
Empir Software Eng
DOI 10.1007/s10664-017-9522-4

Identifying self-admitted technical debt in open source
projects using text mining

Qiao Huang1 ·Emad Shihab2 ·Xin Xia1,3 ·
David Lo4 ·Shanping Li1

© Springer Science+Business Media New York 2017

Abstract Technical debt is a metaphor to describe the situation in which long-term code
quality is traded for short-term goals in software projects. Recently, the concept of self-
admitted technical debt (SATD) was proposed, which considers debt that is intentionally
introduced, e.g., in the form of quick or temporary fixes. Prior work on SATD has shown
that source code comments can be used to successfully detect SATD, however, most current
state-of-the-art classification approaches of SATD rely on manual inspection of the source
code comments. In this paper, we proposed an automated approach to detect SATD in source

Communicated by: Andrian Marcus

� Xin Xia
xxia@zju.edu.cn; xxia02@cs.ubc.ca

Qiao Huang
tkdsheep@zju.edu.cn

Emad Shihab
eshihab@encs.concordia.ca

David Lo
davidlo@smu.edu.sg

Shanping Li
shan@zju.edu.cn

1 College of Computer Science and Technology, Zhejiang University, Hangzhou, China

2 Data-driven Analysis of Software (DAS) Lab at the Department of Computer Science and Software
Engineering, Concordia University, Montreal, Canada

3 Department of Computer Science, University of British Columbia, Vancouver, Canada

4 School of Information Systems, Singapore Management University, Singapore, Singapore

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9522-4&domain=pdf
mailto:
mailto:tkdsheep@zju.edu.cn
mailto:eshihab@encs.concordia.ca
mailto:davidlo@smu.edu.sg
mailto:shan@zju.edu.cn

Empir Software Eng

code comments using text mining. In our approach, we utilize feature selection to select
useful features for classifier training, and we combine multiple classifiers from different
source projects to build a composite classifier that identifies SATD comments in a target
project. We investigate the performance of our approach on 8 open source projects that
contain 212,413 comments. Our experimental results show that, on every target project, our
approach outperforms the state-of-the-art and the baselines approaches in terms of F1-score.
The F1-score achieved by our approach ranges between 0.518 - 0.841, with an average of
0.737, which improves over the state-of-the-art approach proposed by Potdar and Shihab by
499.19%. When compared with the text mining-based baseline approaches, our approach
significantly improves the average F1-score by at least 58.49%. When compared with a
natural language processing-based baseline, our approach also significantly improves its
F1-score by 27.95%. Our proposed approach can be used by project personnel to effectively
identify SATD with minimal manual effort.

Keywords Technical debt · Source code comments · Text mining

1 Introduction

For most software projects, the ultimate goal is to deliver software quickly, with high qual-
ity, and on budget. However, in real-world software projects, due to various reasons (e.g.,
tight schedules, limited human resources, cost reduction, etc), sometimes developers have
to make tradeoffs to complete their tasks in a rush.

Technical debt is a metaphor introduced by Cunningham (1993) to describe the situation
where long-term code quality is traded for short-term goals. Like financial debt, technical
debt incurs interest payments in the form of increased future costs owing to earlier quick
and dirty design and implementation choices (Brown et al. 2010). To pay the interest or
discharge of the debt, developers may need re-architecting and refactoring. Prior work has
shown that technical debt is common, unavoidable and may degrade quality and increase
complexity in the future (Lim et al. 2012; Wehaibi et al. 2016).

However, technical debt is not always visible. In many cases, it is (or was) only known to
some people (e.g., only Bob may know that he hardcoded a parameter to quickly implement
a feature before the deadline) but not visible enough to others who eventually have to pay
for it (e.g., a new developer took over Bob’s work and now needs to deal with the hardcoded
parameter).

To solve this problem, a number of studies empirically examined technical debt and
proposed different techniques to enable its detection and management. The majority of
the prior work focused on using static source code analysis to detect technical debt (i.e.,
code smells) (Marinescu 2004; Marinescu et al. 2010). However, more recently, Potdar and
Shihab (2014) proposed the concept of self-admitted technical debt (SATD), which consid-
ers debt that is intentionally introduced (e.g., quick or temporary fixes). In particular, SATD
refers to the situation where developers know that the current implementation is sub-optimal
and document this using code comments. For example, by manual inspection of the open
source project “JEdit”, we found a comment saying “Need some format checking here”,
which indicates that the corresponding code is defective and needs to catch format excep-
tion. A previous study (Wehaibi et al. 2016) also shows that although the percentage of
SATD in a project is not high, it can have a negative impact on software complexity. Thus,
we believe that it is feasible to identify certain types of technical debt through source code
comments.

Empir Software Eng

There are certain advantages and disadvantages of SATD. The main advantages of SATD
is that it is often documented by developers who know the code, which is more reliable com-
pared to using code metrics or code smells to detect technical debt. However, since SATD
is written in plain text, it is unstructured in nature, which makes it difficult to detect. Most
of the studies that focused on SATD thus far have resorted to manually classifying com-
ments (e.g., Potdar and Shihab 2014) or using the 62 manually derived comment patterns1

(e.g.,Wehaibi et al. 2016; Bavota and Russo 2016). Although the manually extracted com-
ments might be useful, they have a major drawback, which is the amount of manual effort
required to derive them.

Therefore, in this paper we propose a text mining-based approach to automatically detect
SATD in source code comments. We build our classification model using comments from
a number of different source projects as training data to predict the label of a comment in
a completely new target project. In our approach, we first preprocess the text description
of all comments and apply feature selection, namely Information Gain (Sebastiani 2002),
on each source project to select the top 10% of features with the highest information gain
scores. Then we use the selected features to train a sub-classifier on each source project.
After that, a composite classifier is built from these sub-classifiers and predicts the label of
a new comment in the new target project. The output of the composite classifier is the label
predicted most often by its sub-classifiers, with ties broken arbitrarily.

Most recently, Maldonado et al. (2017) proposed an approach based on natural lan-
guage processing (NLP) to automatically identify different types of SATD comments. In
their work, they built a maximum entropy classifier based on NLP to identify the most two
common types of SATD (i.e., SATD on design, SATD on requirement or non-SATD). The
major difference between their work and our work is that they only focus on certain types of
SATD, while we care more about whether a comment contains SATD, which also includes
other types of SATD (i.e., defect debt, documentation debt and test debt). However, Mal-
donado et al.’s NLP-based approach could also be adapted to work in our problem. Thus,
we apply their approach as a baseline in our experiment and compare its performance with
our approach.

To evaluate the performance of our approach, we used a manually classified dataset
of source code comments from 8 open source projects with 212,413 comments, provided
by the authors of Maldonado and Shihab (2015). The experimental results show that, on
every target project, our approach achieves the best performance in terms of F1-score.
The F1-score achieved by our approach ranges between 0.518 - 0.841, with an average of
0.737, which is a significant improvement over the baseline approaches. On average, our
approach improves the F1-scores over Potdar and Shihab’s approach, Naive Bayes Multi-
nomial (NBM) baseline, Support Vector Machine (SVM) baseline, k-Nearest Neighbor
(kNN) baseline and Maldonado et al.’s NLP-based approach by 499.19%, 58.49%, 882.67%
205.81% and 27.95% respectively.

The main contributions of this paper are:

1. We propose a text mining-based approach to automatically detect SATD comment. In
our approach, we utilize feature selection to select useful features for classifier training,
and we combine sub-classifiers from different source projects to build a composite
classifier which is more accurate in prediction.

1derived after the manual examination of more than 100k comments

Empir Software Eng

2. We compare our approach with Potdar and Shihab’s approach, several text mining-
based baseline approaches and NLP-based approach on 8 open source projects with
212,413 comments. The experiment results show that our approach achieves significant
improvements over these approaches.

The remainder of the paper is organized as follows. We present some background
information of the current state-of-the-art classification approach of SATD comments in
Section 2. We describe the overall framework and technical details of our approach in
Section 3. We present our experimental setup and results in Sections 4 and 5. We discuss
the implications of our study and threats to validity in Section 6. We present related work in
Section 7. We conclude and mention future work in Section 8.

2 Background

In this section, we introduce the current state-of-the-art classification approach of SATD
comments, which is proposed by Potdar and Shihab (2014). In their work, they used source
code comments in four open source software projects - Eclipse, Chromium OS, Apache
HTTP Server, and ArgoUML to identify self-admitted technical debt. They first manually
read through 101,762 comments to identify those that indicated self-admitted technical debt.
Then, they further distilled these comments to specific patterns that indicate self-admitted
technical debt. Here a pattern represents a keyword or phrase that appears frequently in
SATD comments. In total, they ended up with a set of 62 recurring patterns (notice that there
are actually 63 patterns in their published data) that were identified across the four projects.
A comment would be identified as SATD comment if and only if any one of these patterns
appears in the text content of the comment. To make our paper self-contained, we list all
these patterns in Table 1.

Based on these patterns, they performed an exploratory study on SATD, such as measur-
ing how much SATD exists and what’s the most recurring patterns across all of the projects.
Several follow-on works (e.g., Wehaibi et al. (2016) and Bavota and Russo (2016)) that
focused on SATD also applied these patterns to identify SATD comments.

One drawback of Potdar and Shihab’s comment pattern-based approach is that it requires
manual effort to summarize the patterns, which is time-consuming. Besides, our experiment
results also show that there are still a large number of SATD comments not contain-
ing any one of these patterns. Thus, in this paper, we propose an automatic approach to
identify SATD comments. Compared with Potdar and Shihab’s comment pattern-based
approach, our approach can identify more SATD comments and does not require manual
summarization of patterns.

3 Approach

In this section, we first present the overall framework of our approach. Then we elaborate
on the technical details of our approach, including text preprocessing, feature selection,
training sub-classifiers and classifier voting.

3.1 Overall Framework

Figure 1 presents the overall framework of our approach. It contains two phases: a model
building phase and a prediction phase. In the model building phase, our approach builds a

Empir Software Eng

Table 1 Patterns summarized by Potdar and Shihab

Patterns that indicate SATD

hack ugly

nuke barf

yuck crap

hacky silly

fixme stupid

kludge kaboom

give up toss it

retarded bail out

at a loss take care

this is bs causes issue

prolly a bug this is wrong

fix this crap inconsistency

is problematic don’t use this

probably a bug this is uncool

trial and error cause for issue

get rid of this just abandon it

certainly buggy remove this code

temporary crutch some fatal error

abandon all hope may cause problem

workaround for bug temporary solution

this can be a mess there is a problem

give up and go away it doesn’t work yet

this isn’t very solid something’s gone wrong

this isn’t quite right is this next line safe

something bad happened you can be unhappy now

hang our heads in shame this doesn’t look right

risk of this blowing up is this line really safe

something bad is going on hope everything will work

treat this as a soft error something serious is wrong

doubt that this would work remove me before production

this is temporary and will go away unknown why we ever experience this

this indicates a more fundamental problem

sub-classifier for each individual source project, using data from the other projects, with
comments that have known labels (with or without SATD). In the prediction phase, we
composite all sub-classifiers to jointly predict whether an unknown comment is a SATD
comment or not in the target project. Note that to make our approach as practical as possi-
ble, each time we choose 1 project as “target project” (i.e., for prediction), then we denote
the other n-1 projects as “source projects” and train our classification model using the
comments from these source projects.

