.214 0.190 0.308 0.737 0.369 695 0

PLA 0.494 0.551 0.115 0.238 0.186 0.333 0.634 0.340 5004 0

MOZ 0.367 0.569 0.033 0.058 0.061 0.104 0.576 0.518 4911 6

POS 0.533 0.508 0.180 0.364 0.270 0.424 0.739 0.349 167 2

AVG 0.518 0.505 0.185 0.316 0.252 0.338 0.646 0.363 2031 1

Winner − CBS+ (Medium) CBS+ (Medium) CBS+ (Large) CBS+ (Large)

Empirical Software Engineering

– For cross-project validation, when compared with OneWay, CBS+ achieves compara-
ble results in terms of Recall and significantly outperforms OneWay by a substantial
margin in terms of the other evaluation measures.

8.2 Comparison between CBS+ and CBS

In this paper, we propose CBS+, which is an extended version of the supervised model
(i.e., CBS) proposed in our preliminary work (Huang et al. 2017). Although we have dis-
cussed the major differences between CBS+ and CBS in Section 4, we are also interested
to compare the performance of CBS+ and CBS.

Tables 16, 17, and 18 present the comparison results of CBS and CBS+ for three different
evaluation settings. The results show that CBS performs worse in terms of IFA (e.g., the
average IFA achieved by CBS in cross-project setting is more than 600), since it simply
ranks small changes first. In general, when compared with CBS, CBS+ achieves almost the
same results in terms of Recall, Precision, F1-score and PCI@20%, while significantly and
substantially reduces IFA in every evaluation setting. The average IFA achieved by CBS+ is
no more than 1 in every evaluation setting.

8.3 Evaluating results with Popt

In Yang et al. (2016) and Fu and Menzies (2017)’s work, they also evaluated their mod-
els using the evaluation measure Popt , which is based on the concept of the Alberg
diagram (Arisholm et al. 2010). An Alberg diagram (see Fig. 2 for an example) shows
the relationship between the Recall achieved by a prediction model and the amount of
inspected LOC. The Optimal line in Fig. 2 represents the case that all changes are sorted
in ascending order by defect-density. The Worst line in the figure represents the case that
all changes are sorted in descending order by defect-density. The actual prediction model
should outperform the Random model and try to get close to the Optimal model. Given a
prediction model m, its Popt can be formally defined as:

Popt (m) = 1 − Area(Optimal) − Area(m)

Area(Optimal) − Area(worst)
(7)

Table 16 Comparison results of CBS and CBS+ for time-wise cross-validation

Time-wise cross-validation

Project Recall Precision F1-score PCI@20% IFA

CBS CBS+ CBS CBS+ CBS CBS+ CBS CBS+ CBS CBS+

BUG 0.438 0.452 0.473 0.452 0.442 0.448 0.368 0.375 1 1

COL 0.464 0.488 0.352 0.339 0.390 0.390 0.364 0.366 8 0(L)

JDT 0.453 0.452 0.216 0.214 0.297 0.299 0.302 0.301 11 1(L)

PLA 0.515 0.524 0.207 0.207 0.304 0.304 0.369 0.368 20 0(L)

MOZ 0.435 0.440 0.098 0.101 0.156 0.159 0.252 0.252 28 4(L)

POS 0.444 0.441 0.376 0.372 0.387 0.389 0.321 0.323 4 1(M)

AVG 0.458 0.466 0.287 0.281 0.329 0.332 0.329 0.331 12 1

Wins 0 0 0 0 0 0 0 0 0 5

Empirical Software Engineering

Table 17 Comparison results of CBS and CBS+ for 10-times 10-fold cross-validation

10-times 10-fold cross-validation

Project Recall Precision F1-score PCI@20% IFA

CBS CBS+ CBS CBS+ CBS CBS+ CBS CBS+ CBS CBS+

BUG 0.567 0.572 0.500 0.503 0.531 0.533 0.419 0.419 3 0(M)

COL 0.517 0.519 0.459 0.461 0.491 0.487 0.354 0.354 13 0(L)

JDT 0.531 0.530 0.237 0.238 0.329 0.329 0.323 0.323 42 0(L)

PLA 0.604 0.609 0.245 0.247 0.350 0.351 0.362 0.361 87 0(L)

MOZ 0.450 0.458 0.110 0.112 0.177 0.180 0.213 0.212 113 2(L)

POS 0.497 0.497 0.443 0.444 0.470 0.470 0.279 0.278 32 0(L)

AVG 0.528 0.531 0.332 0.334 0.391 0.392 0.325 0.325 48 0

Wins 0 0 0 0 0 0 0 0 0 6

The function Area(x) calculates the area under the curve corresponding to the prediction
model x. Thus, a larger Popt value means a smaller difference between the prediction model
and the optimal model. In general, the output of each prediction model is a ranking list of
changes, and Popt evaluates the overall ranking in terms of Recall. We did not evaluate our
model using Popt in our previous work (Huang et al. 2017) because it considers the per-
formance of a prediction model when all the changes need to be inspected, which conflicts
with the “effort aware” scenario considered in our study. However, we can adapt Popt to
only consider the area under the curve when the inspection cost does not exceed 20% of the
total LOC, and we call it as Popt@20%. Thus, to conduct a comprehensive comparison, in
this paper, we evaluate the performance of LT, EALR, CBS+ and OneWay in terms of Popt

and Popt@20%.
Table 19 presents the average results across the six projects for each prediction model

under different evaluation settings. In general, LT and OneWay performs better in terms
of Popt , while CBS+ performs better in terms of Popt@20%. The reason is that, using

