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Abstract Studying developers’ behavior in software development tasks is crucial for
designing effective techniques and tools to support developers’ daily work. In modern soft-
ware development, developers frequently use different applications including IDEs, Web
Browsers, documentation software (such as Office Word, Excel, and PDF applications), and
other tools to complete their tasks. This creates significant challenges in collecting and ana-
lyzing developers’ behavior data. Researchers usually instrument the software tools to log
developers’ behavior for further studies. This is feasible for studies on development activ-
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ities using specific software tools. However, instrumenting all software tools commonly
used in real work settings is difficult and requires significant human effort. Furthermore,
the collected behavior data consist of low-level and fine-grained event sequences, which
must be abstracted into high-level development activities for further analysis. This abstrac-
tion is often performed manually or based on simple heuristics. In this paper, we propose
an approach to address the above two challenges in collecting and analyzing developers’
behavior data. First, we use our ACTIVITYSPACE framework to improve the generalizabil-
ity of the data collection. ACTIVITYSPACE uses operating-system level instrumentation to
track developer interactions with a wide range of applications in real work settings. Sec-
ondly, we use a machine learning approach to reduce the human effort to abstract low-level
behavior data. Specifically, considering the sequential nature of the interaction data, we pro-
pose a Condition Random Field (CRF) based approach to segment and label the developers’
low-level actions into a set of basic, yet meaningful development activities. To validate the
generalizability of the proposed data collection approach, we deploy the ACTIVITYSPACE

framework in an industry partner’s company and collect the real working data from ten pro-
fessional developers’ one-week work in three actual software projects. The experiment with
the collected data confirms that with initial human-labeled training data, the CRF model can
be trained to infer development activities from low-level actions with reasonable accuracy
within and across developers and software projects. This suggests that the machine learning
approach is promising in reducing the human efforts required for behavior data analysis.

Keywords Software development · Developers’ interaction data · Condition Random Field

1 Introduction

Researchers in the software engineering community have significant interest in under-
standing developers’ behavior with a variety of objectives; for example, to investigate the
capabilities of the developers (von Mayrhauser and Vans 1997; Corritore and Wieden-
beck 2001; Lawrance et al. 2013), the developers’ information needs in developing and
maintaining software (Li et al. 2013; Wang et al. 2011; Ko et al. 2006), how developers
collaborate (Koru et al. 2005; Dewan et al. 2009), and what we can do to improve the per-
formance of developers (Ko and Myers 2005; Hundhausen et al. 2006; Robillard et al. 2004;
Duala-Ekoko and Robillard 2012).

Whereas previous researches have frequently produced impressive results in their own
environments, their data collection and analysis methods cannot always be easily transferred
to a new study context.

1. Existing studies usually focus on the developers’ behavior within IDEs. However,
today’s software development practices involve many other applications (e.g., web
applications, office software) specializing in different tasks, such as web search, Q&A
sites, social media, and documentation.

2. The majority of studies require application-specific support for collecting the develop-
ers’ behavior data. For example, Vakilian et al. (2012) rely on an Eclipse IDE feature
to record the refactorings that are applied by developers. In the majority of other
cases, researchers instrument specific software tools used in their studies to collect the
required data. Such instrumentation is usually non-trivial and time-consuming to repeat.

3. Existing studies typically focus on a specific development activity such as feature loca-
tion (Wang et al. 2011), online search (Li et al. 2013), debugging (Lawrance et al.
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2013), and program comprehension (Ko et al. 2006). Researchers develop activity-
specific heuristics to analyze and abstract developers’ behavior. A new study context
could render these activity-specific heuristics irrelevant.

In this paper, our objective is to investigate whether we can use a machine learn-
ing approach to infer a set of basic development activities in real work settings from
a developer’s interactions with applications in the entire working environment without
application-specific support. Inference of the basic development activities from the devel-
oper’s low-level actions could provide a foundation for further exploratory analysis of
developers’ high-level behavior patterns in software development tasks. To achieve our
objective, there are two research challenges that must be addressed.

1. Developers use many desktop and web applications in their work. We need to moni-
tor the developers’ interaction with a wide range of applications at a sufficiently low
level to obviate application-specific support while collecting appropriately detailed
information for inferring the development activities at a higher-level of abstraction.

2. Software development involves a wide range of development activities, such as coding,
debugging, testing, searching, and documentation. These activities frequently interleave
with one another. Furthermore, developers can perform development activities in var-
ious ways. Inferred models of development activities and inference algorithms must
adapt to this behavioral complexity and variety.

To address the first challenge, we resort to our ACTIVITYSPACE framework Bao et al.
(2015a, b). The ACTIVITYSPACE framework aims to support the inter-application infor-
mation needs in software development. It consists of an Activity Tracking infrastructure
for tracking the actions of a developer in the entire working environment using operating-
system windows and accessibility APIs. Compared with application-specific instrumenta-
tion, ACTIVITYSPACE can collect the developer interactions with many commonly used
desktop and web applications in software development, such as IDEs (e.g., Eclipse,
Visual Studio), web browsers (e.g., Firefox, Chrome, IE), and text editors (e.g., Notepad,
Notepad++). While a developer is working in an application, ACTIVITYSPACE unobtru-
sively logs a time series of action records. Each action record logs the mouse or keyboard
action, relevant window information, and focused UI component information. For example,
when a developer is viewing a Java source file example.java in Eclipse and he/she clicks
the Open Resource menu, ACTIVITYSPACE generates an action record including the cur-
rent working window information (i.e., the Java file “example.java”) and the focused UI
information (“Open Resource” menu). Due to the efficiency of operating-system APIs and
the ACTIVITYSPACE’s design to separate the activity tracking infrastructure from the activ-
ity analysis components, activity tracking incurs negligible overhead in logging developers’
actions and does not interfere with their normal work (Bao et al. 2015b).

By analyzing the captured time series of action records, we can infer the intentions and
activities of the developers. For example, when a developer is debugging in Eclipse, he/she
would usually set breakpoints and perform various stepping actions through one or more
source files. As such, the recorded time-series data would contain a sequence of time-
stamped mouse click actions (e.g., click editor ruler to set breakpoints, click stepping button
on the toolbar) and/or keyboard shortcut actions (e.g., stepping shortcut “F5” or “F6”). The
record would also log the name of the source files that was being debugged. Given a time
series of these action records, we can infer that the developer was debugging the program
using some simple rules, for example, by looking for debugging-related mouse or keyboard
actions.
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However, the recorded time-series data will never be this clean. First, there will be many
noise actions in the recorded data, such as meaningless or wrong mouse clicks or keyword
shortcuts. Furthermore, the debugging actions will most likely interleave with many other
actions. For example, the developer may edit an “if” condition during debugging, or briefly
read an online API specification. How can we distinguish the period when the developer
debugs the software from those when the developer performs other development activities
that may also involve low-level debugging, code editing, and web browsing actions? For
example, for the period during which a developer is coding, he/she may integrate a code
snippet from the Web into the project and execute the code to ensure that the reused code
functions as expected. As another example, for the period during which the developer is
reading an online tutorial, he/she may copy the sample code in the tutorial and run the
code in the IDE to confirm its action. Although these development activities have similar
low-level actions, the developer’s intention would be considerably different, i.e., debugging
versus coding versus web browsing. Heuristics-based rules that only examine individual
actions and not the surrounding behavior context would likely be unable to address this
behavioral complexity and variety.