Our framework takes as input training comments with known labels from different
source projects. It first preprocesses the text descriptions of comments and extracts features

Empir Software Eng

Source

Projects Source

Project 1

Source

Project 2

Source

Project n

Feature

Subset 1

Feature

Subset 2

Feature

Subset n

Source Projects Feature Selection

C1

C2

Cn

Training

Sub-classifiers

Classifiers

Voting

Target Project

Text

Preprocessing

Predicted Labels

(With SATD or Not)

Prediction PhaseModel Building Phase

Text

Preprocessing

1

2 3 4

56

7

Fig. 1 Overall framework of our approach

(i.e., words) to represent each comment (Step 1). Then, for each source project, we apply
feature selection to select features that are useful for classification and remove useless fea-
tures (Step 2). Next, we use the selected features to train a sub-classifier for each source
project (Step 3). In total, we end up with n classifiers which are combined to form a com-
posite classifier for prediction (Step 4). For each new comment in the target project, we first
preprocess the comment to extract features (Step 5) and input them to the composite clas-
sifier (Step 6). Finally, each sub-classifier will predict the label of the comment according
to its features, and the label with the highest number of “votes” will be chosen as the final
prediction result of the composite classifier (Step 7).

3.2 Text Preprocessing

We preprocess the natural-description of comments to extract features (i.e., words) in 3
steps: tokenization, stop-word removal, and stemming.

1. Tokenization: is the process that breaks a stream of text up into words, phrases, sym-
bols, or other meaningful elements called tokens. In our experiment, we only keep
tokens that contain English letters. Still there are some tokens attached with punctua-
tion or numbers, we remove all these characters and only keep English letters in a token
(e.g., ”TODO:” is transformed to ”TODO”). Finally, we convert all words to lowercase.

2. Stop-word Removal: Stop words are words that are used often and carry little mean-
ing to distinguish different categories of comments. Examples of stop word include
“I”, “should”, “to”, “the”. Although there are many text mining tookits providing a
list of standard stop-words, we notice that in the domain of SATD comments, some
stop words are actually useful for classification. For example, in the SATD comment
“TODO: should have an image of a wizard or some logo”, the phrase “should have”
carries useful information, while both the words “should” and “have” are considered as
stop-words by default. Thus, we manually build a list of stop-words, which only con-
tains a small number of prepositions (e.g., “the”, “to”, “of”, “is”, etc). Words that have
length no more than 2 or no less than 20 are also treated as stop-words.

3. Stemming: is the process of reducing inflected (or sometimes derived) words to
their word stem, base or root form. For example, the words “stems”, “stemmer”,

Empir Software Eng

and “stemmed” would all be reduced to “stem”. We employ the well-known Porter
stemmer2 to reduce a word to its representative root form.

3.3 Feature Selection

After preprocessing and tokenizing the comments, we use the Vector Space Model
(VSM) (Salton et al. 1975) to represent each comment with a word vector. In this model, a
feature can be viewed as a dimension, and a comment can then be viewed as a data point
in a high-dimensional space. In total, we have a large number of features for each source
project (e.g., there are 3,661 features in ArgoUML project). An overly high number of
dimensions can cause the curse-of-dimensionality problem (Han et al. 2006). Aside from
this, we notice that only a small number of comments are SATD comments, i.e., the class
imbalance problem exists (He and Garcia 2009).

To address the above problems, we apply feature selection to identify a subset of fea-
tures that are most useful in differentiating different classes (i.e., comments with or without
SATD). Previous studies have shown that feature selection could improve the performance
of classification (Hall 1999). In this paper, we employ the widely used feature selection
technique, namely Information Gain (IG) to select useful features (Sebastiani 2002; Yang
and Pedersen 1997).

Let us denote a dataset of comments as C = {(C1, L1), (C2, L2), ..., (CN , LN)}, where Ci

represents the ith comment and Li is a label that represents whether this comment is with
SATD (t) or not (t̄), and the word vector of Ci is denoted as Ci = {w1, w2, ..., wn}, where n
represents the number of different words appeared in Ci and wi represents the ith word. For
a feature (i.e., word) w and a comment Ci , there would be 4 possible relationships:

1. (w, t): comment Ci contains the feature w, and it is a SATD comment (i.e., t).
2. (w, t̄): comment Ci contains the feature w, but it is not a SATD comment (i.e., t̄).
3. (w̄, t): comment Ci does not contains the feature w, but it is a SATD comment (i.e., t).
4. (w̄, t̄): comment Ci does not contains the feature w, and it is not a SATD comment

(i.e., t̄).

Based on the above 4 possible relationships, The information gain (IG) score of feature
w and label t is computed as:

IG (w, t) =
∑

t ′∈{t,t̄}

∑

w′∈{w,w̄}
p

(
w′, t ′

) ∗ log
p

(
w′, t ′

)

p (w′) ∗ p (t ′)
(1)

Here p(w’,t’) represents the probability of feature w’ appearing in a comment with label
t’. p(w’) represents the probability of feature w’ appearing in a comment and p(t’) represents
the probability of a comment being with label t’.

Information gain (IG) measures the number of bits of information required for predicting
a label (i.e., with or without SATD) by knowing the presence or absence of a feature in a
comment. After we apply feature selection (i.e., IG) to compute the scores for each feature,
we rank these scores from high to low to generate a ranked list. The higher the score is, the
more important the feature is to distinguish a label. We select the top k% features whose
feature selection scores are in the top k% of the ranked list, and remove the other features.
In this way, we reduce the number of features in the model building phase, and also in the

2http://tartarus.org/martin/PorterStemmer/

http://tartarus.org/martin/PorterStemmer/

Empir Software Eng

prediction phase. By default, we empirically choose the top 10% of the total number of fea-
tures. We examine the impact of using different percentages of features in our classification
in Section 5.

3.4 Training Sub-classifiers

By default, we train each sub-classifier using the Naive Bayes Multinomial (NBM) tech-
nique, which is widely used in text mining (McCallum et al. 1998). Before introducing
NBM, we first introduce Naive Bayes (NB) (McCallum et al. 1998). The major advantage
of NB classification is its short computational training time, since it assumes that given
a label (i.e., with or without SATD), features (i.e., words) are conditionally independent.
Thus, given a comment Ci = (w1, w2, ..., wn), and a label Li , we have:

p(Ci |Li) =
|n|∏

j=1

p(wj |Li) (2)

By applying Bayes Theorem on (2), we have:

p(Li = t |Ci) = p(Li = t) × ∏|n|
j=1 p(wj |Li = t)

p(Ci)
(3)

p(Ci) =
∑

t ′∈{t,t̄}
p(Li = t ′) ×

|n|∏

j=1

p(wj |Li = t ′) (4)

We can use (3) to identify the label for a comment. Notice that in NB, we only consider
the presence or absence of a feature in a comment. NBM is similar to NB, but the label is
determined by the number of times each feature appears in the comment. In general, when
the total number of unique features in the comment collection is large, NBM may perform
better than NB (Xia et al. 2014).

3.5 Classifiers Voting

In the prediction phase, we need to use the classifiers trained on source projects to predict
the label of a new comment in the target project. Since each project has domain-specific
comments and different feature distributions, the sub-classifier trained on a single source
project may not capture the important features in the target project. So in our approach, a
composite classifier is built from these sub-classifiers and it will predict the label of a new
comment in the target project. The output of the composite classifier is the label predicted
most often by its sub-classifiers, with ties broken arbitrarily. Thus, the prediction phase is
just like an election, each sub-classifier will vote to decide the final winner (i.e., the label
of a new comment). A similar idea of the voting strategy can be found in the well-known
ensemble learning algorithm called Bagging (Breiman 1996). Given a standard training set
D of size n, Bagging generates m new training sets Di , each of size n’, by sampling from D
uniformly and with replacement. Our approach is a bit different from Bagging, since we do
not need to re-sample the training data.

Table 2 shows an example of the classifiers voting process to predict the label of a new
comment. The columns correspond to the set of sub-classifiers and the label of a new com-
ment predicted by each sub-classifier. The last row is the final output (i.e., predicted label
of a new comment) of the composite classifier. In this example, we have 7 sub-classifiers

Empir Software Eng

Table 2 An example of
classifiers voting Classifiers Predicted Label

Sub-classifier 1 SATD comment

Sub-classifier 2 Without SATD

Sub-classifier 3 SATD comment

Sub-classifier 4 SATD comment

Sub-classifier 5 SATD comment

Sub-classifier 6 Without SATD

Sub-classifier 7 Without SATD

Composite classifier SATD comment

trained from 7 different source project. 3 sub-classifiers predict the new comment as with-
out SATD, while 4 sub-classifiers predict the new comment as SATD comment. So the final
output of the composite classifier is “SATD comment” (i.e., the label predicted most often
by its sub-classifiers).

4 Experiment Setup

In this section, we describe the experiment setup that we follow to evaluate the perfor-
mance of our approach. The experimental environment is a computer equipped with Intel(R)
Core(TM) i5-2410M CPU and 4GB RAM, running Windows 7 (64-bit). We first present our
data collection and then present our evaluation metrics. The experiment results and research
questions are presented in the next section.

4.1 Extracting Project Data

To conduct our study, we obtained the data provided by the authors in Maldonado and
Shihab (2015), in addition to four additional projects provided by the same authors. Our
data set contained comments from eight open source projects, namely ArgoUML, Columba,
Hibernate, JEdit, JFreeChart, JMeter, JRuby, and SQuirrel SQL. These provided projects
belong to different application domains, vary in size and the number of contributors, and
vary in the number of comments. The provided dataset contained each comment as well as
the classification of the comment, i.e., SATD comment or not.

In their prior work, the authors describe a number of heuristics that they applied to elimi-
nate comments that are obviously impossible to be SATD comment (Maldonado and Shihab
2015). We refer the reader to the authors’ earlier work for details on the data, however,
to make our paper self-contained, we also summarize the key aspects used to arrive at the
dataset we used. The authors in Maldonado and Shihab (2015) apply the following heuristic
rules to remove irrelevant comments:

1. Automatically generated comments with fixed format (i.e., Auto-generated construc-
tor stubs, auto-generated method stubs and auto-generated catch blocks), which are
inserted as part of code snippets by the IDE to generate constructors, methods, and try
catch blocks, are removed.

2. Commented source code fragments do not contain SATD, thus they are removed.

Empir Software Eng

Table 3 Summary of projects in our dataset

Project Domain Contributors LoC Comment Ratio

ArgoUML UML Modeling Tool 87 926K High

Columba Email Client 10 155K High

Hibernate ORM Framework 314 703K Low

JEdit Text Editor 57 310K Average

JFreeChart Char Library 19 317K High

JMeter Performance Tester 41 354K Average

JRuby Ruby Interpreter 374 841K Low

SQuirrel SQL Client 40 708K Average

3. Multiple single line comments that are related to each other are grouped into a block
comment. This is done since the comments need to be analyzed to indicate whether
they contain SATD or not, and having a part of a comment makes it difficult to analyze
and gain any context.

4. Javadoc and licence comments rarely mention SATD, thus they were removed
unless they contained at least one task annotation (i.e., “TODO:”, “FIXME:”, or
“XXX:”) (Storey et al. 2008).

Leveraging the aforementioned heuristics and removing duplicate comments (i.e., if the
text contents of multiple comments are completely the same, we only keep one comment)
reduced the number of comments significantly. For example, in the ArgoUML project, the
number of comments reduces from 67,716 to 5,606.

4.2 Manual Classification

After obtaining the filtered comments the authors in Maldonado and Shihab (2015) manu-
ally examined each comment and classified the comments based on whether the comment is
a SATD comment or not.3 To mitigate personal bias, the authors took a stratified sample of
the full dataset, which is a sample that achieves a confidence level of 99% and a confidence
interval of 5%. Then they got another independent person to classify the stratified sample
of the comments and measured the level of agreement between the two manual classifiers.
They report a high level of agreement (Cohen’s Kappa coefficient (Cohen 1968) of +0.81),
which makes us confident in the classification of the provided dataset.