Table 18 Comparison results of CBS and CBS+ for cross-project validation

Cross-project validation

Project Recall Precision F1-score PCI@20% IFA

CBS CBS+ CBS CBS+ CBS CBS+ CBS CBS+ CBS CBS+

BUG 0.284 0.285 0.615 0.621 0.389 0.391 0.170 0.169 7 0

COL 0.570 0.566 0.404 0.402 0.473 0.470 0.431 0.431 164 0

JDT 0.549 0.549 0.213 0.214 0.307 0.308 0.370 0.369 570 0

PLA 0.550 0.551 0.238 0.238 0.332 0.333 0.340 0.340 1370 0

MOZ 0.561 0.569 0.057 0.058 0.103 0.104 0.519 0.518 1815 6

POS 0.508 0.508 0.364 0.364 0.424 0.424 0.350 0.349 174 2

AVG 0.504 0.505 0.315 0.316 0.338 0.338 0.363 0.363 683 1

Winner − − − − CBS+(Large)

Empirical Software Engineering

Fig. 2 An example of the relationship between Recall and the inspection cost for different prediction models

CBS+, developers can find more defects at the early stage but they would waste a lot of
effort to inspect large changes at the middle stage of the whole inspection process. As
an example, we plot the Alberg diagram of different prediction models when evaluated
with the Platform project under time-wise cross-validation, as shown in Fig. 3. From this
figure, we can see that the Recall of CBS+ increases faster than the other models in the
early stage (i.e., when inspecting less than 25% of all LOC). However, when we continu-
ously increase the inspection cost (i.e., from 25% to 70%), the Recall of CBS+ increases
much slower. Finally, in the next stage (i.e., from 70% to 80%), the Recall of CBS+ is
boosted again and almost 90% of all defective changes would have been inspected after this
stage.

Such phenomenon is caused by a key step in CBS+, in which it divides all changes
into two ranking lists: the first list contains the changes that are predicted as defective,
while the second list contains the changes that are predicted as non-defective. Thus, in
the early stage, following CBS+ recommendation, developers can inspect a lot of small
but highly defect-prone changes, which contributes to the increase of Recall. However,
it is unavoidable that some changes that are very large would also be put into the first
ranking list, since larger changes are more likely to be defective (Kamei et al. 2013).
Although these large changes are ranked at the bottom of the first ranking list, they still
have a higher priority than those changes in the second ranking list. Thus, they would

Table 19 The average Popt and
Popt @20% achieved by different
prediction models under
different evaluation settings

Evaluation Setting Measure Model

LT EALR CBS+ OneWay

Time-Wise Popt 0.712 0.572 0.646 0.699

Popt@20% 0.327 0.265 0.426 0.312

10-Times 10-Fold Popt 0.762 0.569 0.663 0.766

Popt@20% 0.358 0.249 0.484 0.378

Cross-Project Popt 0.773 0.516 0.637 0.780

Popt@20% 0.354 0.189 0.453 0.364

Empirical Software Engineering

eventually be inspected in the middle stage of the inspection process, which requires a
lot of effort cost. Finally, when we start inspecting the second list of changes, the small
changes with high defect-proneness are also inspected first, which helps to boost the Recall
again.

As a summary, CBS+ achieves a better Popt if we only consider a limited amount of
effort cost (e.g., inspecting 20% of all LOC), while LT and OneWay achieve a better Popt if
all changes need to be inspected.

8.4 The tradeoff between recall and PCI@20%

One of the key steps in CBS+ is to divide all changes into two lists. The first list contains
the changes that are predicted as defective, while the second list contains the changes that
are predicted as non-defective. Thus, the contents of the two lists are directly decided by
the threshold value λ, which is used to decide whether a change is defective given its defect
proneness predicted by the underlying logistic classifier. Note that changes in the first rank-
ing list are always ranked higher than changes in the second ranking list. Thus, the threshold
value λ directly decides the inspection order. Given a limited budget, only changes that
appear early in the second list would be inspected.

For example, when we set λ = 0.9, only a few changes would be predicted as defective
and put into the first ranking list. In such case, many of them would be large changes (i.e.,
they modified many LOC) since large changes are more likely to be predicted with a high
defect-proneness. Inspecting these large changes would cost a lot of effort while they just
contribute a little to Recall. Thus, we would achieve a low Recall in this case, since we are
only allowed to inspect 20% of all the modified LOC.

On the other hand, if we set λ = 0.1, most of the changes would be predicted as defective
and put into the first ranking list. In this case, we are able to first inspect many small but
also relatively defect-prone changes. Thus, we could spend most of our budget to inspect
changes with higher defect-density, which helps us to get a much higher Recall. However,
the drawback is that we need to inspect a lot of changes, which means the PCI@20% would
be rather high.

Fig. 3 The Alberg diagram of different prediction models when evaluated with the Platform project under
time-wise cross-validation

Empirical Software Engineering

In general, a lower threshold would lead to more changes being identified as defective,
and vice versa. If there are more candidate changes in the defective list, then we would be
able to inspect more changes after the sorting operation and the PCI@20% would increase.
As a result, the Recall would also increase since more inspected changes bring more chances
to find defective changes. Although the optimal model should achieve a high Recall while
keeping the PCI@20% as low as possible, our model allows developers to balance the trade-
off between Recall and PCI@20% by tuning the threshold. For example, if developers are
not sensitive to frequent context switches, it would be acceptable to sacrifice PCI@20% and
achieve a higher Recall by setting a lower threshold. Note that both LT and EALR are not
tunable, since LT is just sorting by a fixed metric, while EALR also predicts a fixed score
for each change which is used for sorting.

To investigate the impact of different threshold settings on the effectiveness of CBS+,
we measure the Recall and PCI@20% of CBS+ when varying the threshold λ from 0 to 0.9
with a step of 0.1. Note that we would get the same results when λ is set to 0 or 1, since
all changes are predicted as the same labels in both cases (i.e., defective when λ = 0 or
non-defective when λ = 1). Thus, we omit the results when λ is set to 1.

Figures 4, 5, and 6 plot the corresponding results for three different evaluation settings.
As a comparison, we also plot the Recall and PCI@20% of LT in these figures. In general,
when increasing the threshold λ, both Recall and PCI@20% would decrease. One excep-
tion is that the PCI@20% no longer decreases when λ is set to 0.9. In this case, only a few
changes would be predicted as defective changes for inspection and there would be much
budget left for inspecting those changes that are predicted as non-defective. By perform-
ing these additional inspections, we can find more defective changes with the budget left;
however, this sacrifices both PCI@20% (i.e., we inspected more changes) and Precision
(i.e., more changes that are non-defective would be inspected). This highlights the tradeoff
between Recall, PCI@20% and Precision.