We hypothesize that if the time series of low-level action records collected by ACTIV-
ITYSPACE can be partitioned into logical segments that are assigned with meaningful
semantic labels, it could be significantly easier to reveal the developer’s intention and
activities by examining the surrounding actions before and after an individual action. For
example, if copying-pasting a piece of code from a web browser to an IDE occurs in between
many coding actions, we could consider this copy-paste action as part of a coding activity.
Conversely, if the copy-paste action occurs in between many web page browsing actions, we
could consider the copy-paste action as part of a web browsing activity to learn something
online. Therefore, to address the second challenge, we propose a framework for partition-
ing time-series action records into meaningful segments and giving each segment a label
that represents the collective meaning of the actions in the segment. Knowing these action
segments and their semantic labels could facilitate researchers and practitioners to mine and
discover the developer’s behavior patterns at a higher-level of abstraction.

There are several techniques to segment and label sequential data; for example, Hid-
den Markov Model (HMM) (Rabiner 1989), Maximum Entropy Markov Model (MEMM)
(McCallum et al. 2000), and Conditional Random Field (CRF) (Lafferty et al. 2001). CRF
outperforms both HMM and MEMM on many real-world sequence segmentation and label-
ing tasks (Lafferty et al. 2001; Pinto et al. 2003). CRF has been successfully applied to
segment and label sequential action lists of a real-time strategy game named StarCraft
(Gong et al. 2012), which is similar to the action records collected by ACTIVITYSPACE.
Hence, we adopt CRFs to automatically segment and label the time series of action records.
First, we abstract action records collected by ACTIVITYSPACE by extracting a set of fea-
tures from the raw data. Then, we obtain the CRF training data by manually labeling the
low-level action records with high-level development activities by a segmentation-based
annotation process which essentially examines actions and their surrounding actions to infer
relevant development activities. We use this training data to train a CRF classifier. Finally,
we use the CRF classifier to automatically predict the development-activity label of unseen
low-level action records.

The main contributions of this paper are:

1. We propose a CRF-based approach that aims to segment and label the time-series low-
level action records that are collected by our ACTIVITYSPACE framework.
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2. We evaluate the proposed approach using week-long data from ten professional
developers in a real work setting.

The remainder of the paper is structured as follows. Section 2 describes the proposed
approach including data collection, feature selection and CRF model training. Section 3
reports our experiment results to validate the proposed approach. Section 4 discusses threats
to the validity of our research results. Section 6 reviews related work. Section 7 concludes
the paper and discusses future directions.

2 Our CRF-Based Framework

Figure 1 presents an overview of our CRF-based framework. We use our ACTIVITYSPACE

framework to collect developers’ behavioral data when they interact with applications in
their working environment. We refer to the collected time-series of action records as the
action list in this work. The proposed framework is divided into two phases: a model train-
ing phase and a prediction phase. In the model training phase, we manually annotate the
collected action lists using a set of development-activity labels that reflect the developers’
intention in the activities. In this work, we focus on six basic types of development activities:
coding, debugging, testing, navigation, search, and documentation. Note that our approach
is general and can be applied to different labeling schema in other studies for different pur-
poses. We use the labeled action lists as the training data to train a classifier based on CRF.
In the prediction phase, we use the trained CRF classification model to automatically assign
development-activity labels to the actions in the unseen action lists.

2.1 Data Collection

To improve the generalizability of the proposed framework for different working envi-
ronments, we resort to operating-system level instrumentation. In particular, we use our
ACTIVITYSPACE framework to collect Human-Computer-Interaction (HCI) data while a
developer is interacting with different applications in his working environment. To obviate

Fig. 1 The CRF-based
framework Data Collection Using Activity Space
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application specific support, ACTIVITYSPACE uses operating-system (OS) window APIs
and accessibility APIs to record the HCI data. As the developer is interacting with an
application, ACTIVITYSPACE generates a time series of action records (see Table 1 for an
example). Each action record has a time stamp down to millisecond precision. An action
record is composed of event type, basic window information collected using OS window
APIs, and focused UI component information that the application exposes to the operating
system through accessibility APIs. Operating-system APIs incur the minimal overhead for
data collection. Furthermore, ACTIVITYSPACE simply logs the actions of interest without
performing any time-consuming analysis; hence, it does not interfere with the user’s normal
work (see Section 3.3.2 for a pilot study of ACTIVITYSPACE performance).

ACTIVITYSPACE can monitor three types of mouse events (mouse move, mouse wheel,
and mouse click) and two types of keyboard events (normal keystrokes such as alphabetic
and numeric keys and shortcut keystrokes such as “Ctrl+F” (Search or Find), “Ctrl+O”
(Eclipse shortcut key for quick outline)). Basic window information includes the position
of the mouse or cursor, the title and boundary of the focused application window, the title
of the root parent window of the focused application window, and the process name of
the application. If the event type is mouse click, ACTIVITYSPACE uses accessibility APIs
to extract the focused UI component information: UI Name, UI Type, UI Value, and UI
Boundary of the focused UI component, and the UI Name and UI Type of the root parent
UI component.

Basic window information and the focused UI information can facilitate the inference of
the developer’s action. For example, we can infer that the action at T1 in Table 1 occurs in
an Eclipse application window, and the action at Tn occurs in a Firefox application window.
The collected window information and the focused UI information indicate that at time T1
the developer selected the file “JSTreeDao.java” in “Project Explorer” in Eclipse, and at
time Tn the developer searched java calendar on Google in Firefox.

Table 1 Examples of action records that are collected by ACTIVITYSPACE

Timestamp T1 ... Tn

Event Mouse Click KeyInput: “Ctrl+V”

Cursor Position (143, 254) (595, 262)

Window Title N/A java calendar - Google Search -

Mozilla Firefox

Window Boundary (6, 105, 495, 1008) (0, 0, 1920, 1040)

Parent Window Title Java – N/A

Project/package/TimelineExample.java

- Eclipse

Process Name eclipse.exe ... firefox.exe

UI Name JSTreeDao.java Search

UI Type tree item combo box

UI Value N/A java calendar

UI Boundary (123, 249, 205, 267) (136, 121, 706, 140)

Parent UI Name Project Explorer java calendar - Google Search -

Mozilla Firefox

Parent UI Type Pane Window
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It is important to note that operating-system windows and accessibility APIs are stan-
dard interfaces built in modern operating systems for assistive applications. Existing HCI
studies (Hurst et al. 2010; Chang et al. 2011) and our own survey of accessibility support in
commonly used software applications on three popular desktop operating systems1 confirm
that a wide range of applications expose their internal HCI data to operating-system acces-
sibility APIs. Therefore, operating-system level instrumentation such as ACTIVITYSPACE

allows our data collection method to be applied in working environments with different
applications and data collection requirements.