4.3 Data Summary

Table 3 presents the summary of 8 projects in our dataset. The columns correspond to the
name of project, the domain of application, the number of contributors, the number of lines
of code (LOC), and the comment quality. All the information in Table 3 are collected from
Open Hub,4 an on-line community and public directory that offers analytics, search ser-
vices and tools for open source software. Note that “Comment Ratio” represents the ratio of

3The authors also classify the type of technical debt, but we do not leverage the type in our paper
4https://www.openhub.net

https://www.openhub.net

Empir Software Eng

Table 4 Statistics of collected comments

Project Release Comments after filtering SATD % of SATD features

ArgoUML 0.34 67,716 5,606 1,149 20.5% 3,777

Columba 1.4 33,895 4,123 161 3.9% 2,687

Hibernate 3.3.2 11,630 2,543 428 16.8% 2,479

JEdit 4.2 16,991 4,683 234 5.0% 3,926

JFreeChart 1.0.19 23,474 2,502 109 4.4% 2,017

JMeter 2.10 20,084 4,184 318 7.6% 2,777

JRuby 1.4.0 11,149 3,731 462 12.4% 2,961

SQuirrel 3.0.3 27,474 4,498 226 5.0% 3,365

comment lines to code lines, where “High” means the project is well-commented, “Average”
means the project contains the same ratio of comments as the majority of Java projects in
Open Hub, and “Low” means the project contains low ratio of comments. We choose these
projects because they apply in different domains, vary in size and the number of contribu-
tors, and also vary in the number of comments. Thus, we believe it offers a good opportunity
to test whether our approach is generalizable.

Table 4 presents the statistics of the collected comments in our dataset. The columns cor-
respond to the name of projects, the release version, the number of original comments, the
number of comments after filtering with the heuristic rules, the number of SATD comments,
the percentage of SATD comments, and the number of unique features in each project. It
is important to note that the percentage of SATD comments in each project is quite low
(i.e., the percentage ranges between 3.9% and 20.5%, with an average of 9.45%). We refer
to this as the class imbalance phenomenon (He and Garcia 2009). Moreover, a recent sur-
vey by Vassallo et al. showed that software practitioners often use SATD to highlight poor
implantation areas (Vassallo et al. 2016). This prior work shows that SATD is a practically
important issue that has negative impact.

Finally, to enable others to use our techniques, we have published our source code and
dataset on GitHub.5

4.4 Evaluation Metrics

Based on the training dataset, our approach will classify each comment in the testing dataset.
We record four basic statistics based on the four possible classification results: TP (true
positive) represents the number of comments that are classified as SATD comments when
they truly are SATD comments; FP (false positive) represents the number of comments
that are classified as SATD comments when they actually are without SATD. FN (false
negative) represents the number of comments that are classified as without SATD when they
actually are SATD comments; TN (true negative) represents the number of comments that
are classified as without SATD when they truly are without SATD.

Using these four statistics, we compute Precision, Recall, and F1-score to evaluate the
performance of our approach. They are defined as follows:

5https://github.com/tkdsheep/TechnicalDebt

https://github.com/tkdsheep/TechnicalDebt

Empir Software Eng

Precision the proportion of comments that are correctly classified as SATD comments
among those classified as SATD comments.

P = T P/(T P + FP) (5)

Recall the proportion of SATD comments that are correctly classified among those true
SATD comments.

R = T P/(T P + FN) (6)

F1-score a summary measure that combines both precision and recall - it evaluates if an
increase in precision (recall) outweighs a reduction in recall (precision).

F = (2 × P × R)/(P + R) (7)

A higher precision indicates that the SATD comments identified by the approach are
more likely to be true SATD comments, which can help developers detect SATD more
effectively and avoid wasting time on manual checking comments without SATD. However,
high precision does not guarantee that the approach can detect all SATD comments. On the
other hand, a higher recall indicates that the approach can find more comments that truly
contain SATD, which can help developers find more problems and avoid missing important
technical debts. However, high recall does not guarantee that all SATD comments identified
by the approach are true SATD comments.

In many cases, high precision indicates the sacrifice of recall, and vice versa (Han et al.
2006). Therefore, it depends on the practitioner’s requirement and resources to decide the
importance of precision and recall. For example, if developers want to detect SATD com-
ments as much as possible and they have enough time or human resources to manually check
and fix SATD comments identified by the automatic approach, then recall should be more
important than precision. If developers only have limited time or human resources, and do
not want to waste time on checking incorrectly identified SATD comments, then precision
should be more important than recall.

Since there is a trade-off between precision and recall, it is difficult to compare the
performance of several classification models by using only precision or recall alone (Han
et al. 2006). For this reason, we compare the classification results using F1-score, which
is a harmonic mean of precision and recall. This follows the setting used in prior software
engineering papers (Arisholm et al. 2007; Rahman et al. 2012; Jiang et al. 2013; Shihab
et al. 2013; Valdivia Garcia and Shihab 2014; Xia et al. 2016a, b; Xia et al. 2015a, b; Xu
et al. 2016c). However, to make our paper self-contained, besides reporting F1-score, we
also report the corresponding precision and recall in experiment results.

Due to space limitation, we report precision, recall and f1-score in separate tables. It is
important to note that the precision, recall and f1-score are calculated from the same exper-
iment results under the same experiment settings (e.g., in Table 5, our approach achieves
precision of 0.804 on ArgoUML project, and the corresponding recall on ArgoUML project
is 0.854, as shown in Table 6).

5 Experiment Results

In this section, we present our experiment results which answer a number of research
questions. We present these questions and their answers in the following subsections.

Empir Software Eng

Table 5 Precision of our
approach and all baseline
approaches

Target Ours Pattern NBM SVM kNN bestSub NLP

ArgoUML 0.804 0.750 0.564 0.690 0.766 0.706 0.726

Columba 0.770 0.818 0.286 0.857 0.531 0.556 0.677

Hibernate 0.832 0.900 0.451 1.000 0.736 0.686 0.565

jEdit 0.702 0.857 0.309 0.000 0.475 0.422 0.473

JFreeChart 0.606 0.833 0.209 0.333 0.337 0.405 0.516

JMeter 0.797 0.778 0.328 1.000 0.620 0.522 0.503

JRuby 0.826 0.750 0.434 0.900 0.781 0.635 0.589

SQuirrel 0.708 0.471 0.250 0.952 0.538 0.436 0.325

Average. 0.756 0.770 0.354 0.717 0.598 0.537 0.547
The best precision is in bold

5.1 RQ1: How Effective is our Text Mining Approach in Identifying SATD?
How Much Improvement can it Achieve Over Baseline Approaches?

Motivation Our goal is to provide an approach that can automatically classify SATD com-
ments. However, for this approach to be useful, one of the first questions is to see how
effective it is in performing its detection and whether it can perform as well as, or better than
baseline approaches. Answering to this research question would shed light on how much
our approach advances the state-of-the-art in the detection of SATD.

Approach To compare the performance of our approach, we choose 4 baseline approaches,
which are listed below.

Baseline 1 (Pattern) The current state-of-the-art in detecting SATD is devised by Potdar
and Shihab (2014). In their work, they collected data from 4 open source projects (i.e.,
Eclipse, Chromium OS, Apache HTTP Server, and ArgoUML) and manually read through
101,762 code comments to determine patterns that indicated SATD. In total, they identified
62 different comment patterns (i.e., keywords and phrases) that were noticed as recurrent in
SATD comments. In their pattern based approach, a comment would be classified as SATD
comment if and only if any one of the 62 patterns appears in the text content of the comment.

Table 6 Recall of our approach and all baseline approaches

Target Ours Pattern NBM SVM kNN bestSub NLP

ArgoUML 0.854 0.028 0.712 0.030 0.330 0.834 0.897

Columba 0.836 0.070 0.820 0.047 0.203 0.820 0.688

Hibernate 0.748 0.072 0.801 0.056 0.318 0.769 0.610

jEdit 0.410 0.185 0.631 0.000 0.195 0.554 0.446

JFreeChart 0.792 0.050 0.703 0.020 0.307 0.762 0.485

JMeter 0.766 0.050 0.699 0.043 0.348 0.755 0.624

JRuby 0.856 0.055 0.76 0.023 0.232 0.841 0.580

SQuirrel 0.602 0.040 0.607 0.100 0.284 0.672 0.657

Average. 0.733 0.069 0.717 0.040 0.277 0.718 0.623

The recall is paired with the precision reported in Table 5 under the same conditions

Empir Software Eng

Since they have published these patterns, we simply download them as our first baseline
approach.

Baseline 2 (NBM, SVM and kNN) Since our approach is based on text mining, we
also design another simple baseline approach using text mining techniques. In this base-
line approach, each time we choose 1 project as a target project (i.e., for prediction), then
we integrate all the comments in the other 7 source projects into one dataset that we train
on. We directly build ONE classifier (i.e., without feature selection and classifiers voting
strategy) on this training dataset to identify SATD comments in the target project. Note
that we do not use feature selection in this baseline approach because in RQ3 we will dis-
cuss whether the voting strategy can improve performance, the performance of this baseline
approach with feature selection will be discussed in RQ3. By default, we use Naive Bayes
Multinomial (NBM) as the underlying classifier of our approach, while there are many
other classification techniques. For example, Support Vector Machine (SVM) and k-Nearest
Neighbor (kNN) are also widely used classification techniques (Han et al. 2006). So we
also investigate their performance in our baseline approach. In our experiment, we use the
implementation of NBM, SVM and kNN in Weka (Hall et al. 2009) with default settings,
and we also implement our approach on top of Weka.

Baseline 3 (bestSub) In our approach, we composite sub-classifiers from different source
projects to jointly predict whether a new comment in a target project is a SATD comment or
not. Since the performance of different sub-classifiers may significantly vary, it is possible
that a single sub-classifier trained on a single source project may achieve better performance
than a composite classifier trained on various source projects. Thus, we investigate whether
our approach outperforms the best individual sub-classifier - if it does not, then perhaps we
are proposing a more complicated approach, when a much simpler one can be used, i.e., a
single sub-classifier. Specifically, in this baseline approach, we train a sub-classifier with
selected features for each source project. After that, we directly use this sub-classifier to
predict the label of new comments in target project. We record the performance (i.e., F1-
score, along with the corresponding precision and recall) of each sub-classifier, and pick
out the best result achieved by one of the sub-classifiers to compare with the performance
of our approach.

Baseline 4 (NLP) Most recently, Maldonado et al. (2017) proposed an approach to auto-
matically identify the two most common types of SATD comments (i.e., design debt and
requirement debt). In their work, they built a maximum entropy classifier based on natu-
ral language processing (NLP). Although they used the same dataset and same experiment
setting with ours, we cannot directly compare their experiment results with ours, since
they separately reported the precision, recall and F1-score of each type of SATD comment.
Besides, our dataset also contains other types of SATD comment. To compare the perfor-
mance of their approach with ours, we follow their work to do basic preprocessing (i.e.,
stemming and removing punctuation characters) and build the maximum entropy classi-
fier to predict whether a comment contains SATD or not. Note that they didn’t use feature
selection or ensemble learning in their approach.