Besides, in RQ3, we have shown that CBS+ with the default threshold setting (i.e.,
λ = 0.5) can significantly outperforms LT in terms of PCI@20% and achieves com-
parable results in terms of Recall. If we set a lower threshold (i.e., λ = 0.4), then

Fig. 4 The average Recall and PCI@20% of CBS+ when varying the threshold λ for time-wise cross-
validation

Empirical Software Engineering

Fig. 5 The average Recall and PCI@20% of CBS+ when varying the threshold λ for 10-times 10-fold cross-
validation

CBS+ would significantly outperforms LT in terms of both Recall and PCI@20%, which
means that CBS+ would dominate LT in this case. Thus, the results show that CBS+ is
more flexible in use. For example, suppose there is a list of new changes that are not
labeled as defective or not. The project team could set a target value of PCI@20% that
is acceptable for developers, based on historical data or the preference of developers.
Since calculating PCI@20% does not require the true label of each change, we can eas-
ily adjust the value of λ to help developers find as many defective changes as possible
while satisfying the requirement of PCI@20%. Another possibility is to employ an auto-
matic parameter tuning algorithm to decide a suitable value of λ, which we leave as future
work.

Fig. 6 The average Recall and PCI@20% of CBS+ when varying the threshold λ for cross-project validation

Empirical Software Engineering

Another interesting finding is that when λ is set to 0, CBS+ can achieve a high Recall
in every evaluation setting (i.e., the Recall ranges between 0.65 and 0.75), which is much
better than those achieved by both supervised and unsupervised models in previous stud-
ies (Kamei et al. 2013; Yang et al. 2016). In this case, all changes would be predicted
as defective and sorted together by the ratio between a change’s defect proneness and its
size. Intuitively, this sorting operation can also be done in an unsupervised way, where all
changes are directly sorted in descending order by a change’s size. We denote this spe-
cial unsupervised model as SBS (i.e., Sort-By-Size). The only difference between SBS
and Yang et al.’s unsupervised model is that SBS chooses a change’s size (i.e., LA+LD)
as the metric for sorting while Yang et al. chooses the metric LT for sorting. Table 20
presents the average results achieved by SBS for three different settings, compared with
the results achieved by CBS+ with λ set to 0 (denoted as CBS*). The results show that
both CBS* and SBS achieve a high Recall for three different settings. In general, CBS*
performs slightly better than SBS in terms of Precision, F1-score and PCI@20%, and
performs much better in terms of IFA. However, we still argue that both CBS* and SBS
are not practical in use even though they can achieve a high Recall, since they require
developers to inspect at least 80% of all changes, which goes against the requirement of
“effort-aware”.

More recently, Zhou et al. (2018) reported that simple unsupervised models can
achieve a prediction performance comparable or even superior to most of the exist-
ing supervised models in cross-project defect prediction. Specifically, they evaluated the
performance of two unsupervised models, namely ManualDown and ManualUp. Man-
ualDown considers larger modules as more defect-prone, while ManualUp considers
smaller modules as more defect-prone. These two models are based on the observa-
tion of many previous studies, which pointed out that larger modules tend to have
more defects but have lower defect density (Nagappan et al. 2006a, b; Nam and Kim
2015; Thongmak and Muenchaisri 2003). Thus, considering the effort-aware setting, the
ManualUp model would find more defective modules and achieve a high Recall for
cross-project defect prediction. This model can also be easily applied for effort-aware
just-in-time defect prediction, and its working process is exactly the same with SBS
(i.e., sort changes by size and inspect smaller changes first). However, as discussed in

Table 20 The average results
achieved by SBS for three
different settings, compared with
the results achieved by CBS+
with λ set to 0 (denoted as CBS*)

Measure Model Evaluation setting

Time-wise 10-Times 10-Fold Cross-project

Recall SBS 0.659 0.725 0.749

CBS* 0.650 0.742 0.756

Precision SBS 0.171 0.179 0.181

CBS* 0.181 0.185 0.183

F1-score SBS 0.261 0.277 0.281

CBS* 0.270 0.285 0.284

PCI@20% SBS 0.855 0.891 0.903

CBS* 0.807 0.881 0.897

IFA SBS 68 320 3203

CBS* 1 0 1

Empirical Software Engineering

the previous paragraph, although ManualUp (or SBS) achieves a high Recall, it requires
developers to inspect at least 80% of all changes, which goes against the requirement of
“effort-aware”.

8.5 Improving the underlying classifier of CBS+

By default, we use logistic regression (denoted as Logistic) which was originally used
by Kamei et al. (2013) for defect prediction as the underlying classifier of CBS+.
However, as pointed out by Ghotra et al. (2015), the choice of different classification tech-
niques would have a significant impact on the performance of defect prediction models.
Thus, if we choose a different classification technique to build the underlying classifier of
CBS+, we might get different results. To investigate this impact, we examine the perfor-
mance of CBS+ with five different underlying classifiers, including Random Forest (RF),
Sequential Minimal Optimization (SMO), k-Nearest Neighbor (kNN), J48 and Naive Bayes
(NB). These classifiers are widely used in previous software engineering studies and they
belong to different families of classification techniques. For example, SMO belongs to the
family of support vector machines (SVMs), while J48 belongs to the family of decision
trees.

Table 21 presents the average results across the six projects for each prediction model.
The results show that kNN and SMO performs badly in terms of IFA and they cannot out-
perform Logistic in terms of other evaluation measures by a substantial margin. Although
NB achieves the best results in terms of Precision and PCI@20% for all evaluation set-
tings, it sacrifices a lot in terms of Recall. J48 performs relatively bad in terms of IFA under
cross-project setting, but it achieves comparable results in terms of other evaluation mea-
sures when compared with Logistic. RF is the most prominent one among all the selected
classifiers. It achieves the best Recall for all evaluation settings and achieves comparable
results in terms of IFA when compared with Logistic. The only drawback of RF is that it
sacrifices a bit in terms of PCI@20%.