2.2 Feature Selection

As can be observed in Table 1, the HCI data collected by ACTIVITYSPACE is rather detailed
and fine-grained. To facilitate the understandability and manual labelling of the raw HCI
data, we preprocess the raw HCI data by abstracting and extracting a set of features. This
set of features is also used to train the CRF classifier.

For each action record in the raw HCI data, we extract the following features:

– Application: this can be directly inferred from process name, such as Eclipse, Firefox.
– AppType: we categorize common-used applications into six predefined application

types: IDE, Web Browser, Office, Text Editor, PDF Reader and Others.
– WindowName: this can be extracted from the title of the application window or its

parent window. We leverage regular expressions to extract the window name.
– DocType: the extracted window information usually contains the file or document on

which the developer is working. We use regular expressions to extract the extension
of the file (e.g., “.java”). The DocType can reveal the type of information on which
a developer is working (e.g., “java” for source file and “xml” for configuration). If
AppType is Web Browser, the DocType is set to “WebPage”.

– IDEContext: words in the window title may indicate the context where the developer
is working. For example, in Eclipse, the window title contains perspective information,
such as “Java”, “Java EE” or “Debug”. Similarly, the window title of Microsoft Visual
Studio contains the words “Debugging” when the developer is debugging. We leverage
regular expressions to extract such context information for IDE applications. For other
AppTypes, this feature is set to “NA” (not applicable).

– EventType: mouse event or keystroke event.
– KeySequence: for a sequence of keystroke events, if all the events are normal keystroke

events (alphabetic and numeric keys), we aggregate all keyboard input into a key
sequence. Function keys or shortcut keys are maintained as separate keyboard input.
For mouse events, this feature is set to “NA”.

– UIType, UIName, UIValue, ParentUI: these features can be directly extracted from
the HCI data.

Table 2 shows an example of an action list and the extracted features for each action
in the list. From this action list, we can learn that the developer was editing the source
file “pricingoptionSearch.xhtml” in Eclipse. Then, he switched to Chrome to access the
modified web page and attempted input on the web page. Then, he switched back to Eclipse.
He used shortcut key “Ctrl+Shift+R” to activate the “Open Resource” dialog in Eclipse to
locate another file containing pricing options. Then, he used shortcut key “Ctrl+F” to search

1http://baolingfeng.weebly.com/accessibility-survey.html

http://baolingfeng.weebly.com/accessibility-survey.html
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the keyword “option” in file pricingoptionSearch.xhtml. Next, he read a web page regarding
AJAX on STACKOVERFLOW. Finally, he debugged the “pricingoptionSearch.xhtml” file in
the Eclipse debug perspective.

2.3 Manual Annotation

We then review the collected data and summarize the developers’ activities into the
following six high-level development-activity labels:

– Coding (C): developers’ coding activities can occur in IDEs or other text editors. When
the developers are writing code, the ACTIVITYSPACE will collect many key input
events in the IDEs or text editors.

– Debugging (D): developers’ debugging activities refer to not only using debugging
tools in IDEs, but also activities such as viewing bug reports in documentation software
or web browsers.

– Testing (T): developers’ testing activities refer to executing the applications with cer-
tain test inputs, and recording or examining test results in documentation software or
web browsers. Note that the application under test can be a desktop application or a
web application (e.g., a J2EE web application in our experiment).

– Navigation (N): developers’ navigation activities refer to browsing, searching and
locating resources in IDEs, such as browsing source files in the “Project Explorer”,
searching some words in a file, or searching classes or methods.

– Web Browsing (W): developers’ Web browsing activities refer to searching and
reading web pages in web browsers.

– Documentation (U): the developers’ documentation activities refer to reading or writ-
ing project-specific documents (such as requirement documents, design models, test
cases) in documentation software (such as Office Word, Excel, and PDF applica-
tions). In practice, developers may also use web browsers or IDEs to read or write
project-specific documents.

During the development of coding schema, we note the key actions that are commonly
associated with relevant development activities. For example, when developers are “cod-
ing”, several keystroke events will be generated then they press the shortcut “Ctrl+S”
to save the changes. Another example is that developers usually use shortcut “Ctrl+F”
or “Ctrl+H” in Eclipse to begin code search, which could be indicators of “navigation”
activities.

Given an action list such as the one in Table 2, we go through the action list and segment
the list into a list of action fragments. The principle of segmentation is that the majority
of a developer’s actions in a fragment are associated with the same type of development
activity. The principle of determining fragment boundaries is to search for distinct transi-
tions between development activities. Once we have the initial list of action fragments, we
go through the list again to determine if adjacent action fragments can be merged into one
action fragment or an action fragment can be further segmented into more fine-grained frag-
ments. Finally, we annotate each action in a fragment with the development-activity label
to which the majority of the actions in the fragment belong.

It is important to note that although individual actions contain important hints for infer-
ring the high-level development activities, the development activities as defined in the above
coding schema cannot be reliably determined by looking at the actions and involved applica-
tions in the actions individually. For example, as part of a debugging activity, the developer
can read the bug report in documentation software, whereas as part of a documentation
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activity, the developer can read a requirement specification in documentation software.
Similarly, the developer can use a web browser to search the Web (as part of a Web brows-
ing activity), read documents (as part of a documentation activity), or even test the web
application (as part of a testing activity). Furthermore, the developer can navigate between
source files during coding, debugging, or to locate feature implementation. To reliably
infer the high-level development activities from the action list, we must examine the sur-
rounding context before and after an individual action. This is why we adopt the above
segmentation-based annotation process which essentially examines actions and their sur-
rounding context to determine relevant development activities. This is also why we propose
to use context-sensitive data analysis methods such as CRF to infer development activities
from the low-level actions.

2.4 CRF Classifier for Development Activities

CRF is a type of discriminative undirected probabilistic graphical model that can be applied
to segment and label sequential data, such as natural language text or biological sequences
(Berger et al. 1996; Durbin et al. 1998). In contrast to classical classifiers that predict a label
for a single sample without regard to neighboring samples, CRF can consider context. CRF
relaxes the independence assumptions that are required by HMM, which defines a joint
probability distribution over label sequences given an observation sequence, and also avoid
the label bias problem, which is a weakness of MEMM.