Finally, to check if the improvement of F1-score of our approach over the baseline
approaches are statistically significant, we run the Wilcoxon signed-rank test (Wilcoxon
1945) at 95% significance level on two competing approaches. We consider that our
approach statistically significantly improves a baseline approach at the confidence level of
95% if the Wilcoxon signed-rank test result (i.e., p-value) is less than 0.05. We also use the

Empir Software Eng

Table 7 F1-score of our approach and all baseline approaches

Target Ours Pattern NBM SVM kNN bestSub NLP

ArgoUML 0.828 0.054 0.629 0.057 0.461 0.756 0.802

Columba 0.801 0.129 0.424 0.090 0.294 0.649 0.682

Hibernate 0.788 0.133 0.577 0.106 0.444 0.693 0.587

jEdit 0.518 0.304 0.415 0.000 0.276 0.459 0.459

JFreeChart 0.687 0.093 0.323 0.037 0.321 0.524 0.500

JMeter 0.781 0.093 0.447 0.082 0.445 0.617 0.557

JRuby 0.841 0.102 0.552 0.046 0.358 0.724 0.584

SQuirrel 0.651 0.073 0.354 0.180 0.371 0.515 0.435

Average. 0.737 0.123 0.465 0.075 0.371 0.591 0.576

Improve. − 499.19% 58.49% 882.67% 98.65% 24.70% 27.95%

p-value − 4.7e-4 5.4e-4 7.8e-5 7.8e-5 0.019 0.010

Cliff’s delta − 1.00 0.91 1.00 1.00 0.63 0.67

The best F1-score is in bold

The F1-score is calculated using the precision and recall in Tables 5 and 6

Cliff’s delta (δ) to quantify the amount of difference between two approaches. The amount
of difference is considered negligiable (| δ |< 0.147), small (0.147 ≤| δ |< 0.33), medium
(0.33 ≤| δ |< 0.474), or large (| δ |≥ 0.474).

Results Tables 5–7 present the experiment results (i.e., precision, recall and F1-score)
of our approach compared with baseline 1 (Pattern), baseline 2 (NBM, SVM and kNN),
baseline 3 (bestSub) and baseline 4 (NLP), respectively. For each target project, the best
results of precision, recall and F1-score are highlighted in bold. The last 3 rows in Table 7
present the improvement of F1-score of our approach over other baseline approaches and
the corresponding p-value.

As for baseline 3, since we only present the performance of the best sub-classifier, to
make our paper self-contained, we also present the full results of baseline 3 in Tables 8,
9 and 10, including the precision, recall and F1-score of using a sub-classifier trained on
a single source project to predict the label of a new comments in a target project. Due to

Table 8 Precision when using a single source project as training data

Target Argo. Col. Hib. JE. JF. JM. JR. SQ. Our Improv.

Argo. − 0.657 0.647 0.659 0.699 0.706 0.642 0.692 0.804 13.88%

Col. 0.249 − 0.438 0.360 0.349 0.556 0.360 0.411 0.770 38.49%

Hib. 0.410 0.588 − 0.581 0.629 0.686 0.575 0.630 0.832 21.28%

JE. 0.252 0.313 0.327 − 0.379 0.348 0.422 0.416 0.702 66.35%

JF. 0.209 0.338 0.368 0.291 − 0.405 0.397 0.246 0.606 49.63%

JM. 0.297 0.436 0.461 0.522 0.512 − 0.477 0.482 0.797 44.38%

JR. 0.428 0.610 0.635 0.534 0.513 0.624 − 0.507 0.826 30.08%

SQ. 0.205 0.286 0.353 0.318 0.435 0.436 0.382 − 0.708 62.39%

Avg. 0.293 0.461 0.461 0.466 0.502 0.537 0.465 0.483 0.756 40.78%

Empir Software Eng

Table 9 Recall when using a single source project as training data

Target Argo. Col. Hib. JE. JF. JM. JR. SQ. Our Improv.

Argo. − 0.739 0.752 0.834 0.824 0.747 0.724 0.804 0.854 2.40%

Col. 0.820 − 0.805 0.820 0.695 0.781 0.797 0.797 0.836 1.95%

Hib. 0.658 0.700 − 0.769 0.714 0.700 0.706 0.724 0.748 −2.73%

JE. 0.554 0.415 0.446 − 0.410 0.328 0.503 0.456 0.410 −25.99%

JF. 0.752 0.752 0.762 0.564 − 0.743 0.762 0.554 0.792 3.94%

JM. 0.677 0.713 0.770 0.755 0.702 − 0.702 0.745 0.766 1.46%

JR. 0.742 0.809 0.841 0.611 0.679 0.836 − 0.548 0.856 1.78%

SQ. 0.632 0.577 0.652 0.672 0.632 0.562 0.582 − 0.602 −10.42%

Avg. 0.691 0.672 0.718 0.718 0.665 0.671 0.682 0.661 0.733 2.09%

The recall is paired with the precision reported in Table 8 under the same conditions

space limitation, the name of each source project is abbreviated, as shown in the first row
of each table. The first column corresponds to each target project, and the last 2 columns
present the result of our approach (i.e., ensemble all sub-classifiers on source projects) and
the improvement over the best sub-classifier. For each target project, the results of the best
sub-classifier are highlighted in bold. For example, when choosing Columba as the target
project, the sub-classifier trained on JMeter achieves the best F1-score of 0.649.

The F1-score achieved by our approach ranges between 0.518 - 0.841, with an aver-
age of 0.737. In comparison, the average F1-score achieved by Potdar and Shihab’s pattern
based approach, NBM, SVM, kNN, bestSub and Maldonado et al.’s NLP-based approach
are 0.123, 0.465, 0.075, 0.371, 0.591 and 0.576, respectively. Among all the classification
techniques in baseline 2, NBM achieves the best performance in terms of F1-score, with an
average of 0.465. That is why we choose NBM as the default underlying classifier in our
approach. We notice that, in each target project, the F1-score achieved by our approach is
higher than any other baseline approach. In summary, on average our approach improves the
F1-scores over Potdar and Shihab’s pattern based approach, NBM, SVM, kNN, bestSub and
Maldonado et al.’s NLP-based approach by 499.19%, 58.49%, 882.67%, 98.65%, 24.70%
and 27.95%, respectively. When comparing our approach with each baseline approach, the

Table 10 F1-score when using a single source project as training data

Target Argo. Col. Hib. JE. JF. JM. JR. SQ. Our Improv.

Argo. − 0.695 0.696 0.736 0.756 0.726 0.681 0.744 0.828 9.52%

Col. 0.382 − 0.567 0.500 0.465 0.649 0.496 0.543 0.801 23.42%

Hib. 0.505 0.639 − 0.662 0.668 0.693 0.633 0.674 0.778 12.27%

JE. 0.347 0.357 0.377 − 0.394 0.338 0.459 0.435 0.518 12.85%

JF. 0.328 0.466 0.497 0.384 − 0.524 0.522 0.340 0.687 31.11%

JM. 0.413 0.541 0.576 0.617 0.592 − 0.568 0.585 0.781 26.58%

JR. 0.543 0.696 0.724 0.570 0.584 0.714 − 0.527 0.841 16.16%

SQ. 0.310 0.383 0.458 0.432 0.515 0.491 0.462 − 0.651 26.41%

Avg. 0.404 0.540 0.556 0.557 0.568 0.591 0.546 0.550 0.737 24.70%

The F1-score is calculated using the precision and recall in Tables 8 and 9

Empir Software Eng

corresponding p-value (all less than 0.05) and cliff’s delta (all larger than 0.474) also indi-
cate that our approach significantly improves F1-score over all the other baseline approaches
by a substantial margin.

It is also important to note that, Potdar and Shihab’s pattern based approach achieves the
best performance in terms of precision, with an average of 0.770. On average, our approach
achieves precision of 0.756, which is very close to their result. However, the recall of their
approach (i.e., 0.069) is much lower than that of our approach (i.e., 0.733). This is the case
since the number of patterns in their approach is still not enough to cover all important
features of SATD comments, thus identifying only a small subset of all the SATD comments
in each target project. Similarly, SVM also achieves relatively high precision (i.e., 0.717)
but with the lowest recall (0.040). One reason is that only a small proportion of comments
are with SATD (e.g., 3.9% comments in Columba project are SATD comments), which
makes SVM prefer to non-SATD comments, thus misclassifying most SATD comments as
non-SATD comments.

Finally, since Potdar and Shihab’s pattern based approach can achieve a high precision,
we would like to investigate whether it is worthwhile to combine these patterns with our
approach. By manually checking the classification results of the pattern based approach
and our approach, we find that most of the SATD comments identified by the pattern based
approach can also be identified by our approach. Specifically, for each target project, the
number of SATD comments that can only be identified by the pattern based approach while
cannot be identified by ours is less than 10. Thus, we believe that there is no need to combine
these patterns with our approach.

For each target project, our approach achieves the best performance in terms of F1-score.
On average across the 8 target projects, our approach achieves F1-score of 0.737, which
significantly improves all the other baseline approaches in a substantial margin.

5.2 RQ2: Does Feature Selection Improve the Performance of our Approach?

Motivation In our approach, for each source project, we apply feature selection to prepro-
cess comments, and then use the selected features to train a classifier. By default, we only
keep the top 10% features with the highest feature selection scores. But the performance of
our approach may vary if different percentage of features are selected. Besides, since a large

Table 11 Precision of our approach with varying percentages of selected features

Target 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Argo. 0.801 0.804 0.770 0.749 0.717 0.707 0.704 0.692 0.697 0.691 0.694

Col. 0.797 0.770 0.731 0.611 0.573 0.575 0.593 0.571 0.563 0.528 0.520

Hib. 0.878 0.831 0.787 0.768 0.724 0.699 0.691 0.665 0.662 0.651 0.663

JE. 0.760 0.702 0.564 0.528 0.533 0.522 0.515 0.475 0.482 0.440 0.416

JF. 0.608 0.606 0.535 0.487 0.462 0.402 0.411 0.428 0.421 0.426 0.439

JM. 0.802 0.797 0.718 0.698 0.594 0.575 0.575 0.553 0.541 0.537 0.527

JR. 0.864 0.826 0.737 0.722 0.693 0.681 0.667 0.669 0.672 0.675 0.674

SQ. 0.734 0.708 0.635 0.563 0.545 0.537 0.534 0.532 0.502 0.489 0.477

Avg. 0.781 0.756 0.685 0.641 0.605 0.587 0.586 0.573 0.568 0.555 0.551

The best precision is in bold

Empir Software Eng

Table 12 Recall of our approach with varying percentages of selected features. The recall is paired with the
precision reported in Table 11 under the same conditions

Target 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Argo. 0.883 0.854 0.812 0.773 0.780 0.748 0.749 0.728 0.699 0.693 0.684

Col. 0.797 0.836 0.828 0.797 0.797 0.805 0.820 0.812 0.805 0.797 0.797

Hib. 0.745 0.748 0.745 0.745 0.743 0.703 0.711 0.716 0.711 0.716 0.716

JE. 0.374 0.410 0.431 0.431 0.456 0.492 0.518 0.492 0.492 0.508 0.472

JF. 0.752 0.792 0.762 0.762 0.723 0.713 0.733 0.703 0.713 0.713 0.713

JM. 0.777 0.766 0.741 0.762 0.748 0.723 0.720 0.720 0.709 0.713 0.695

JR. 0.713 0.856 0.828 0.833 0.849 0.836 0.830 0.812 0.825 0.815 0.815

SQ. 0.617 0.602 0.597 0.602 0.657 0.612 0.587 0.582 0.557 0.567 0.567

Avg. 0.707 0.733 0.718 0.713 0.719 0.704 0.709 0.696 0.689 0.690 0.682

The best precision is in bold

number of features are removed during the feature selection phase, it is possible that some
features with important semantic information are also removed, which may impact the per-
formance of our approach. Therefore, we investigate whether feature selection improves the
performance of our approach.

Approach To answer this research question, we vary the number of selected features from
10% to 100% (with a step of 10%) of the total number of features and compute the corre-
sponding precision, recall and F1-score of our approach. Additionally, we also investigate
the performance of our approach when selecting 5% features. Notice that feature selection
is actually useless when we select 100% features. To further investigate the impact of fea-
ture selection, we also compare the performance of our approach with and without feature
selection (i.e., selecting 10% features vs. 100% features).