In summary, we recommend future research to use Logistic or RF as the underlying
classifier of CBS+. Besides, our implementation of these classifiers is based on Weka (Hall
et al. 2009), and we directly use the default hyper-parameter setting provided by Weka API.
Although previous studies, e.g., Tantithamthavorn et al. (2016) and Agrawal and Menzies
(2018), have shown that tuning the classifier’s hyper-parameters would achieve significant
improvements for defect prediction, we leave this as a future work because of the following
reasons:

1. In our work, there are multiple evaluation metrics, and it is difficult to decide
which evaluation metric is the most important to be the optimization target of a
tuning algorithm. Thus, the hyper-parameter tuning problem would become a multi-
objective optimization problem, which is more complex than the optimization problem
for a single evaluation metric considered in many previous studies. Designing and
experimenting with algorithms for this problem is beyond the scope of this paper.

2. The key point in our paper is to investigate whether using supervised models is still
a good choice when compared with unsupervised models. We have demonstrated
that supervised models (e.g., EALR and CBS+) outperform unsupervised models in
terms of PCI@20% and IFA. Thus, we have sufficiently explored this key point.
If tuning is done well, the only differences in the results are the deltas between
the performance of the supervised and unsupervised models. Besides, while tun-
ing the hyper-parameters would achieve better results for supervised models, the

Empirical Software Engineering

Table 21 Performance of CBS+
with different underlying
classifiers

Measure Model Evaluation setting

Time-wise 10-Times 10-Fold Cross-project

Recall

Logistic 0.466 0.531 0.505

RF 0.476 0.582 0.546

SMO 0.448 0.520 0.483

kNN 0.474 0.542 0.518

J48 0.468 0.555 0.545

NB 0.405 0.411 0.382

Precision

Logistic 0.281 0.334 0.316

RF 0.267 0.331 0.301

SMO 0.287 0.332 0.325

kNN 0.238 0.279 0.251

J48 0.266 0.332 0.308

NB 0.299 0.348 0.354

F1-score

Logistic 0.332 0.392 0.338

RF 0.325 0.404 0.350

SMO 0.325 0.384 0.338

kNN 0.295 0.350 0.314

J48 0.309 0.398 0.353

NB 0.323 0.355 0.331

PCI@20%

Logistic 0.331 0.325 0.363

RF 0.368 0.355 0.389

SMO 0.321 0.328 0.342

kNN 0.414 0.403 0.435

J48 0.372 0.339 0.381

NB 0.271 0.243 0.235

IFA

Logistic 1 0 1

RF 1 1 6

SMO 13 71 659

kNN 17 70 572

J48 1 4 43

NB 7 1 2

tuning process would be highly time consuming and make supervised models less
practical.

8.6 The impact of inspecting toomany changes

In this paper, we propose the evaluation measure PCI@20% and we argue that if a predic-
tion model requires developers to inspect too many changes, the frequent context switch
between different changes may increase the actual time and effort spent. To further inves-
tigate the impact of inspecting too many changes in practice, we conducted a survey with

Empirical Software Engineering

professional developers from two IT companies in China, named Insigma Global Service,3

and Hengtian4. Insigma Global Service is an outsourcing company which has more than 500
employees, and it mainly does outsourcing projects for Chinese vendors (e.g., Chinese com-
mercial banks, Alibaba, and Baidu). Hengtian is also an outsourcing company which has
more than 2,000 employees, and it mainly does outsourcing projects for US and European
corporations (e.g., State Street Bank, Cisco, and Reuters). We sent emails to 141 develop-
ers who had experience in code review and we received 54 replies. These 54 developers
vary in job roles, such as testers, front-end developers, back-end developers, algorithm engi-
neers, mobile app developers, etc. The years of their experience in software development
vary from 2 years to 8 years, with an average of 4.3 years. Our survey has two questions, as
shown below:

– Q1: Suppose a number of code changes are supposed to be potentially defective, and
we divide these changes into two groups, namely Group A and Group B. There are
30 changes in Group A and these changes in total modified 300 LOC. There are 10
changes in Group B and these changes in total also modified 300 LOC. For each group,
we assign one developer to inspect these changes one by one. Among the following
options, which one do you think is more reasonable?

1) The time cost of Group A is substantially larger than Group B
2) The time cost of Group A is almost the same with Group B
3) The time cost of Group B is substantially larger than Group A

– Q2: Can you explain why for your answer in Q1? (optional)

Note that in Q1, the number of changes in Group A is triple as many as that of Group B,
which follows our finding in RQ1, i.e., LT requires developers to inspect more than twice
or even triple as many changes as those required by using EALR.

Among the responses, 37 (69%) of the developers chose the first option (i.e., Group A
requires more effort cost). 21 of them described their reasons, and we summarized four
major reasons, as follows:

• Additional cost of context switches, e.g.,

– When inspecting multiple changes, for each change, you need to open and
close different files, and you have to quickly switch your mind from one func-
tion to another one which might be completely different. These pieces of time
should not be ignored.

– I never continuously review that number of changes in a single day. Wouldn’t
that be quite boring? I don’t think I have that patience to check many changes
that are just “possibly defective”...

• Additional cost of inspecting a broader range of affected files, e.g.,

– Group A has more changes and different change may affect different files.
When reviewing a code change, aside from the modified LOC, you also need
to check corresponding functions or files. Thus, the real number of code to be
reviewed in Group A should be much larger than Group B.

3“Insigma Global Service,” http://www.insigmaservice.com/.
4“Hengtian,” http://www.hengtiansoft.com/.

http://www.insigmaservice.com/
http://www.hengtiansoft.com/

Empirical Software Engineering

• Additional cost of bug localization, e.g.,

– The purpose of code review is to find defects and improve code quality. Since
you already told me these changes might have bugs, I would be more careful
to locate the bug for each change. Also, I don’t think the cost of locating a bug
is simply related to the number of modified LOC. It is possible to spent more
time to locate the bug for a small change from my experience.