In this work, we adopt linear-CRF methods (Lafferty et al. 2001). Formally, given an
action list X = (a1, a2, ..., am) with m actions (i.e., an observation sequence), a segmen-
tation S of X is defined as k non-overlapping segments, denoted as S = {s1, s2, ..., sk},
where for 1 ≤ i ≤ k, si = (abi

, abi+1 ..., abi+vi
), 1 ≤ bi ≤ m and

∑k
i=1 vi = m − k.

Let L = {l1, l2, ..., lh} be a set of h unique labels. In this work, the labels are the six
development-activity labels as defined in Section 2.3. Our problem is to identify all the seg-
ments s1, s2, ..., sk , and assign a label l ∈ L for each segment si , 1 ≤ i ≤ k. The manual
annotation step produces a label sequence Y for a given observation sequence X. A set of
observation sequences together with the corresponding label sequences constitute the train-
ing data for training the linear-CRF classifier. To train the CRF classifier, we use not only
features of the current action record, but also features of the neighboring action records as
defined in Section 2.2. Further details regarding linear-CRF can be found in Lafferty et al.
(2001).

3 Experiment

In this section, we introduce our research questions, describe our experimental setup and
analyze the experiment results.

3.1 Evaluation Metrics

In this paper, we train a CRF classifier to segment and label developers’ action lists. Given
an action list X consisting of N actions and a set of action labels L = {λ1, λ2, ..., λh},
we use Cλ to represent the number of actions correctly assigned the label λ by the CRF
classifier. The total number of actions correctly assigned is represented as C = ∑h

λ=1 Cλ.
The correctness of the assignment is determined against the human labels of the action list
(i.e., ground truth).
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We use accuracy to evaluate the overall performance, i.e., the number of correctly
classified actions over the total number of actions: accuracy = C

N
.

We also use precision, recall and F1-score to evaluate the performance for each label. For
one label λ, we use T Pλ, T Nλ, FPλ, and FNλ to represent the number of true positives, true
negatives, false positives, and false negatives, respectively. We calculate precision, recall
and F1-score as follows:

– Precision: the proportion of actions that are correctly labeled as λ among those labeled
as λ, i.e.,

precisionλ = T Pλ

T Pλ + FPλ

(1)

– Recall: the proportion of actions that are correctly labeled as λ, i.e.,

recallλ = T Pλ

T Pλ + T Nλ

(2)

– F1-score: a summary measure that combines both precision and recall. It evaluates if
an increase in precision (recall) outweighs a reduction in recall (precision), i.e.,

F1 − scoreλ = 2 × precisionλ × recallλ

precisionλ + recallλ
(3)

As multiple action labels are predicted in our study, we also compute macro-averaged
precision, recall and F1-score, which can provide a view of the general prediction per-
formance. Macro-averaged metrics weigh all the classes equally, regardless of how many
instances they include. Macro-averaged metrics can be calculated as follows:

Mmacro = 1

h

h∑

λ=1

Mλ (4)

where M indicates an evaluation measure, i.e. precision, recall and F1-score, and h is the
number of classes.

We also compute the Kappa statistic (Fleiss 1971), which is a measure of agreement
between the predictions and the actual labels. Kappa metrics can also be interpreted as a
comparison of the overall accuracy of a classifier to the expected accuracy of a random guess
classifier (as defined in the RQ1 in Section 3.2). The greater the Kappa metric, the better the
classifier is compared to the random guess classifier. The interpretations for Kappa values
are displayed in Table 3.

Table 3 The interpretations for
Kappa values Kappa value Interpretation

< 0 Poor agreement

[0.01, 0.20] Slight agreement

[0.21, 0.40] Fair agreement

[0.41, 0.60] Moderate agreement

[0.61, 0.80] Substantial agreement

[0.81, 1.00] almost perfect agreement
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3.2 Research Questions

In this work, we propose a CRF-based approach to abstract low-level developers’ actions
into a set of basic, yet meaningful development activities. To investigate the effectiveness
and applicability of the proposed CRF-based approach, we are interested to answer the
following research questions:

RQ1 How effective is the proposed CRF-based approach for segmenting and labeling
developers’ action lists? Further, how much improvement can the proposed approach
achieve over a heuristic-rules based method and an ordinary classifier (i.e., SVM)?

In this paper, we trained the CRF classifier to segment and label the developers’ action
lists. The CRF implementation that we used was CRF++.2 In this study, we defined three
baseline classifiers for comparison: Support Vector Machine (SVM), rule-based prediction,
and random weighted classifier.

SVM is a popular classification algorithm for analyzing data and has been used in many
previous software engineering research studies (e.g., Anvik et al. 2006; Maiga et al. 2012;
Sun et al. 2010; Thung et al. 2012; Tian et al. 2012; Le and Lo 2013). SVM is trained using
the same training data and the same set of features as used for the CRF classifier. Compared
to SVM, CRF considers the neighboring context; hence, it can typically achieve superior
performance on sequential data classification compared to SVM.

To investigate the benefits of a machine learning approach over a hand-crafted heuristic-
rules based method, we designed the following heuristic rules to infer development activities
from the action lists:

– Coding: all key input actions in IDEs or in code files in text editors, except some key-
board shortcuts for specific functions, e.g., searching shortcut “Ctrl+F” for the majority
of applications, stepping shortcut “F5” or “F6” in Eclipse.

– Debugging: all actions in the Debug perspective of IDE, key input actions using debug-
ging keyboard shortcuts,3 such as “F5” or “F6” in Eclipse, and all actions in the Bugzilla
and bug report documents.

– Testing: all actions in the tested applications and the testing documents. In our col-
lected data, all the tested applications are web applications and we identify them using
keywords, such as the name or URL of the website, “localhost”.

– Navigation: all other actions except coding and debugging actions.
– Web Browsing: all actions in websites other than Bugzilla web pages and the web

pages of tested application.
– Documentation: all actions in the documents other than bug report documents and

testing documents.

We developed a Python script according to these heuristic rules and applied this script to
our collected data to infer development activities.

2CRF++: Yet another CRF toolkit http://crfpp.sourceforge.net/
3Note that during the manual annotation process (see Section 2.3), we find all keyboard shortcuts in our
collected data and categorize them according to their functions.

http://crfpp.sourceforge.net/
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A random weighted classifier randomly predicts a certain label according to its probabil-
ity of occurrence in the data. If the proportion of class λ instances in the training data is xλ,
we will compute the accuracy, precision, recall and F1-score as follows:

Accuracy =
h∑

λ=1

x2
λ (5)

Precisionλ = Recallλ = F1 − scoreλ = xλ (6)

Note that the macro-averaged metrics of a random weighted classifier are equal to the
probability of picking a certain class (i.e. 1/6 in our study).