Results Tables 11, 12 and 13 present the precision, recall and F1-score of our approach
on each target project when selecting different percentage of features. The results show
that, for each target project, our approach achieves the best performance in terms of F1-
score when selecting the top 5% or 10% features. We also plot the resultant F1-scores for

Table 13 F1-score of our approach with varting percentages of selected features

Target 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Argo. 0.840 0.828 0.791 0.761 0.747 0.727 0.726 0.709 0.698 0.692 0.689

Col. 0.797 0.801 0.777 0.692 0.667 0.671 0.689 0.671 0.662 0.636 0.630

Hib. 0.806 0.788 0.766 0.756 0.733 0.701 0.701 0.690 0.685 0.682 0.689

JE. 0.502 0.518 0.488 0.475 0.492 0.507 0.517 0.484 0.487 0.471 0.442

JF. 0.673 0.687 0.629 0.595 0.564 0.514 0.527 0.532 0.529 0.533 0.543

JM. 0.789 0.781 0.729 0.729 0.662 0.641 0.639 0.626 0.613 0.613 0.599

JR. 0.781 0.841 0.780 0.773 0.763 0.750 0.740 0.733 0.741 0.738 0.738

SQ. 0.670 0.651 0.615 0.582 0.596 0.572 0.559 0.556 0.528 0.525 0.518

Avg. 0.732 0.737 0.697 0.670 0.653 0.635 0.637 0.625 0.618 0.611 0.606

The best F1-score is in bold

The F1-score is calculated using the precision and recall in Tables 11 and 12

Empir Software Eng

Fig. 2 F1-score of each target project with different percentage of selected features

each target project in Fig. 2. From Fig. 2, we can notice a general trend: on average across
the 8 target projects, the F1-score decreases when we increase the percentage of selected
features. One evident exception is JEdit project. Unlike other projects, the F1-score curve for
JEdit fluctuates. Especially when selecting 60% features, our approach achieves F1-score
of 0.517 on JEdit, which is very close to the result when selecting 10% features (i.e., 0.518).
One reason is that the feature distribution in JEdit is quite different from other projects.
Thus, some features with important semantic information for JEdit are mistakenly removed
during feature selection, since they do not contribute much to distinguish SATD comments
in training data.

Table 14 presents the comparison of precision, recall and F1-score of our approach with
and without feature selection. When applying our approach without feature selection, the
F1-score ranges between 0.442 and 0.738, with an average of 0.606. In comparison, the
full version of our approach improves F1-score over the version without feature selection
in every target project. On average, our approach improves F1-score by 21.62%. Similarly,
on average, our approach improves precision and recall by 37.21% and 7.48%, respectively.

Table 14 Comparison of precision, recall and F1-score of our approach with and without feature selection

Target Precision Recall F1-score

NoFS Our Improv. NoFS Our Improv. NoFS Our Improv.

Argo. 0.694 0.804 15.85% 0.684 0.854 24.85% 0.689 0.828 20.17%

Col. 0.520 0.770 48.08% 0.797 0.836 4.89% 0.630 0.801 27.14%

Hib. 0.663 0.832 24.49% 0.716 0.748 4.47% 0.689 0.788 14.37%

JE. 0.416 0.702 68.75% 0.472 0.410 −13.14% 0.442 0.518 17.19%

JF. 0.439 0.606 38.04% 0.713 0.792 11.08% 0.543 0.687 26.52%

JM. 0.527 0.797 51.23% 0.695 0.766 10.22% 0.599 0.781 30.38%

JR. 0.674 0.826 22.55% 0.815 0.856 5.03% 0.738 0.841 13.96%

SQ. 0.478 0.708 48.12% 0.567 0.602 6.17% 0.518 0.651 25.68%

Avg. 0.551 0.756 37.21% 0.682 0.733 7.48% 0.606 0.737 21.62%

The improvement is in bold

Empir Software Eng

We also apply Wilcoxon signed-rank test to check if the improvement in the F1-score of our
approach over the approach without feature selection is statistically significant. We find that
the corresponding p-value is 0.023 (less than 0.05), which indicates that feature selection
can significantly improve the F1-score of our approach.

We also notice that, when JEdit is chosen as the target project, using feature selection
cannot improve recall. The recall of our approach decreases by 13.14% compared to the
version without feature selection. To gain insight into this case, we manually checked the
SATD comments that are not successfully identified by our approach. We find that some
important features (e.g., “nasty”, “wtf” and “fudge”), which are highly related to SATD
comments in JEdit project, are actually removed during the feature selection phase. How-
ever, if not using feature selection, it achieves a low precision of 0.416 in JEdit project.
This is because that a large number of noisy features are introduced, which leads to much
more comments being incorrectly identified as SATD comments. Although applying feature
selection may decrease recall, the improvement on precision is much more significant (i.e.,
from 0.416 to 0.702 in JEdit project, with an improvement of 68.75%). Thus, considering
the trade-off between precision and recall, feature selection is still useful in general.

For each target project, our approach achieves the best performance in terms of F1-score
when selecting the top 5% or 10% features. In general, our approach achieves better per-
formance when selecting less features. On average, our approach improves F1-score over
the version without feature selection by 21.62%. Thismeans that our approach can provide
superior performance, while reducing the amount of data we need to train on.

5.3 RQ3: Can Classifiers Voting Improve the Performance of our Approach?

Motivation In our approach, we train an individual sub-classifier for each source project,
and then combine them as a composite classifier to vote for the comments in the target
project. However, when using just one source project as training data, the corresponding
sub-classifier may bias to some domain-specific features which is negligible in the target
project. Another way to leverage training data is integrating all comments from all the 7
source projects (we leave 1 target project as the test set) into a whole dataset to train a
single classifier, in which voting strategy is not needed. Therefore, we investigate whether
the voting strategy improves the performance of our approach.

Approach To answer this research question, we compare the performance of our approach
with and without voting strategy. More specifically, we integrate all the comments in every
source project into a whole dataset for training. Different from the baseline approach in
RQ1, here we apply feature selection (with the same setting of our approach) before training
classifier. We use NBM as the underlying classifier.

Results Table 15 presents the comparison of precision, recall and F1-score of our approach
with and without classifier voting. When applying our approach without voting strategy,
the F1-score ranges between 0.447 and 0.732, with an average of 0.590. In comparison,
for each target project, the full version of our approach improves the F1-score over the
version without classifiers voting. On average, our approach improves F1-score by 24.92%.
Similar to the situation in RQ2 and RQ3, our approach sacrifice a bit of recall to achieve a
significant improvement in precision. We also apply Wilcoxon signed-rank test to check if
the improvement in the F1-score of our approach over the approach without voting strategy

Empir Software Eng

Table 15 Comparison of precision, recall and F1-score of our approach with and without voting strategy

Target Precision Recall F1-score

No-V. Our Improv. No-V. Our Improv. No-V. Our Improv.

Argo. 0.701 0.804 14.69% 0.766 0.854 11.49% 0.732 0.828 13.11%

Col. 0.466 0.770 65.24% 0.844 0.836 −0.95% 0.600 0.801 33.5%

Hib. 0.571 0.832 45.71% 0.767 0.748 −2.48%. 0.655 0.788 20.31%

JE. 0.423 0.702 65.96% 0.595 0.410 −31.09% 0.495 0.518 4.65%

JF. 0.379 0.606 59.89% 0.762 0.792 3.94% 0.507 0.687 35.50%

JM. 0.496 0.797 60.69% 0.727 0.766 5.36% 0.590 0.781 32.37%

JR. 0.602 0.826 37.21% 0.815 0.856 5.03% 0.693 0.841 21.36%

SQ. 0.350 0.708 102.29% 0.617 0.602 −2.43% 0.447 0.651 45.64%

Avg. 0.499 0.756 51.50% 0.737 0.733 −0.54% 0.590 0.737 24.92%

The improvement is in bold

is statistically significant. We find that the corresponding p-value is 0.010 (less than 0.05),
which indicates that voting strategy can significantly improve the F1-score of our approach.

By manually checking the classification results of each sub-classifier, we find that dif-
ferent sub-classifiers have different “preferences”. For example, there is an SATD comment
talking about “a hack”, and the sub-classifiers trained from the ArgoUML project can-
not identify this SATD comment while the other sub-classifiers successfully identify it.
One reason is that the training data in the ArgoUML project does not contain necessary
information to let the sub-classifier learn that “hack” has a strong possibility of indicating
SATD comments. However, by combining these sub-classifiers, which are complementary
to each other, they no longer bias to certain kind of SATD comments, thus improving the
performance.

For each target project, our approach improves F1-score over the version without
classifiers voting. On average, our approach improves F1-score by 24.92%

5.4 RQ4: What’s the top-k Features After Feature Selection?

Motivation In our approach, we use feature selection to select features that contain more
information for classification. So it gives us an opportunity to shed light on what words lead
to a comment being classified as SATD. Answering this research question can help us better
understand the nature of SATD, and provide an intuition behind how our approach works to
identify SATD comments.

Approach To answer this research question, for each project, we apply feature selection
and present the top 30 features with the highest information gain scores.

Results Table 16 presents the top 30 features (i.e., words) after feature selection on each
project. Note that the information gain score indicates the amount of information carried
by a word for predicting a label (i.e., with or without SATD). Therefore, a word with high
information gain score does not necessarily mean that it indicates SATD. Thus, we manually

Empir Software Eng

Table 16 Top 30 features after feature selection on each project

ArgoUML Columba Hibernate JEdit JFreeChart JMeter JRuby SQuirrel

todo todo todo thi todo todo todo todo

thi author thi should fixm thi fixm thi

should fdietz should hack thi should thi some

need fixm better note implement hack sss wai

tfm implement here workaround properli perhap line hack

param thi wai need state why should should

return hubm yuck method shift realli here not

see should ugli here ugli wai probabl that

us better would could timezon correct hack workaround

that workaround realli work hack appear but bit

author work hack that realli best need implement

here want workaround but idea make not us

modelext param fix and could improv better problem

creat dont move elimin method more mai and

why wai around us interfac doe into dialect

implement hack need probabl block what make with

model that doe namespace attribut fix somewher what

and us perhap todo render notus gross more

can nonjavadoc fixm stupid should class from author

code manual onc wai make could move like

what webstart work class half seem some out

uml real packag xxx ye need effici why

method though first implement probabl fixm wai jason

move there into resolv strictly consid check can

where becaus bug fix think effici right need

better here bit rewritten wherea mayb would method

not extend depend then ill allow realli db

more know why code need error could when

but dialog done broken here better go code

instanc replac ineffici realli swt here dont handl

Frequent features are in bold

check each word in Table 16 and pick out the words (highlighted in bold) that appears
frequently in SATD comments.

From the results, we first find that different projects may share some common patterns
(i.e., keywords) that indicate SATD comments, such as “todo”, “fixme”, “workaround”,
“implement”, “hack”, etc. But the frequency of these words in different projects may vary.
For example, for a temporary fix, some developers prefer to use the word “hack”, while
some other developers prefer to use the word “workaround”. Besides, it is important to
note that these words may also appear in non-SATD comments. For example, when the
word “implement” appears in non-SATD comments, it may indicate that the developer has
written the code to implement some functions (e.g., “Implements backspace functional-
ity”). While in SATD comments, the word “implement” usually indicates that the developer

Empir Software Eng

needs to implement some functions but hasn’t done it yet(e.g., “Bunch of methods still not
implemented”).