• Additional cost of dealing conflicts or dependencies, e.g.,

– Group A has more changes involved. Some of them may have conflicts or
dependencies. When you rollback a defective change, you might need to
address these conflicts or dependencies and this would introduce much more
time cost.

6 (11%) of the developers chose the second option (i.e., the two groups almost have the
same effort cost). 3 of them described their reasons, and we summarized two major reasons,
as follows:

• It is hard to judge the real cost, e.g.,

– The information given in Q1 is not enough to estimate the time cost. I don’t
think the cost of code review can be simply estimated with LOC...

– I’m not sure how to compare the cost... I see that Group A has more changes to
review. However, sometimes I spend more time to review a small set of changes
while sometimes I don’t.

• Both groups have additional cost, e.g.,

– Group A has more changes to review and this may require checking a lot of
different files or functions. Group B has less changes but each change modified
more LOC and this may require more effort to understand the logic of each
change.

11 (20%) of the developers chose the third option (i.e., Group A requires more effort
cost). 6 of them described their reasons, and we summarized two major reasons, as follows:

• The major cost comes from program comprehension, e.g.,

– It would be more difficult to understand the logic of the corresponding code
if a change modified more LOC. I think this would be the major cost for code
review. Especially, if the number of modified LOC is really large, the review
cost would be much much larger.

– IMHO, I don’t like reviewing a change that modified too many LOC. It would
be time consuming to understand what it has done and locate where the bug is.

• The additional cost of inspecting the code context of a single large change, e.g.,

– If a change modified many LOC, these LOC might affect different parts of the
file. To understand the modified code, you also need to check the code nearby
and this would increase the time cost of code review.

As a summary, the majority of the developers agree that inspecting too many changes
would introduce additional effort cost. Another interesting finding is that a lot of developers
pointed out that the real effort cost to review a code change cannot be simply estimated

Empirical Software Engineering

with the number of LOC modified by the change. However, almost all of the current studies
in the literature assume that the effort cost is linearly correlated with change size. Thus,
we recommend future research to design new quantitative criteria to better capture the real
effort cost involved in code review.

8.7 Implications

8.7.1 Implications for practitioners

Our experiment results have shown that, in most cases, unsupervised model performs better
in terms of Recall, while supervised model performs better in terms of Precision. Although
we can use F1-score to balance between Precision and Recall, the importance of Precision
and Recall are not always the same in different projects.

For example, if the recommended changes are separately assigned to a large group of
developers, the number of false alarms encountered by each developer would be signifi-
cantly reduced. Thus, Recall is likely to be more important than Precision in this scenario,
since a prediction model with high Recall can detect more defective changes. On the
other hand, if the recommended changes are assigned to a few developers only, the neg-
ative impact of false alarms on developers’ patience and confidence should be carefully
considered. In this scenario, the importance of Precision should be weighted more than
Recall.

In summary, we suggest developers use different measures to evaluate a prediction
model more comprehensively, and choose the most appropriate model according to the
requirement, schedule and resources in their own project.

8.7.2 Implications for researchers

Both the studies by Yang et al. (2016) and Kamei et al. (2013) assumed that the inspec-
tion cost of a change is linearly associated with the change’s size (i.e., the number of
modified LOC). However, we have found some changes in the dataset which modified
thousands of LOC. The actual effort required to inspect such a large change may not
be linearly correlated with change size. For example, some changes only add a com-
mon comment (e.g., copyright) to a large number of files, and the amount of time and
effort to inspect such changes is likely to be low. Thus, we argue that more factors (e.g.,
change type) should be considered to decide the inspection cost of a change. We recom-
mend future research to do an empirical study on which additional factors influence the
amount of time and effort needed to inspect a change, and how to determine the weights
of different factors. We also encourage future research on effort-aware JIT defect predic-
tion to consider context switch cost and initial false alarms in evaluating the proposed
solutions.

9 Threats to validity

9.1 Internal validity

The internal validity relates to errors in our code when replicating the supervised and unsu-
pervised model, which are both published by their authors using R language. Although our
code is written in Java, we have carefully read the published source code and strictly follow

Empirical Software Engineering

the implementation. Since we use the same experiment setting as Yang et al.’s work, we
compare our experiment results with theirs. For supervised model, our results are slightly
different from those in Yang et al. (2016). Specifically, for each project, the differences
between Yang et al.’s results and ours in terms of Recall are no more than 0.02. We argue
that small difference is acceptable since supervised model requires data preprocessing and
introduces random numbers. For unsupervised model, we reproduced the same experiment
results since it is straightforward to implement. Thus, we believe there is little threat to
internal validity.

9.2 External validity

The external validity relates to the quality and generalizability of our dataset. Our dataset
is originally provided by Kamei et al., who used the SZZ algorithm (Śliwerski et al.
2005) to automatically build the ground truth labels of all changes. However, as reported
by the authors of the SZZ algorithm and other related studies (Kim et al. 2006; da
Costa et al. 2017; Neto et al. 2018), in some cases, the SZZ algorithm cannot accurately
locate the change that truly introduces the bug. As a result, the SZZ algorithm itself may
introduce false positives (i.e., non-defective changes marked as defective) and miss a num-
ber of truly defective changes. Thus, the errors introduced by the SZZ algorithm may
affect the results of our study. On the other hand, the dataset contains six open source
projects, which belong to different application domains, vary in size, cover a long period
of time and are written in different programming languages. In total, we have analyzed
227,417 changes. However, there are still many other projects in other domains using
other programming languages, which are not considered in our study. Besides, all the
six projects in our study are developed by open source communities, it is still unclear
whether our conclusion is generalizable to commercial projects. In the future, we plan
to reduce this threat further by analyzing even more changes from additional software
projects.