In our experiment, we regarded half a working day as a working session for each partic-
ipant. Hence, we divided the collected action list into ten folds (i.e., working sessions) for
each participant (see our collected data in Section 3.3.3). To preserve the sequential nature
of the data, the action records in every fold were order preserved and the order of consec-
utive folds were also preserved. Then we used the first n folds as the training data and the
remaining 10 − n folds as the testing data (n from 1 to 9). An evaluation metric of a clas-
sifier is the average of nine rounds of testing. To evaluate the performance of the proposed
CRF-based classifier and the three baseline classifiers, we performed three analyses: 1) We
compared the accuracy, Kappa metric, and macro-averaged precision/recall/F1-score of the
different classifiers on all the data as a whole. We also compared the precision, recall, and
F1-score of the different classifiers on different labels of the whole data. 2) We compared
the accuracy, Kappa metric, and macro-averaged precision/recall/F1-score of the different
classifiers for each participant. 3) We compared the precision, recall, and F1-score of the
different classifiers on different labels of each participant’s data.

RQ2 How does the size of the training data affect the performance of the CRF classifier?
What proportion of the training data could achieve the best performance?

The size of the training data could have a critical impact on the classification result. In
general, the larger the amount of training data, the better the performance of the trained clas-
sifier. However, sometimes increasing the training data does not produce a better performing
classifier. Therefore, we wanted to investigate the impact of different sizes of training data
on classification performance. To answer this question, we conducted two experiments with
different methods of controlling the size of the training data. First, we used the accuracies
of nine rounds of testing for each participant obtained in RQ1 to answer this question. That
is, the size of training data ranges from 0.5 to 4.5 days of the action list of each participant.
Then, to investigate the effort of manual annotation required for different participants, we
controlled the size of the training data by the number of action records to be labeled. We set
the number of action records in the training data from 100 to 1,000 with a step size of 100
(i.e., nine trials). Then, we calculated the accuracy of each trial and compared the results. In
both experiments, the order of the action records was preserved.

RQ3 Can the CRF classifier be applied to cross-developer prediction? That is, can we
use the CRF classifier trained using one (or some) developer’s action list(s) to classify
the action list of another developer?

Although developers’ behavior and actions are frequently different, we hypothesize that
if two developers are in a similar working context, such as in the same project or performing
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similar tasks, then the action lists of the different developers may share some common char-
acteristics. Therefore, cross-developer prediction could be possible. To answer this question,
we used one participant’s action list as the training data, and an other participants’ action
lists as the test data to evaluate the performance of the CRF. We also used all the other par-
ticipants’ action lists as the training data, and used the remaining participant’s action list as
the test data to evaluate the performance of the CRF. We used the accuracy as the evaluation
metric in this experiment. We also reported the Kappa metrics of cross-developer prediction.

3.3 Experimental Setup

In this work, our objective was to investigate the effectiveness and applicability of the
proposed approach for analyzing professional developers’ behavior data in real software
development settings. Therefore, we deployed our ACTIVITYSPACE framework (Bao et al.
2015a) in our industry partner company and collected and annotated ten professional devel-
opers’ one-week working data in three software projects. Then, we described the participant
developers, the raw behavior data collected, and the manual annotation process to generate
the ground-truth development activity labels for responding to the above research questions.
The complete experiment procedure is presented in Fig. 2.

3.3.1 Participants

We recruited ten professional developers from Hengtian, an IT company in China. Heng-
tian is an outsourcing company with more than 2,000 professional developers. It primarily
undertakes outsourcing projects for US and European corporations (e.g., StateStreet Bank,
Cisco, and DST). Table 4 summarizes the demographic information of the ten participating
developers. Each of the ten recruited developers (S1, S2, ..., S10) had at least two years of
working experience. All of them used Java as a programming language in their daily work.
They were from three different projects: participant developers S1–S5 were from a finance
system re-engineering project, S6–S8 were from an e-commerce website project, and S9
and S10 were from a project that developed and maintained an internal information man-
agement system for the company. These ten developers’ activities could be different based
on the tasks for which they are responsible, such as bug fixes, front-end web development,
database development, and business analysis. This made our dataset more diverse. In addi-
tion to providing working data for the study, these ten participants were also consulted to

Recruit 
Participants

Deploy 
ActivitySpace

Collect Raw 
Data

Annotate Data

Completed

Fig. 2 The experiment procedure
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Table 4 The demographics information of the 10 participant developers

Project Project description Experience Responsibility

S1 P1 A financesystem 2 years Web Development

S2 P1 re-engineering projec 4 years Java Development,

Database Development

S3 P1 3 years Java Development,

Database Development

S4 P1 4 years Web Development,

Database Development

S5 P1 2 years Web Development

S6 P2 An e-commerce 4 years Web Development

S7 P2 website project 3 years Web Development

S8 P2 3 years Quality Assurance,

Business Anlysis

S9 P3 An internal management 5 years Database Development

S10 P3 system of company 2 years Deployment

confirm the coding schema of development activities, resolve any disagreements between
annotators, and validate the label results (See Section 3.3.4).

3.3.2 ACTIVITYSPACE Deployment Settings

We deployed our ACTIVITYSPACE tool on the participants’ computers and collected their
working data throughout one week. In this study, we configured ACTIVITYSPACE to track
the developers’ interactions with the applications commonly used in developers’ daily
work, including web browsers (e.g., Firefox, Chrome, Internet Explorer), document edi-
tors (and/or readers) (e.g., Word, Excel, PowerPoint, Adobe Reader, Foxit Reader, Notepad,
Notepad++), and IDEs (e.g., Eclipse, Visual Studio). We configured ACTIVITYSPACE

to collect keyboard events and mouse-click events for focused UI components. ACTIV-
ITYSPACE was configured to ignore mouse-move events and mouse-wheel events. The
developers had the option of terminating ACTIVITYSPACE’s data tracking when they were
working on proprietary data and/or applications from the outsourcing company. This option
only influenced the amount of data collected, not the developers’ working behavior, because
they used the same working environments for proprietary or non-proprietary data and
applications.

We conducted a pilot study to verify the runtime performance of ACTIVITYSPACE. We
modified the code of ACTIVITYSPACE to log the time spent on recording one action record.
We deployed the modified ACTIVITYSPACE on the computer of one developer that partic-
ipated in our study and collected 1 h of his working data. ACTIVITYSPACE collected 426
action records. The average and standard deviation time was 0.08±0.04 s per action record.
Note that this time statistic included the time spent on logging the time, which is an over-
head of the modified ACTIVITYSPACE. We also asked the developer to monitor memory
usage during the data collection. The developer reported that the memory usage of ACTIV-
ITYSPACE was stable (approximately 40MB RAM). The configuration of the developer’s
computer was Windows 7, 8GB RAM and Intel(R) Core(TM) i5-4570 CPU. This pilot study
confirmed that ACTIVITYSPACE did not interfere with developers’ normal work.
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3.3.3 Raw Interaction Data

For the efficiency of action logging, ACTIVITYSPACE did not perform any analysis of the
logged actions during the logging process. We post-processed the logged raw data to deter-
mine the effective working hours for each developer. Effective working hours refer to the
time when a developer continuously performed actions on his/her computer. If a developer
did not perform an action on the computer for a period (30 min in this study), we did not
regard that period as effective working time. Furthermore, we only collected the develop-
ers’ actions that were related to the project. Actions such as reading news on news websites
(e.g., weibo.com) were eliminated. All developers ran ACTIVITYSPACE on their computer
for five working days. As summarized in Table 5, after the data preprocessing, we collected
approximately 240 h of effective working data, which contained more than 50,000 action
records. We regarded half a working day as a working session for each developer and com-
puted the average and standard deviation of the action records per working session (see the
last column in Table 5). For different developers, because their tasks and behavior were
different, the number of action records varied from approximately 3,600 to approximately
6,800.