We also find that when writing SATD comments, some developers prefer to use senti-
mental words (e.g., yuck, ugly, stupid, ill, etc). By manually reading these SATD comments,
we find that in most cases, developers are forced to make quick fixes or implementations
(e.g., as indicated by the comment “This is really ugly, but necessary”). Also, these words
rarely appear in non-SATD comments unless developers want to state that they want to
avoid writing bad quality code (e.g., “guard against something really stupid”).

We find some common patterns that appear in SATD comments of different projects. We
also find that when writing SATD comments, some developers prefer to express their
opinions in an emotional way.

5.5 RQ5: What’s the Performance of our Approach if Using Comments Within
the Target Project as Training Data?

Motivation Our approach simulates a realistic scenario that the classification system is
trained on existing comments from old source projects and then a new target project appears.
If we deploy such a system on a new target project, more and more comments would be
identified by the system over time, and new SATD comments would also emerge. In this
situation, we would like to know whether it is worth retraining the system to account for all
these new comments, or to just stick with the default training set. Answering this research
question would provide useful guidance for practitioners on how to leverage new data to
improve the classification system.

Approach To answer this question, for each target project, we perform stratified 10-fold
cross-validation. Specifically, given a target project, we first randomly shuffle the dataset
and equally divide the dataset into 10 folds, where each fold contains nearly equal propor-
tion of comments belonging to each label (i.e., with or without SATD). Then we perform
10 evaluation rounds with different testing dataset; in each round, 9 folds are used as train-
ing dataset, and the remaining one fold is used as testing dataset. We aggregate the results
of the 10 evaluation rounds and report the overall performance. Stratified cross-validation
is a standard evaluation setting, which is widely used in software engineering studies
(Valdivia Garcia and Shihab 2014; Shihab et al. 2013; Xia et al. 2013). Since stratified
10-fold cross-validation involves randomness, to increase the confidence of the results, we
repeat it 10 times and report the average results.

Results Table 17 presents the results of precision, recall and F1-score when using com-
ments within the target project as training data. Specifically, “Within” means we only use
comments within the target project to train a classifier (using NBM and feature selection).
“Our” means our original approach, which only uses comments from the other 7 source
projects as training data to train 7 sub-classifiers (using NBM and feature selection) and
vote to decide the label of a comment in testing dataset. “W+O” means we combine the
classifier trained on the target project with the other 7 sub-classifiers trained on 7 source
projects so that there would be 8 sub-classifiers when voting. For each target project, the
highest precision, recall and F1-score are highlighted in bold.

The results show that the “Within” approach achieves the highest average recall (i.e.,
0.770). One reason is that the classifier trained on the target project can learn more spe-
cific SATD patterns that rarely appear in other projects. However, the number of comments

Empir Software Eng

in only 1 project is still quite small, which is difficult to train a robust classifier. So the
average precision (i.e., 0.639) of the “Within” approach is still quite lower than the other
2 approaches. On the other hand, when combining “Within” approach with our approach
(i.e., “W+O”), we can achieve the highest precision, with a bit sacrifice of recall. And the
F1-score of “W+O” approach even outperforms our original approach. This indicates that it
is worthwhile to retrain the system to account for all these new comments.

We find that using comments in the target project to train a new sub-classifier and combine
it with our original approach can further improve F1-score.

5.6 RQ6: How Much Memory and Time Does it Take for our Approach to run?

Motivation Although our approach achieves better results in terms of F1-score when com-
pared with other baseline approaches, we haven’t investigated whether our approach can
run efficiently in a reasonable cost of memory and time. Thus, we investigate how much
memory and time it costs our approach to run.

Approach For memory cost, we mainly discuss how many words are reduced after apply-
ing feature selection. We record and compare the total number of words (i.e., duplicate
words are also counted in) in each project before and after feature selection. For time
cost, we record the model building and prediction time of our approach and the baseline
approaches. Model building time refers to the time it takes to convert the training data into
the composite classifier. Prediction time refers to the time it takes to predict the label of a
source code comment.

Result Table 18 presents the total number of words in each project before and after feature
selection. The reduction of the total number of words ranges between 32.57% - 76.85%,
with an average of 55.17%. Since than half of the words are reduced after feature selection,
we believe our approach can efficiently reduce memory cost.

Tables 19 and 20 presents the model building and prediction time for each of the 8
target projects. We notice that Potdar and Shihab’s pattern-based approach has the fastest
model building time (i.e., 0.001s on average), since it only needs reading 62 patterns
from file to memory. The model building time of our approach is relatively slow (i.e.,

Table 17 Results of precision, recall and F1-score when using comments within the target project as training
data

Metrics App. Argo. Col. Hib. JE. JF. JM. JR. SQ. Avg.

Precision Within 0.653 0.618 0.726 0.617 0.470 0.728 0.749 0.548 0.639

Our 0.804 0.770 0.832 0.702 0.606 0.797 0.826 0.708 0.756

W+O 0.813 0.827 0.883 0.789 0.670 0.871 0.867 0.777 0.812

Recall Within 0.766 0.898 0.780 0.621 0.762 0.777 0.817 0.736 0.770

Our 0.854 0.836 0.748 0.410 0.792 0.766 0.856 0.602 0.733

W+O 0.819 0.820 0.719 0.385 0.743 0.745 0.817 0.572 0.702

F1-score Within 0.705 0.732 0.752 0.619 0.581 0.751 0.782 0.628 0.693

Our 0.828 0.801 0.788 0.518 0.687 0.781 0.841 0.651 0.737

W+O 0.816 0.824 0.792 0.517 0.704 0.803 0.841 0.659 0.745

The best precision, recall, and F1 scores are in bold

Empir Software Eng

Table 18 Total number of words in each project before and after feature selection

FS Argo. Col. Hib. JE. JF. JM. JR. SQ. Avg.

Before 73,179 31,258 28,823 29,665 20,143 40,601 31,977 57,541 39,148

After 49,347 11,055 73,83 14,709 4,663 10,918 13,621 28,699 17,549

Reduce 32.57% 64.63% 74.39% 50.42% 76.85% 73.11% 57.40% 50.12% 55.17%

22.884s on average), since feature selection is time-consuming. However, we believe it is
still acceptable since our model does not need to be updated all the time, and it can be
applied to label many comments in new projects. On the other hand, our approach has the
fastest prediction time. More specifically, the prediction time of text mining-based baseline
approaches are much longer than our approach. One reason is that after feature selection, our
approach can train classifiers using a small subset of features, making it more lightweight in
prediction.

Our approach can reduce total number of words by 55% on average. The model building
and prediction time for our approach are also reasonable.

6 Discussion

In this section, we first discuss the implications of our study. Then we discuss threats to
validity.

6.1 Implications for Practitioners

For project managers, our approach can help them evaluate project quality more compre-
hensively, thus making better decisions (e.g., whether to release or not). For developers, our
approach can remind them the existence of historical SATD in case of being left forgotten.
For newcomers who are just taking over previous work from other developers, our approach
can also inform them of existing SATD comments so that they can handle potential issues
more efficiently.

Our approach needs historical comments for training and practitioners can easily collect
comments from software repositories. But in practice, it is possible that a project does not
have enough comments with correct label (i.e., with or without SATD). To solve this prob-
lem, our experiment simulates the realistic scenario that the system is trained on existing
comments from old projects and then a new project appears for testing. The experiment
results show that SATD comments in different projects may share some common patterns

Table 19 Model building time for our approach, Potdar and Shihab’s pattern-based approach, NBM
baseline, SVM baseline and kNN baseline (in seconds)

App. Argo. Col. Hib. JE. JF. JM. JR. SQ. Avg.

Our 24.466 24.307 23.417 21.268 23.750 22.561 21.970 21.333 22.884

Pattern 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

NBM 3.979 2.078 1.561 1.265 1.070 1.014 1.061 0.999 1.628

SVM 47.754 49.582 48.580 49.467 54.933 47.247 50.059 48.194 49.477

kNN 4.012 1.987 1.108 1.061 1.076 1.326 1.031 0.967 1.571

Empir Software Eng

Table 20 Model prediction time for our approach, Potdar and Shihab’s pattern-based approach, NBM
baseline, SVM baseline and kNN baseline (in seconds)

App. Argo. Col. Hib. JE. JF. JM. JR. SQ. Avg.

Our 0.031 0.001 0.015 0.015 0.016 0.016 0.016 0.001 0.014

Pattern 0.064 0.047 0.094 0.001 0.001 0.016 0.015 0.016 0.032

NBM 0.142 0.078 0.036 0.048 0.015 0.016 0.016 0.016 0.046

SVM 5.727 5.243 3.201 6.053 3.121 5.414 4.383 6.120 4.908

kNN 35.195 28.098 25.589 28.539 18.134 32.161 23.543 27.880 27.392

and our approach is practical in such scenario. Also, our approach is scalable in use. For
example, with more and more SATD comments identified by the system, practitioners can
choose to retrain the model by adding these new SATD comments.

6.2 Implications for Researchers

Our approach pushes the frontier of research in identification of SATD. While most of
the current empirical work (e.g., Wehaibi et al. (2016) and Bavota and Russo (2016)) of
SATD are based on the 62 patterns summarized in Potdar and Shihab’s work (Potdar and
Shihab 2014), our experiment results show that Potdar and Shihab’s pattern based approach
only achieves an average recall of 0.069, which indicates that a large number of SATD
comments cannot be identified by these patterns. Compared with that, our approach can
identify more SATD comments while preserving a high precision. Thus, we believe that our
work highlights an opportunity for further study to gain more insights into SATD.

6.3 Threats to Validity

Threats to internal validity relates to errors in our code and personal bias in manual classifi-
cation of training comments. To reduce errors in our code, we have double checked and fully
tested our code, still there could be errors that we did not notice. To reduce personal bias in
manual classification of code comments, the authors in Maldonado and Shihab (2015) took
a statistically significant sample of classified comments and asked an independent masters
student, who is not an author of their paper, to manually classify them. Then, reported a
high level of agreement between the classification given by the two different students, i.e.,
Cohen’s kappa coefficient of +0.81. This gives us high confidence in the dataset provided
to us and used in our paper.

Threats to external validity relates to the quantity and quality of our dataset. To guarantee
quantity and quality of our dataset, we use 8 open source projects that vary in the number
of comments. In total, we have analyzed 31,870 comments. However, all the 8 projects are
developed by open source communities, it is still unclear whether our approach is general-
izable when applying to projects in a company. Since open source communities are highly
transparent and developers are usually forced to do a lot of communication through the
source code (as they are distributed), they are more likely to admit technical debt in com-
ments. In contrast, it is possible that developers in a company are hesitant to admit technical
debt in the source code, as it might put them in bad light - thus affecting both salaries
and job security in general. So in this paper, we only focus on the scope of “Open Source
Projects”. Besides, although 8 projects are analyzed, all of them are medium-sized desktop
applications implemented in Java. There are still many other projects in different domains

Empir Software Eng

not considered in our paper. In the future, we plan to reduce this threat further by analyzing
even more comments from additional software projects.

Threats to construct validity refers to the suitability of our evaluation metrics. We use pre-
cision, recall and F1-score which are also used by past studies to evaluate the performance
of various automated software engineering techniques (Arisholm et al. 2007; Rahman et al.
2012; Jiang et al. 2013; Shihab et al. 2013; Valdivia Garcia and Shihab 2014). Thus, we
believe there is little threat to construct validity.

7 Related Work

In our work, we apply text mining to detect SATD from source code comments. Therefore,
we divide the related work into three categories: technical debt, source code comments and
text mining in software engineering.