9.3 Construct validity

The construct validity relates to the suitability of our evaluation measures. In addition
to Recall, we use 4 evaluation measures, namely Precision, F1-score, PCI@20% and
IFA. We use Precision because Recall and Precision are usually paired. We use F1-score
because it balances the tradeoff between Precision and Recall. Also, F1-score is widely
used in prior software engineering studies (Arisholm et al. 2007; Rahman et al. 2012;
Jiang et al. 2013; Shihab et al. 2013; Valdivia Garcia and Shihab 2014; Huang et al.
2018). We use PCI@20% because we find that the distribution of change size in every
project is highly skewed, and we argue that inspecting too many changes would introduce
additional effort cost. We use IFA because previous studies have shown that developers
are not willing to use the prediction model if its IFA is quite large. Since we have care-
fully discussed the motivation of using these additional evaluation measures and cited
previous studies to support our assumptions, we believe this construct validity should be
acceptable.

Another threat to construct validity relates to the underlying metric we choose for Yang et
al.’s unsupervised model. We choose the metric LT since it achieves the best average Recall
in Yang et al.’s paper. However, another metric AGE also achieves similar Recall. We re-run
our experiment with AGE-based unsupervised model and find that our conclusion remains
the same, and thus not interesting to report.

Empirical Software Engineering

10 Conclusion and future work

In this paper, we revisit Yang et al.’s recent study on supervised versus unsupervised models
in effort-aware JIT defect prediction. We first highlight that it is of no surprise that Yang et
al.’s unsupervised model (LT) can find more defects, since it requires developers to inspect
more than twice as many changes as those required by using Kamei et al.’s supervised model
(EALR). We point out that inspecting too many changes would introduce additional effort
due to frequent context switches. Then we use 4 additional evaluation measures to gain more
insights of a prediction model. We find that LT sacrifices Precision to achieve higher Recall,
and it no longer outperforms EALR when considering Recall and Precision together (i.e.,
F1-score). We also point out that, when using LT, developers may feel frustrated due to the
large number of initial false alarms. Finally, we propose a simple but improved supervised
model called CBS+. When compared with Yang et al.’s unsupervised model, CBS+ achieves
similar results in terms of Recall, but it performs significantly better in terms of Precision
and F1-score. CBS+ also significantly reduces context switches and initial false alarms.

In the future, we plan to conduct a user study to investigate the actual effort required to
inspect different types of changes. We are also interested to investigate the performance of
supervised and unsupervised models in commercial projects.

Acknowledgments We would like to thank Kamei et al. (2013) and Yang et al. (2016) for providing us
the datasets and source code used in their study. Finally, to enable other researchers replicate and extend our
study, we have published the replication package in Zenodo.5 This research was partially supported by the
National Key Research and Development Program of China (2018YFB1003904) and NSFC Program (No.
61602403).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

Abdi H (2007) Bonferroni and šidák corrections for multiple comparisons. Enc Measur Stat 3:103–107
Agrawal A, Menzies T (2018) Is better data better than better data miners?: on the benefits of tuning smote

for defect prediction. In: Proceedings of the 40th International Conference on Software Engineering,
ACM, pp 1050–1061

Arisholm E, Briand LC, Fuglerud M (2007) Data mining techniques for building fault-proneness models in
telecom java software. In: The 18th IEEE International Symposium on Software Reliability (ISSRE’07),
IEEE, pp 215–224

Arisholm E, Briand LC, Johannessen EB (2010) A systematic and comprehensive investigation of methods
to build and evaluate fault prediction models. J Syst Softw 83(1):2–17

Cliff N (1996) Ordinal methods for behavioral data analysis. Lawrence Erlbaum Associates
da Costa DA, McIntosh S, Shang W, Kulesza U, Coelho R, Hassan AE (2017) A framework for evaluating the

results of the szz approach for identifying bug-introducing changes. IEEE Trans Softw Eng 43(7):641–
657

D’Ambros M, Lanza M, Robbes R (2010) An extensive comparison of bug prediction approaches. In: 2010
7th IEEE working conference on mining software repositories (MSR), IEEE, pp 31–41

Fu W, Menzies T (2017) Revisiting unsupervised learning for defect prediction. In: Proceedings of the 2017
25th ACM SIGSOFT International Symposium on Foundations of Software Engineering, ACM, p to
appear

5https://zenodo.org/record/1432582#.W6YyU2gzaUl

https://zenodo.org/record/1432582#.W6YyU2gzaUl

Empirical Software Engineering

Ghotra B, McIntosh S, Hassan AE (2015) Revisiting the impact of classification techniques on the perfor-
mance of defect prediction models. In: Proceedings of the 37th international conference on software
engineering-volume 1, IEEE Press, pp 789–800

Graves TL, Karr AF, Marron JS, Siy H (2000) Predicting fault incidence using software change history. IEEE
Trans Softw Eng 26(7):653–661

Guo PJ, Zimmermann T, Nagappan N, Murphy B (2010) Characterizing and predicting which bugs get
fixed: an empirical study of microsoft windows. In: 2010 ACM/IEEE 32nd international conference on
software engineering, IEEE, vol 1, pp 495–504

Gyimothy T, Ferenc R, Siket I (2005) Empirical validation of object-oriented metrics on open source software
for fault prediction. IEEE Trans Softw Eng 31(10):897–910

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software:
an update. ACM SIGKDD explorations newsletter 11(1):10–18

Hall T, Beecham S, Bowes D, Gray D, Counsell S (2012) A systematic literature review on fault prediction
performance in software engineering. IEEE Trans Softw Eng 38(6):1276–1304

Hamill M, Goseva-Popstojanova K (2009) Common trends in software fault and failure data. IEEE Trans
Softw Eng 35(4):484–496

Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier, Amsterdam
Hassan AE (2009) Predicting faults using the complexity of code changes. In: Proceedings of the 31st

international conference on software engineering, IEEE computer society, pp 78–88
Hintze JL, Nelson RD (1998) Violin plots: a box plot-density trace synergism. The American Statistician

52(2):181–184
Huang Q, Xia X, Lo D (2017) Supervised vs unsupervised models: a holistic look at effort-aware just-in-time

defect prediction. In: IEEE International Conference on Software maintenance and evolution (ICSME),
IEEE