3.3.4 Manual Annotation

To confirm the developed coding schema (i.e., the six kinds of development-activity labels,
see Section 2.3), we emailed a survey of the developed coding schema to 20 developers
in Hengtian, including the ten participants in our study and ten additional developers. In
the document, we first listed the definition of activity labels (as defined in Section 2.3)
to the developers. Then, we asked two questions: 1) What are the major activities in your
working time? 2) Do you think our coding schema covers all the activities in your working
time? Eighteen of 20 developers felt that our coding schema covers their major activities in
working time. Three sample responses are provided as follows:

– My job is in charge of Java development, the majority of my work is coding and fixing
bugs. I also search for solutions when I have technical problems. Sometimes I will
maintain the documents in my project.

Table 5 The overview of raw
data EffectiveHour #ActionRecord #Session (mean ± std)

S1 22.24 4,342 427.6 ± 16.1

S2 20.95 5,902 588.3 ± 25.3

S3 19.42 3,983 385.0 ± 47.4

S4 32.31 6,814 683.2 ± 32.6

S5 23.49 4,760 481.1 ± 21.0

S6 23.97 5,082 508.4 ± 17.5

S7 21.13 5,222 517.8 ± 14.3

S8 30.90 4,890 488.3 ± 13.2

S9 24.80 5,358 539.0 ± 73.5

S10 21.58 3,654 361.3 ± 36.3

Total 240.78 50,006 498.0 ± 96.6
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– I am a database administrator. I write numerous SQL scripts and also test many scripts
submitted by other developers. To solve exceptions, I usually search for answers on the
internet or refer to the official documentation.

– I am a QA and responsible for testing three projects in the company. I think my tasks
belong to “Testing”, “Navigation”, “Web Browsing” and “Documentation”, because
I are not required to write much code and only write simple scripts sometimes.

Two developers identified some limitations of our coding schema, which was as follow:

– I think this coding schema is for developers. However, I am not only a developer but
also a project manager. I spend a considerable amount of my time on email and project
management. These management activities may not be covered in your coding schema.

– I agree that my major development activities are covered in the coding schema. How-
ever, if I use other applications, e.g. email client, message sender, to communicate with
other people, to what label do these activities belong?

These two developers’ questions are concerned with management and communication activ-
ities in the broader context of software development. As our focus in this study is on
development-related activities, we consider our coding schema sufficient for this study. We
leave the coding-schema limitations identified by the two developers as a future work.

To ensure a high level of rigor in our manual annotation process, the first and third
authors, who both had more than six years programming experience, manually labeled the
collected action records. The manual annotation process was divided into 10 annotation
sessions, i.e., labeling the action list of one participant per session. The entire manual anno-
tation process required approximately 80 h, including manual annotation and validation of
the annotation results with the participant developers.

The annotators followed the segmentation-based annotation process and principles
described in Section 2.3. During an annotation session, the two annotators independently
annotated the same action list. We used Fleiss Kappa (Fleiss 1971) to measure the agreement
between the two annotators. The overall Kappa value (see the interpretations for Kappa val-
ues in Table 3) between the two annotators on all action lists was 0.61 which indicates a
substantial agreement between the annotators. After completing the manual annotation pro-
cess, the two annotators discussed their disagreements to reach a common decision. We had
two types of disagreements. First, the majority of the disagreements were due to the bound-
ary of adjacent segments, i.e., which segments several actions close to segment boundary
should belong to. The two annotators resolved such boundary disagreements by reviewing
and discussing the relatedness of those close-to-boundary actions and adjacent segments.
Second, some segments contained a mix of similar numbers of different types of actions.
The two annotators could disagree on action labels in such segments. If they could not
resolve the disagreement, the corresponding developers were consulted. When consulting
the developers, we provided them with code files, web pages and/or other documents in the
action records, and the screenshots that ACTIVITYSPACE captured when logging the action
actions. This helped the developers recall their activities (Safer and Murphy 2007). Then,
we asked the developers to explain what they did in these activities and why they did these
activities. With the developers’ explanation of their activities and intentions behind these
activities, the two annotators made a final decision on action labels.

In our annotation approach, we annotated each action in a segment with the development-
activity label to which the majority of the actions in the segment belong. To confirm the
validity of this majority-voting heuristic and ensure the quality of the ground-truth labels
for the experiments, we validated our action labeling results by interviewing the participant
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developers. Considering the volume of the data, we did not validate the entire annotation
results. Instead, we randomly sampled segments of labeled action records that contained
approximately 10% of action records for each participant. As the goal of this validation
was to confirm the majority-voting labeling heuristic, we excluded segments with similar
numbers of different types of actions which could require human judgment to determine
action labels for the actions in the segments.

Recall that we showed the definition of the activity labels to the developers when they
were asked to confirm the developed coding schema. Before validating the action labeling
results with each participant, we described the definition of activity labels to the develop-
ers once more, including their feedbacks to our coding schema to refresh their memory.
Then, for each sampled segment, we provided the corresponding developer with code files,
web pages and/or other documents, and the screenshots that ACTIVITYSPACE captured in
that segment. We asked the developer to confirm whether the collected data were consis-
tent with their work at the time the data were collected. Reviewing the documents and
screenshots logged in a segment helps the developer recall his/her activities in the segment
(Safer and Murphy 2007). Subsequently, we asked the developer to explain what activi-
ties they did in the segment and why they did these activities. Following the developer’s
explanation of his/her activities, we asked the developer to identify one major development
activity (according to our coding schema) in the segment. The interviews with the devel-
opers required approximately 6 h. Finally, we compared the participants’ reported major
development activities for the sampled action segments with our action labeling results to
confirm the validity of our annotation results. For the sampled segments, all the major activi-
ties reported from participants agreed with our annotation results. This confirms the validity
of our majority-voting action labeling heuristic and the quality of ground-truth labels for the
experiments.