7.1 Technical Debt

There have been a number of studies on detection and management of technical debt. For
example, Zazworka et al. evaluated how the technical debt list can be populated by devel-
opers through a common template, and how existing tool approaches can help to identify
certain types of debt. The technical debt items identified by both approaches were catego-
rized under defect debt, design debt, documentation debt, testing debt and usability debt.
They found that code smells, automatic static analysis and code metrics are effective to
automatically identify defect debt and a partial set of files with design debt (Zazworka et al.
2013). In their follow-on work, they investigated how design debt, in the form of god classes,
affects the maintainability and correctness of software products. Their findings suggest that
technical debt has a negative impact on software quality (Zazworka et al. 2011). Kruchten
et al. presented an in-depth understanding of the definition of technical debt, the limits
of the metaphor, and the criteria to discriminate what is technical debt and not (Kruchten
et al. 2013). For example, they argue that technical debt is not simply bad quality and it
can be a wise investment. Guo et al. explored the effect of technical debt by tracking a
single delayed maintenance task in a real software project throughout its lifecycle and sim-
ulated how explicit technical debt management might have changed project outcomes (Guo
et al. 2011). They argued that software manager should perform detailed cost-benefit anal-
ysis of the technical debt item when they make their decisions. Seaman et al. (2012) and
Brown et al. (2010) summarized a number of properties of technical debt, including visibil-
ity, value, origin of debt, impact of debt, etc. They also investigated how can technical debt
assist in project decision-making.

Recently, Potdar and Shihab (2014) proposed the concept of self-admitted technical
debt (SATD), which considers debt that is intentionally introduced (e.g., quick or tempo-
rary fixes) by developers and explicitly recorded in source code comments. In their work,
they manually classified more than 100k comments and summarized 62 patterns that indi-
cated SATD. By leveraging these patterns, a number of researchers further investigated
different properties of SATD. For example, Maldonado and Shihab (2015) found that self-
admitted technical debt can be classified into five main types - design debt, defect debt,
documentation debt, requirement debt and test debt. Bavota and Russo (2016) conducted
a large-scale empirical study on SATD and found that 25% of the SATD automatically
identified by using the 62 patterns are likely to represent false positives. However, they
didn’t investigate how many true SATD comment are not identified by patterns (i.e., false

Empir Software Eng

negatives). Wehaibi et al. (2016) examined the relationship between SATD and software
quality. They highlighted that although technical debt may have negative effects, its impact
is not only related to defects, rather making the system more difficult to change in the
future.

Inspired by the prior work, we also leverage source code comments to detect SATD.
However, our approach is based on text mining, which is different from theirs. Besides, our
approach achieves better performance, especially in terms of recall, which can help detect
more SATD that are mistakenly ignored by Potdar and Shihab’s pattern-based approach.

Most recently, Maldonado et al. (2017) proposed an approach to automatically identify
SATD in a finer granularity (i.e., what type of SATD it is). Specifically, their approach
would identify a comment as SATD on design, SATD on requirement or non-SATD. The
problem studied in our work is different from theirs; we focus on identifying whether a
comment contains SATD, which also includes other types of SATD (i.e., defect debt, doc-
umentation debt and test debt). Our approach is also different from theirs; they built a
maximum entropy classifier based on natural language processing (NLP), and they didn’t
use feature selection or ensemble learning. However, the NLP-based approach can also be
applied to our problem, and we compared its performance with ours in RQ1. The experi-
ment results show that our approach outperforms the NLP-based approach, with an average
improvement of 27.95% in terms of F1-score. Finally, compared with Maldonado et al.’s
work, we perform empirical study on SATD comments in different perspectives and present
different findings. Thus, we believe our work could be a complement to Maldonado et al.’s
work.

7.2 Source Code Comments

A number of previous work on source code comments focused on investigating the relation-
ship between comments and code. For example, Tan et al. proposed a tool called iComment
to automatically analyze comments written in natural language to extract implicit program
rules, and then they use these rules to automatically detect inconsistencies between com-
ments and source code, indicating either bugs or bad comments (Tan et al. 2007). In their
follow-on work, they studied the inconsistencies between Javadoc comments and method
bodies (Tan et al. 2012). Malik et al. presented a large empirical study to better under-
stand the rationale for updating comments, and they used the Random Forests algorithm
to accurately predict the likelihood of a comment being updated (Malik et al. 2008). Fluri
et al. proposed an approach to map code and comments to observe their co-evolution over
multiple versions (Fluri et al. 2007).

Other work focused on using comments to assist in software development and main-
tenance. For example, Khamis proposed an automatic approach for assessing the quality
of inline documentation using a set of heuristics, targeting both quality of language
and consistency between source code and its comments (Khamis et al. 2010). Padioleau
et al. studied 1,050 comments randomly sampled from Linux, FreeBSD, and Open-
Solaris and found that 52.6% of these comments could be leveraged for improving
reliability (Padioleau et al. 2009). Storey et al. investigated how task annotations can
be used to support a variety of activities fundamental to articulation work within soft-
ware development. They found that the use of task annotations varies from individuals to
teams and if incorrectly managed, could negatively impact the maintenance of a system
(Storey et al. 2008).

Our work is different from these prior work, since we focus on identifying SATD
through source code comments. Although Potdar and Shihab (2014) also used source code

Empir Software Eng

comments to detect SATD, our approach is based on text mining, which is different from
their pattern-based approach.

7.3 Text Mining in Software Engineering

There have been a number of studies on text mining in different areas of Software Engi-
neering (Sun et al. 2010; Sun et al. 2011; Nguyen et al. 2012; Marcus and Maletic 2003;
Haiduc et al. 2010; Zhou et al. 2012; Tian et al. 2012; Yang et al. 2017; Xia et al. 2017;
Xia et al. 2015c, d; Yang et al. 2016; Zhang et al. 2016). For example, Sun et al. applied
text mining and extend the similarity formula “BM25F” to accurately detect duplicated
bug reports (Sun et al. 2010; Sun et al. 2011). Nguyen et al. further improved the perfor-
mance by combining topic model with BM25F (Nguyen et al. 2012). Marcus and Maletic
used Latent Semantic Indexing (LSI) to recover traceability links from documentation to
source code (Marcus and Maletic 2003). Haiduc et al. applied automated text summariza-
tion technology to automatically produce simple textual descriptions of source code entities
that developers can grasp easily, while capturing the code semantics precisely (Haiduc et al.
2010). Zhou et al. proposed BugLocator to find source code files that are likely to be rele-
vant to a given bug report (Zhou et al. 2012). BugLocator ranks all files based on the textual
similarity between the initial bug report and the source code using a revised Vector Space
Model (rVSM), taking into consideration information about similar bugs that have been
fixed before. Tian et al. proposed a semi-supervised learning algorithm to identify Linux
bug fixing patches based on the changes and commit messages recorded in code repositories
(Tian et al. 2012).

While we are motivated by these prior work, our work is still different from them since
we apply text mining on source code comments to detect SATD.

8 Conclusion and Future Work

In this paper, we proposed an automated approach to detect self-admitted technical debt in
source code comments. We use comments from a number of different source projects as
training data to predict the label of the comment in a new target project. In our approach,
we first preprocess the text description of all comments and apply feature selection on each
source project to select top 10% features with the highest feature selection scores. Then
we use the selected features to train a sub-classifier on each source project. After that, a
composite classifier is build from these sub-classifiers and it will predict the label of a new
comment in target project. The output of the composite classifier is the label predicted most
often by its sub-classifiers, with ties broken arbitrarily.

To evaluate the performance of our approach, we first collected a dataset of source code
comments from 8 open source projects which have a large number of comments and belong
to different application domains. The experiment results show that, on every target project,
our approach achieves the best performance in terms of F1-score. The F1-score achieved
by our approach ranges between 0.518 - 0.841, with an average of 0.737, which improves
significantly over the baseline methods. On average, our approach improves the F1-scores
over Potdar and Shihab’s approach, NBM baseline, SVM baseline and kNN baseline by
499.19%, 58.49%, 882.67% and 205.81%, respectively.

In the future, we plan to evaluate our approach on datasets from more software projects.
To further improve the performance our approach, we plan to apply deep learning techniques
such as word embedding (Mikolov et al. 2013). We also plan to develop an automated tool

Empir Software Eng

to make the development team being aware of the SATD when it is introduced. Finally, We
plan to contact some contributors in open source projects to ask them about their views on
SATD comments.

Acknowledgements The authors thank to all the developers who participated in this study. This research
was supported by NSFC Program (No. 61602403 and 61572426), and National Key Technology R&D
Program of the Ministry of Science and Technology of China (No. 2015BAH17F01).

References

Arisholm E, Briand LC, Fuglerud M (2007) Data mining techniques for building fault-proneness models in
telecom java software. In: The 18th IEEE international symposium on software reliability (ISSRE’07),
IEEE, pp 215–224

Bavota G, Russo B (2016) A large-scale empirical study on self-admitted technical debt. In: Proceedings of
the 13th international conference on mining software repositories, MSR ’16, pp 315–326

Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140
Brown N, Cai Y, Guo Y, Kazman R, Kim M, Kruchten P, Lim E, MacCormack A, Nord R, Ozkaya I et al

(2010) Managing technical debt in software-reliant systems. In: Proceedings of the FSE/SDP workshop
on Future of software engineering research. ACM, pp 47–52

Cohen J (1968) Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit.
Psychol Bull 70(4):213

Cunningham W (1993) The wycash portfolio management system. ACM SIGPLAN OOPS Messenger
4(2):29–30

Fluri B, Wursch M, Gall HC (2007) Do code and comments co-evolve? On the relation between source
code and comment changes. In: 14th working conference on reverse engineering (WCRE 2007). IEEE,
pp 70–79

Guo Y, Seaman C, Gomes R, Cavalcanti A, Tonin G, Da Silva FQ, Santos AL, Siebra C (2011) Track-
ing technical debtan exploratory case study. In: 2011 27th IEEE international conference on software
maintenance (ICSM). IEEE, pp 528–531

Haiduc S, Aponte J, Marcus A (2010) Supporting program comprehension with source code summarization.
In: Proceedings of the 32nd ACM/IEEE international conference on software engineering-volume 2.
ACM, pp 223–226

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software:
an update. ACM SIGKDD Explorations Newsletter 11(1):10–18

Hall MA (1999) Correlation-based feature selection for machine learning. PhD thesis, The University of
Waikato

Han J, Kamber M, Pei J (2006) Data mining: concepts and techniques. Morgan Kaufmann
He H, Garcia EA (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21(9):1263–1284
Jiang T, Tan L, Kim S (2013) Personalized defect prediction. In: 2013 IEEE/ACM 28th international

conference on automated software engineering (ASE). IEEE, pp 279–289
Khamis N, Witte R, Rilling J (2010) Automatic quality assessment of source code comments: the

javadocminer. In: International conference on application of natural language to information systems.
Springer, pp 68–79

Kruchten P, Nord RL, Ozkaya I, Falessi D (2013) Technical debt: towards a crisper definition report on the
4th international workshop on managing technical debt. ACM SIGSOFT Softw Eng Notes 38(5):51–54

Lim E, Taksande N, Seaman C (2012) A balancing act: what software practitioners have to say about technical
debt. Softw IEEE 29(6):22–27

Maldonado E, Shihab E (2015) Detecting and quantifying different types of self-admitted technical debt.
In: Proceedings of the 7th IEEE international workshop on managing technical debt (MTD’15), pp 9–
15

Maldonado E, Shihab E, Tsantalis N (2017) Using natural language processing to automatically detect self-
admitted technical debt. IEEE Transactions on Software Engineering

Malik H, Chowdhury I, Tsou HM, Jiang ZM, Hassan AE (2008) Understanding the rationale for updating
a functions comment. In: IEEE international conference on software maintenance, 2008. ICSM 2008.
IEEE, pp 167–176