Huang Q, Shihab E, Xia X, Lo D, Li S (2018) Identifying self-admitted technical debt in open source projects
using text mining. Empir Softw Eng 23(1):418–451

Jiang T, Tan L, Kim S (2013) Personalized defect prediction. In: 2013 IEEE/ACM 28th International
conference on automated software engineering (ASE), IEEE, pp 279–289

Kamei Y, Shihab E, Adams B, Hassan AE, Mockus A, Sinha A, Ubayashi N (2013) A large-scale empirical
study of just-in-time quality assurance. IEEE Trans Softw Eng 39(6):757–773

Kim S, Zimmermann T, Pan K, James E Jr et al (2006) Automatic identification of bug-introducing changes.
In: null, IEEE, pp 81–90

Kim S, Whitehead EJ Jr, Zhang Y (2008) Classifying software changes: Clean or buggy? IEEE Trans Softw
Eng 34(2):181–196

Kochhar PS, Xia X, Lo D, Li S (2016) Practitioners’ expectations on automated fault localization. In:
Proceedings of the 25th International Symposium on Software Testing and Analysis, ACM, pp 165–
176

Koru AG, Zhang D, El Emam K, Liu H (2009) An investigation into the functional form of the size-defect
relationship for software modules. IEEE Trans Softw Eng 35(2):293–304

Koru G, Liu H, Zhang D, El Emam K (2010) Testing the theory of relative defect proneness for closed-source
software. Empir Softw Eng 15(6):577–598

Li PL, Herbsleb J, Shaw M, Robinson B (2006) Experiences and results from initiating field defect prediction
and product test prioritization efforts at abb inc. In: Proceedings of the 28th international conference on
Software engineering, ACM, pp 413–422

Matsumoto S, Kamei Y, Monden A, Matsumoto K, Nakamura M (2010) An analysis of developer metrics for
fault prediction. In: Proceedings of the 6th International Conference on Predictive Models in Software
Engineering, ACM, p 18

Mende T, Koschke R (2010) Effort-aware defect prediction models. In: 2010 14th European conference on
software maintenance and reengineering (CSMR), IEEE, pp 107–116

Menzies T, Di Stefano JS (2004) How good is your blind spot sampling policy. In: Proceedings 8th IEEE
International symposium on high assurance systems engineering, 2004, IEEE, pp 129–138

Menzies T, Milton Z, Turhan B, Cukic B, Jiang Y, Bener A (2010) Defect prediction from static code
features: current results, limitations, new approaches. Autom Softw Eng 17(4):375–407

Meyer AN, Fritz T, Murphy GC, Zimmermann T (2014) Software developers’ perceptions of productiv-
ity. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ACM, pp 19–29

Mockus A, Weiss DM (2000) Predicting risk of software changes. Bell Labs Tech J 5(2):169–180
Moser R, Pedrycz W, Succi G (2008) A comparative analysis of the efficiency of change metrics and static

code attributes for defect prediction. In: Proceedings of the 30th international conference on Software
engineering, ACM, pp 181–190

Empirical Software Engineering

Munson JC, Khoshgoftaar TM (1992) The detection of fault-prone programs. IEEE Trans Softw Eng
18(5):423–433

Nagappan N, Ball T (2005) Use of relative code churn measures to predict system defect density. In: Pro-
ceedings 27th International conference on software engineering, 2005. ICSE 2005. IEEE, pp 284–
292

Nagappan N, Ball T, Murphy B (2006a) Using historical in-process and product metrics for early estima-
tion of software failures. In: 17th International symposium on software reliability engineering, 2006.
ISSRE’06. IEEE, pp 62–74

Nagappan N, Ball T, Zeller A (2006b) Mining metrics to predict component failures. In: Proceedings of the
28th international conference on Software engineering, ACM, pp 452–461

Nam J, Kim S (2015) Clami: Defect prediction on unlabeled datasets (t). In: 2015 30th IEEE/ACM
International conference on automated software engineering (ASE), IEEE, pp 452–463

Neto EC, da Costa DA, Kulesza U (2018) The impact of refactoring changes on the szz algorithm: An
empirical study. In: 2018 IEEE 25Th international conference on software analysis, evolution and
reengineering (SANER), IEEE, pp 380–390

Ostrand TJ, Weyuker EJ, Bell RM (2004) Where the bugs are. In: ACM SIGSOFT Software engineering
notes, ACM, vol 29, pp 86–96

Parnin C, Orsom A (2011) Are automated debugging techniques actually helping programmers? In:
Proceedings of the 2011 international symposium on software testing and analysis, ACM, pp 199–209

Purushothaman R, Perry DE (2005) Toward understanding the rhetoric of small source code changes. IEEE
Trans Softw Eng 31(6):511–526

Rahman F, Devanbu P (2013) How, and why, process metrics are better. In: Proceedings of the 2013
International conference on software engineering, IEEE Press, pp 432–441

Rahman F, Posnett D, Devanbu P (2012) Recalling the imprecision of cross-project defect prediction. In:
Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, ACM, p 61

Shihab E, Hassan AE, Adams B, Jiang ZM (2012) An industrial study on the risk of software changes.
In: Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, ACM, p 62

Shihab E, Ihara A, Kamei Y, Ibrahim WM, Ohira M, Adams B, Hassan AE, Matsumoto K (2013) Studying
re-opened bugs in open source software. Empir Softw Eng 18(5):1005–1042

Śliwerski J, Zimmermann T, Zeller A (2005) When do changes induce fixes? In: ACM Sigsoft software
engineering notes, ACM, vol 30, pp 1–5

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2016) Automated parameter optimization
of classification techniques for defect prediction models. In: Proceedings of the 38th International
Conference on Software Engineering, ACM, pp 321–332

Thongmak M, Muenchaisri P (2003) Predicting faulty classes using design metrics with discriminant
analysis. In: Software engineering research and practice, pp 621–627

Turhan B, Menzies T, Bener AB, Di Stefano J (2009) On the relative value of cross-company and within-
company data for defect prediction. Empir Softw Eng 14(5):540–578