3.4 Ground-Truth Development Activity Labels

Table 6 shows the total number of action records and the corresponding percentage in dif-
ferent types of development activities for the ten participants. We can see that different
developers had different distributions of development activities in their work. The number

Table 6 The number and percentage of each class of development activity by different participants

Coding Debugging Testing Navigation WebBrowsing Documentation

S1 1874 (43.16%) 354 (8.15%) 1231 (28.35%) 705 (16.24%) 160 (3.68%) 18 (0.41%)

S2 727 (12.32%) 430 (7.29%) 1263 (21.4%) 2694 (45.65%) 251 (4.25%) 537 (9.1%)

S3 1044 (26.21%) 456 (11.45%) 443 (11.12%) 1877 (47.13%) 81 (2.03%) 82 (2.06%)

S4 1503 (22.06%) 62 (0.91%) 1505 (22.09%) 2282 (33.49%) 1274 (18.7%) 187 (2.74%)

S5 2319 (48.72%) 293 (6.16%) 1278 (26.85%) 733 (15.4%) 135 (2.84%) 2 (0.04%)

S6 1537 (30.24%) 712 (14.01%) 1878 (36.95%) 709 (13.95%) 157 (3.09%) 89 (1.75%)

S7 1197 (22.92%) 999 (19.13%) 2047 (39.2%) 716 (13.71%) 201 (3.85%) 62 (1.19%)

S8 702 (14.36%) 127 (2.6%) 1191 (24.36%) 241 (4.93%) 921 (18.83%) 1708 (34.93%)

S9 1679 (31.34%) 0 (0%) 1759 (32.83%) 691 (12.9%) 1212 (22.62%) 17 (0.32%)

S10 387 (10.59%) 313 (8.57%) 783 (21.43%) 1994 (54.57%) 177 (4.84%) 0 (0%)

Total 12969 (25.93%) 3746 (7.49%) 13378 (26.75%) 12642 (25.28%) 4569 (9.14%) 2702 (5.4%)
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of action records labeled in three types of development activities, namely coding (25.93%),
testing (26.75%) and navigation (25.28%), was more than the total number of action records
labeled in the other three development activities. 5%–10% of the action records were labeled
in debugging for specific participants, including S1, S2, S3, S5, S6, S7, and S10. Partici-
pants S4, S8 and S9 had minimal or no action records labeled in debugging. We found that
this was because S4 was mainly responsible for front-end development, S8’s main work
was testing and business analysis, and S9 was responsible for database development during
the week of our data collection. We further confirmed with S4 that he usually used a log
to observe and verify code change and he rarely used IDE debug features. Therefore, there
were only a small number of debugging action records for participant S4.

The roles of all participants. except participant S8, in our study were developers in
the studied company. In this company, developers mainly write software code and unit
test code, whereas other documents such as requirement documents, bug reports, and test
cases are written by other people. For example, a business analyst is responsible for elic-
iting requirements from clients and writing the requirement documents. During the week
we collected the data, only participant S8 performed business analysis tasks. Hence, there
were very minimal documentation actions in our collected data. As documentation actions
are not representative of the work performed by the participants, we ignored them in our
experiments.

3.5 Results

3.5.1 RQ1: Effectiveness of CRF—Performance for the Whole Data

Tables 7, 8 and 9 show the confusion matrixes of CRF, the heuristic-rules method, and the
SVM baseline for the whole data of all the ten participants, respectively. For each approach,
the confusion matrix was constructed by accumulating the confusion matrixes of all rounds
of validation. Based on these confusion matrixes, we computed the overall accuracy and
Kappa metric of CRF, the heuristic-rules method, and the SVM baseline for the whole data,
as shown Table 10. To compute the accuracy of the random weighted classifier on the whole
data, we set xλ be equal to the average proportion of instances in the whole data. The accu-
racy is equal to 0.221, which is lower than those of the other classifiers. Table 11 shows
the precision, recall, and F1-score for each label using CRF, the heuristic-rules method, the
SVM baseline and the random weighted classifier for the whole data. The last column of
Table 11 is the corresponding macro-averaged metrics.

Table 7 Confusion matrix of CRF for the whole data

Predicted label

Coding Debugging Testing Navigation Web browsing Documentation

Actual label Coding 42593 2615 1258 11014 452 55

Debugging 3047 9187 1125 5187 138 2

Testing 2132 833 47175 508 10072 670

Navigation 6621 2691 775 45773 376 62

Web browsing 439 173 5926 170 14736 92

Documentation 541 3149 511 212 383 4356
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Table 8 Confusion matrix of heuristic-rules for the whole data

Predicted label

Coding Debugging Testing Navigation Web browsing Documentation

Actual label Coding 24168 4450 454 24677 3630 608

Debugging 1625 11676 275 4007 1075 28

Testing 25 812 28854 184 29949 1566

Navigation 14253 1386 443 39171 500 545

Web browsing 17 15 4015 36 17329 124

Documentation 6 0 10 14 265 8857

The accuracies and the macro-averaged metrics demonstrate that the proposed CRF
classifier achieved the best performance on the whole data, the performance of the heuristic-
rules method was in the middle, and the SVM baseline performed the poorest. Except for
the macro-averaged recall where the proposed CRF classifier and the heuristic-rules method
were virtually identical, our CRF classifier achieved significantly superior results for all
other metrics. Furthermore, the classification results of the proposed CRF classifier had
substantial agreement with the actual labels, whereas the heuristic-rules method had only
moderate agreement, and the SVM baseline had only slight agreement.

Regarding the precision, recall, and F1-score for each label in the whole data, CRF had
the highest precision on all labels except for the precision of the heuristic-rules method for
the label “Debugging”. CRF had the highest recall on three labels: “Coding”, “Testing” and
“Navigation”, whereas the heuristic-rules method had the highest recall on the other three
labels. CRF achieved the highest F1-score on all labels except for the “Debugging” and
“Documentation” labels using the heuristic-rules method. The better performance of the
heuristic-rules method for the label “Debugging” can be attributed to the fact that the major-
ity of the debugging activities were performed in debugging perspective, and thus could be
easily inferred by heuristic rules. A similar reason can be extended to the better performance
of the heuristic-rules method for the label“Documentation”. That is, developers performed
the majority of the documentation activities in Office or PDF software, which can be easily
inferred.

Table 9 Confusion matrix of SVM for the whole data

Predicted label

Coding Debugging Testing Navigation Web browsing Documentation

Actual label Coding 22706 50 21793 10248 1041 2149

Debugging 7097 11 6738 4167 16 657

Testing 18018 947 27183 4394 4480 6368

Navigation 9372 50 20813 22920 487 2656

Web browsing 5748 681 8156 3197 2441 1313

Documentation 2110 1695 299 662 3398 988
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Table 10 Accuracies and Kappa
values of CRF, heuristic-rules
and SVM for the whole data

Accuracy Kappa value

CRF 0.728 0.651 (substantial)

RULE 0.578 0.476 (moderate)

SVM 0.339 0.133 (slight)

3.5.2 RQ1: Effectiveness of CRF - Performance for Each Participant

Table 12 presents the accuracy of the proposed CRF classifier, the heuristic-rules method,
the SVM baseline, and the random weighted classifier for each participant. The reported
accuracy of a classifier is the average accuracy of nine rounds of testing. The standard
deviation of the accuracies of nine rounds of testing are also shown in Table 12. The random
weighted classifier achieved the lowest average accuracy, but in some cases its accuracies
were larger than those of the SVM baseline, e.g., the participant S1 and S7.