Empir Software Eng

Marcus A, Maletic JI (2003) Recovering documentation-to-source-code traceability links using latent seman-
tic indexing. In: Proceedings of the 25th international conference on software engineering, 2003. IEEE,
pp 125–135

Marinescu R (2004) Detection strategies: Metrics-based rules for detecting design flaws. In: Proceedings of
the 20th IEEE international conference on software maintenance, 2004. IEEE, pp 350–359

Marinescu R, Ganea G, Verebi I (2010) incode: Continuous quality assessment and improvement. In: 2010
14th European conference on software maintenance and reengineering (CSMR). IEEE, pp 274–275

McCallum A, Nigam K et al (1998) A comparison of event models for naive bayes text classification. In:
AAAI-98 Workshop on learning for text categorization. Citeseer, vol 752, pp 41–48

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases
and their compositionality. In: Advances in neural information processing systems, pp 3111–3119

Nguyen AT, Nguyen TT, Nguyen TN, Lo D, Sun C (2012) Duplicate bug report detection with a combina-
tion of information retrieval and topic modeling. In: Proceedings of the 27th IEEE/ACM international
conference on automated software engineering (ASE), 2012. IEEE, pp 70–79

Padioleau Y, Tan L, Zhou Y (2009) Listening to programmers taxonomies and characteristics of comments
in operating system code. In: Proceedings of the 31st international conference on software engineering,
IEEE computer society, pp 331–341

Potdar A, Shihab E (2014) An exploratory study on self-admitted technical debt. In: 2014 IEEE international
conference on software maintenance and evolution (ICSME). IEEE, pp 91–100

Rahman F, Posnett D, Devanbu P (2012) Recalling the imprecision of cross-project defect prediction.
In: Proceedings of the ACM SIGSOFT 20th international symposium on the foundations of software
engineering. ACM, p 61

Salton G, Wong A, Yang CS (1975) A vector space model for automatic indexing. Commun ACM
18(11):613–620

Seaman C, Guo Y, Izurieta C, Cai Y, Zazworka N, Shull F, Vetrò A (2012) Using technical debt data in
decision making: Potential decision approaches. In: Proceedings of the 3rd international workshop on
managing technical debt. IEEE Press, pp 45–48

Sebastiani F (2002) Machine learning in automated text categorization. ACM Comput Surv (CSUR) 34(1):1–
47

Shihab E, Ihara A, Kamei Y, Ibrahim WM, Ohira M, Adams B, Hassan AE, Ki M (2013) Studying re-opened
bugs in open source software. Empir Softw Eng 18(5):1005–1042

Storey MA, Ryall J, Bull RI, Myers D, Singer J (2008) Todo or to bug. In: 2008 ACM/IEEE 30th international
conference on software engineering. ICSE’08. IEEE, pp 251–260

Sun C, Lo D, Wang X, Jiang J, Khoo SC (2010) A discriminative model approach for accurate dupli-
cate bug report retrieval. In: Proceedings of the 32nd ACM/IEEE international conference on software
engineering. ACM, vol 1, pp 45–54

Sun C, Lo D, Khoo SC, Jiang J (2011) Towards more accurate retrieval of duplicate bug reports. In: Proceed-
ings of the 2011 26th IEEE/ACM international conference on automated software engineering. IEEE
Computer Society, pp 253–262

Tan L, Yuan D, Krishna G, Zhou Y (2007) /* icomment: Bugs or bad comments?*. In: ACM SIGOPS
operating systems review. ACM, vol 41, pp 145–158

Tan SH, Marinov D, Tan L, Leavens GT (2012) @ Tcomment: Testing javadoc comments to detect comment-
code inconsistencies. In: 2012 IEEE Fifth international conference on software testing, Verification and
Validation, IEEE, pp 260–269

Tian Y, Lawall J, Lo D (2012) Identifying linux bug fixing patches. In: 2012 34th international conference
on software engineering (ICSE). IEEE, pp 386–396

Valdivia Garcia H, Shihab E (2014) Characterizing and predicting blocking bugs in open source projects. In:
Proceedings of the 11th working conference on mining software repositories. ACM, pp 72–81

Vassallo C, Zampetti F, Romano D, Beller M, Panichella A, Penta MD, Zaidman A (2016) Continuous
delivery practices in a large financial organization. In: Proceedings of the international conference on
software maintenance and evolution (ICSME), ICSME ’16, p To Appear

Wehaibi S, Shihab E, Guerrouj L (2016) Examining the impact of self-admitted technical debt on software
quality. In: Proceedings of the 23rd IEEE international conference on software analysis, evolution, and
reengineering (SANER’16)

Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83
Xia X, Lo D, Wang X, Zhou B (2013) Tag recommendation in software information sites. In: Proceedings of

the 10th working conference on mining software repositories. IEEE Press, pp 287–296
Xia X, Lo D, Qiu W, Wang X, Zhou B (2014) Automated configuration bug report prediction using text

mining. In: 2014 IEEE 38th annual computer software and applications conference (COMPSAC). IEEE,
pp 107–116

Empir Software Eng

Xia X, Lo D, Shihab E, Wang X, Yang X (2015a) Elblocker: Predicting blocking bugs with ensemble
imbalance learning. Inf Softw Technol 61:93–106

Xia X, Lo D, Shihab E, Wang X, Zhou B (2015b) Automatic, high accuracy prediction of reopened bugs.
Autom Softw Eng 22(1):75–109

Xia X, Lo D, Wang X, Yang X (2015c) Who should review this change?: Putting text and file location anal-
yses together for more accurate recommendations. In: 2015 IEEE international conference on software
maintenance and evolution (ICSME). IEEE, pp 261–270

Xia X, Lo D, Wang X, Zhou B (2015d) Dual analysis for recommending developers to resolve bugs. J Softw
Evol Process 27(3):195–220

Xia X, Lo D, Pan SJ, Nagappan N, Wang X (2016a) Hydra: Massively compositional model for cross-project
defect prediction. IEEE Trans Softw Eng 42(10):977–998

Xia X, Lo D, Wang X, Yang X (2016b) Collective personalized change classification with multiobjective
search. IEEE Trans Reliab 65(4):1810–1829

Xia X, Shihab E, Kamei Y, Lo D, Wang X (2016c) Predicting crashing releases of mobile applications. In:
Proceedings of the 10th ACM/IEEE international symposium on empirical software engineering and
measurement. ACM, p 29

Xia X, Lo D, Ding Y, Al-Kofahi JM, Nguyen TN, Wang X (2017) Improving automated bug triaging with
specialized topic model. IEEE Trans Softw Eng 43(3):272–297

Xu B, Ye D, Xing Z, Xia X, Chen G, Li S (2016) Predicting semantically linkable knowledge in developer
online forums via convolutional neural network. In: Proceedings of the 31st IEEE/ACM international
conference on automated software engineering. ACM, pp 51–62

Yang X, Lo D, Xia X, Bao L, Sun J (2016) Combining word embedding with information retrieval to
recommend similar bug reports. In: 2016 IEEE 27th international symposium on software reliability
engineering (ISSRE). IEEE, pp 127–137

Yang XL, Lo D, Xia X, Huang Q, Sun JL (2017) High-impact bug report identification with imbalanced
learning strategies. J Comput Sci Technol 32:1

Yang Y, Pedersen JO (1997) A comparative study on feature selection in text categorization. In: ICML,
vol 97, pp 412–420

Zazworka N, Shaw MA, Shull F, Seaman C (2011) Investigating the impact of design debt on soft-
ware quality. In: Proceedings of the 2nd workshop on managing technical debt. ACM, pp 17–
23

Zazworka N, Spı́nola RO, Vetro A, Shull F, Seaman C (2013) A case study on effectively identifying techni-
cal debt. In: Proceedings of the 17th international conference on evaluation and assessment in software
engineering. ACM, pp 42–47

Zhang Y, Lo D, Xia X, Le TDB, Scanniello G, Sun J (2016) Inferring links between concerns and meth-
ods with multi-abstraction vector space model. In: 2016 IEEE international conference on software
maintenance and evolution (ICSME). IEEE, pp 110–121

Zhou J, Zhang H, Lo D (2012) Where should the bugs be fixed? More accurate information retrieval-based
bug localization based on bug reports. In: 2012 34th international conference on software engineering
(ICSE). IEEE, pp 14–24

Qiao Huang is currently a Ph.D. student in the College of Computer Science and Technology, Zhe-
jiang University, China. His research interests include mining software repositories and empirical software
engineering.

Empir Software Eng

Emad Shihab is an Assistant Professor in the Department of Computer Science and Software Engineering
at Concordia University. He received his PhD from Queens University. Dr. Shihab’s research interests are
in Software Quality Assurance, Mining Software Repositories, Technical Debt, Mobile Applications and
Software Architecture. He worked as a software research intern at Research in Motion in Waterloo, Ontario
and Microsoft Research in Redmond, Washington. Dr. Shihab is a member of the IEEE and ACM. More
information can be found at http://das.encs.concordia.ca.

Xin Xia received his PhD degree in computer science from the College of Computer Science and Technology,
Zhejiang University, China in 2014. He is currently a post-doc research fellow in the software practices lab at
the University of British Columbia, Canada. His research interests include software analytic, empirical study,
and mining software repository.

http://das.encs.concordia.ca

Empir Software Eng

David Lo received his PhD degree from the School of Computing, National University of Singapore in
2008. He is currently an Associate Professor in the School of Information Systems, Singapore Management
University. He has close to 10 years of experience in software engineering and data mining research and has
more than 200 publications in these areas. He received the Lee Foundation Fellow for Research Excellence
from the Singapore Management University in 2009, and a number of international research awards including
several ACM distinguished paper awards for his work on software analytics. He has served as general and
program co-chair of several prestigious international conferences (e.g., IEEE/ACM International Conference
on Automated Software Engineering), and editorial board member of a number of high-quality journals (e.g.,
Empirical Software Engineering).

Shanping Li received his Ph.D. degree from the College of Computer Science and Technology, Zhejiang
University in 1993. He is currently a professor in the College of Computer Science and Technology, Zhe-
jiang University. His research interests include Software Engineering, Distributed Computing, and the Linux
Operating System.

	Identifying self-admitted technical debt in open source projects using text mining
	Abstract
	Introduction
	Background
	Approach
	Overall Framework
	Text Preprocessing
	Feature Selection
	Training Sub-classifiers
	Classifiers Voting

	Experiment Setup
	Extracting Project Data
	Manual Classification
	Data Summary
	Evaluation Metrics
	Precision
	Recall
	F1-score

	Experiment Results
	RQ1: How Effective is our Text Mining Approach in Identifying SATD? How Much Improvement can it Achieve Over Baseline Approaches?
	Motivation
	Approach
	Baseline 1 (Pattern)
	Baseline 2 (NBM, SVM and kNN)
	Baseline 3 (bestSub)
	Baseline 4 (NLP)
	Results

	RQ2: Does Feature Selection Improve the Performance of our Approach?
	Motivation
	Approach
	Results

	RQ3: Can Classifiers Voting Improve the Performance of our Approach?
	Motivation
	Approach
	Results

	RQ4: What's the top-k Features After Feature Selection?
	Motivation
	Approach
	Results

	RQ5: What's the Performance of our Approach if Using Comments Within the Target Project as Training Data?
	Motivation
	Approach
	Results

	RQ6: How Much Memory and Time Does it Take for our Approach to run?
	Motivation
	Approach
	Result

	Discussion
	Implications for Practitioners
	Implications for Researchers
	Threats to Validity

	Related Work
	Technical Debt
	Source Code Comments
	Text Mining in Software Engineering

	Conclusion and Future Work
	Acknowledgements
	References