Valdivia Garcia H, Shihab E (2014) Characterizing and predicting blocking bugs in open source projects. In:
Proceedings of the 11th working conference on mining software repositories, ACM, pp 72–81

Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83
Xia X, Bao L, Lo D, Li S (2016a) Automated debugging considered harmful considered harmful: a user

study revisiting the usefulness of spectra-based fault localization techniques with professionals using real
bugs from large systems. In: 2016 IEEE International conference on software maintenance and evolution
(ICSME), IEEE, pp 267–278

Xia X, Lo D, Pan SJ, Nagappan N, Wang X (2016b) Hydra: Massively compositional model for cross-project
defect prediction. IEEE Trans Softw Eng 42(10):977–998

Xia X, Lo D, Wang X, Yang X (2016c) Collective personalized change classification with multiobjective
search. IEEE Trans Reliab 65(4):1810–1829

Yan M, Fang Y, Lo D, Xia X, Zhang X (2017) File-level defect prediction: Unsupervised vs. super-
vised models. In: Proceedings of the 11th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, ACM, p to appear

Yang X, Lo D, Xia X, Zhang Y, Sun J (2015) Deep learning for just-in-time defect prediction. In: 2015 IEEE
International conference on software quality, reliability and security (QRS), IEEE, pp 17–26

Yang X, Lo D, Xia X, Sun J (2017) Tlel: a two-layer ensemble learning approach for just-in-time defect
prediction. Inf Softw Technol 87:206–220

Yang Y, Zhou Y, Liu J, Zhao Y, Lu H, Xu L, Xu B, Leung H (2016) Effort-aware just-in-time defect pre-
diction: simple unsupervised models could be better than supervised models. In: Proceedings of the

Empirical Software Engineering

2016 24th ACM SIGSOFT International symposium on foundations of software engineering, ACM,
pp 157–168

Yin Z, Yuan D, Zhou Y, Pasupathy S, Bairavasundaram L (2011) How do fixes become bugs? In: Proceedings
of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of software
engineering, ACM, pp 26–36

Zhou Y, Yang Y, Lu H, Chen L, Li Y, Zhao Y, Qian J, Xu B (2018) How far we have progressed in the
journey? an examination of cross-project defect prediction. ACM Trans Softw Eng Methodol (TOSEM)
27(1):1

Zimmermann T, Nagappan N, Gall H, Giger E, Murphy B (2009) Cross-project defect prediction: a large
scale experiment on data vs. domain vs. process. In: Proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on The foundations of
software engineering, ACM

Qiao Huang is currently a Ph.D. student in the College of Computer Science and Technology, Zhejiang
University, China. He received both of his bachelor and master’s degrees in computer science and soft-
ware engineering from Zhejiang University in 2012 and 2016. His current research interests include mining
software repositories and empirical software engineering.

Xin Xia is a lecturer at the Faculty of Information Technology, Monash University, Australia. Prior to joining
Monash University, he was a post-doctoral research fellow in the software practices lab at the University
of British Columbia in Canada, and a research assistant professor at Zhejiang University in China. Xin
received both of his Ph.D and bachelor degrees in computer science and software engineering from Zhejiang
University in 2014 and 2009, respectively. To help developers and testers improve their productivity, his
current research focuses on mining and analyzing rich data in software repositories to uncover interesting
and actionable information. More details can be found at: https://xin-xia.github.io/

https://xin-xia.github.io/

Empirical Software Engineering

David Lo received his PhD degree from the School of Computing, National University of Singapore in 2008.
He is currently an Associate Professor in the School of Information Systems, Singapore Management Uni-
versity. He has close to 10 years of experience in software engineering and data mining research and has
more than 200 publications in these areas. He received the Lee Foundation Fellow for Research Excellence
from the Singapore Management University in 2009, and a number of international research awards includ-
ing several ACM distinguished paper awards for his work on software analytics. He has served as general and
program co-chair of several prestigious international conferences (e.g., IEEE/ACM International Conference
on Automated Software Engineering), and editorial board member of a number of high-quality journals (e.g.,
Empirical Software Engineering).

Affiliations

Qiao Huang1 ·Xin Xia2 ·David Lo3

Qiao Huang
tkdsheep@zju.edu.cn

David Lo
davidlo@smu.edu.sg

1 College of Computer Science and Technology, Zhejiang University, Hangzhou, China
2 Faculty of Information Technology, Monash University, Melbourne, Australia
3 School of Information Systems, Singapore Management University, Singapore, Singapore

http://orcid.org/0000-0002-6302-3256
mailto: tkdsheep@zju.edu.cn
mailto: davidlo@smu.edu.sg

	Revisiting supervised and unsupervised models for effort-aware just-in-time defect prediction
	Abstract
	Abstract
	Introduction
	Paper organization

	Background and related work
	Just-in-time defect prediction
	Effort-aware JIT defect prediction

	Effort-aware JIT defect prediction models
	Supervised model by Kamei et al. (EALR)
	Unsupervised model by Yang et al. (LT)

	CBS+: an improved supervised model
	Evaluation measures considered
	Recall
	Precision
	F1-score
	PCI@20%
	IFA

	Experiment setup
	Data statistics
	Experiment setting
	Time-wise cross-validation
	10 times 10-fold cross-validation
	Cross-project validation

	Research questions

	Experiment results
	RQ1: Why does Yang et al.'s unsupervised model (LT) perform better than Kamei et al.'s supervised model (EALR) in terms of Recall?
	RQ2: How do the supervised and unsupervised models compare when different evaluation measures are considered?
	RQ3: Could the supervised model be enhanced leveraging intuition of Yang et al.'s unsupervised model?

	Discussion
	Comparison with Fu and Menzies's work
	Comparison between CBS+ and CBS
	Evaluating results with Popt
	The tradeoff between recall and PCI@20%
	Improving the underlying classifier of CBS+
	The impact of inspecting too many changes
	Implications
	Implications for practitioners
	Implications for researchers

	Threats to validity
	Internal validity
	External validity
	Construct validity

	Conclusion and future work
	References
	Affiliations