The results indicate that our CRF classifier had the best accuracies for all participants,
except participant S8. For the heuristic-rules method, the accuracies of all participants were
not overly stable: the lowest was 0.386 for participant S1 and the highest was 0.740 for
participant S8. For participant S8, we found that the participant performed many documen-
tation activities. The majority of documentation activities were performed in Office or PDF
software, which could be easily identified by heuristic rules. The heuristic-rules method
also demonstrated an acceptable result for participant S2, because this participant performed
many navigation activities, which can be easily identified by heuristic rules such as the “Find
and Search” window. However, the accuracies of the other participants in general were not
very good. The average accuracy of the heuristic-rules method across all the participants
was 0.560, while the average accuracy of the proposed CRF classifier was 0.761.

For the SVM baseline, the accuracies were all below 0.6 (only 0.325 on average). Except
for participant S1, SVM was less effective than the heuristic-rules method. This could be
because SVM does not consider the behavior context and local features alone cannot reliably

Table 11 Precisions, recalls, f1-scores and the corresponding macro-averaged metrics for each label using
CRF, heuristic-rules, SVM and random weighted classifier for the whole data

Coding Debugging Testing Navigation Web Documentation Marco-

browsing averaged

Precision CRF 0.769 0.493 0.831 0.728 0.563 0.832 0.703

RULE 0.603 0.637 0.847 0.575 0.329 0.755 0.624

SVM 0.349 0.003 0.320 0.503 0.206 0.070 0.242

Random 0.258 0.083 0.273 0.250 0.096 0.041 0.167

Recall CRF 0.735 0.492 0.768 0.813 0.684 0.476 0.661

RULE 0.417 0.625 0.470 0.696 0.805 0.968 0.663

SVM 0.392 0.001 0.443 0.407 0.113 0.108 0.244

Random 0.258 0.083 0.273 0.250 0.096 0.041 0.167

F1-score CRF 0.751 0.492 0.798 0.768 0.618 0.605 0.672

RULE 0.493 0.631 0.605 0.630 0.467 0.848 0.612

SVM 0.369 0.001 0.371 0.450 0.146 0.085 0.237

Random 0.258 0.083 0.273 0.250 0.096 0.041 0.167
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Table 12 Accuracies of CRF, heuristic-rules, SVM and random weighted classifier for each participants

CRF RULE SVM Random

S1 0.808 ± 0.071 0.386 ± 0.029 0.420 ± 0.342 0.347 ± 0.044

S2 0.756 ± 0.066 0.691 ± 0.023 0.100 ± 0.148 0.297 ± 0.035

S3 0.720 ± 0.054 0.524 ± 0.049 0.515 ± 0.170 0.349 ± 0.039

S4 0.808 ± 0.089 0.637 ± 0.046 0.355 ± 0.266 0.273 ± 0.045

S5 0.863 ± 0.024 0.419 ± 0.019 0.470 ± 0.349 0.393 ± 0.027

S6 0.772 ± 0.057 0.542 ± 0.028 0.434 ± 0.316 0.283 ± 0.032

S7 0.730 ± 0.100 0.644 ± 0.033 0.287 ± 0.282 0.346 ± 0.079

S8 0.616 ± 0.128 0.740 ± 0.051 0.140 ± 0.184 0.260 ± 0.021

S9 0.724 ± 0.197 0.437 ± 0.042 0.414 ± 0.235 0.299 ± 0.069

S10 0.809 ± 0.052 0.616 ± 0.035 0.584 ± 0.279 0.388 ± 0.022

Mean 0.761 ± 0.084 0.564 ± 0.036 0.372 ± 0.257 0.323 ± 0.041

classify actions. Furthermore, the results show that the standard deviation of the heuristic-
rules method was the least, since its performance depended on only the defined heuristic
rules but not the size of the training data. The standard deviation of CRF was consider-
ably less than that of the SVM baseline, which indicates that CRF is more robust than the
SVM baseline. Our results show that a machine learning approach cannot always outper-
form heuristic rules, unless the machine learning approach is well designed to consider the
characteristics of the data.

We also calculated the accuracy improvement using the proposed CRF classifier com-
pared with the heuristic-rules method or the SVM baseline, i.e., improvement = Acrf −Am

Am
,

where A is the accuracy and m can be either heuristic-rules method or SVM baseline.
The average accuracy improvements over the heuristic-rules method, the SVM baseline
and the random weighted classifier were 34.93%, 104.52%, and 135.60%, respectively. For
the heuristic-rules method, the accuracy improvement for participant S1 was the greatest
(109.32%), and the accuracy improvement for participant S8 is the least (−16.76%). This is
because participant S1 was responsible for web development; he/she switched between dif-
ferent tasks frequently, such as coding, testing, and navigation. In such a complex working
behavior, heuristic rules cannot work well. Conversely, participant S8 performed many doc-
umentation activities that can be easily inferred by heuristic rules, for example, by software
application used. For the SVM baseline, the accuracy improvement for the participant S2
was the greatest (655.38%), and the accuracy improvement for the participant S10 was the
least (38.57%). To measure whether the improvement was statistically significant, we also
apply Wilcoxon signed-rank test (Wilcoxon 1945), and the p-values on the heuristic-rules
method and the SVM baseline are 1.85E-12 and 1.83E-16 respectively, which indicates that
the improvement was statistically significant at a confidence level of 99%.

Table 13 shows the Kappa values of CRF, the heuristic-rules method, and the SVM
baseline for each participant. We confirmed that the Kappa values of CRF were superior
compared to those of the heuristic-rules method and SVM baseline for all participants,
except participant S8. The agreements between the predictions using CRF and the actual
labels for all participants were at least moderate. Eight out of ten Kappa values using CRF
were above 0.60, which indicates substantial agreement. However, the agreement levels
using the heuristic-rules method were fair and moderate for all the participants, except
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Table 13 Kappa statistics of
CRF, heuristic-rules and SVM
for each participant

CRF RULE SVM

S1 0.73 (substantial) 0.24 (fair) 0.19 (slight)

S2 0.64 (substantial) 0.57 (moderate) −0.08 (poor)

S3 0.56 (moderate) 0.36 (fair) 0.22 (fair)

S4 0.74 (substantial) 0.52 (moderate) 0.14 (slight)

S5 0.8 (substantial) 0.28 (fair) 0.18 (slight)

S6 0.68 (substantial) 0.43 (moderate) 0.17 (slight)

S7 0.64 (substantial) 0.55 (moderate) 0.00 (slight)

S8 0.51 (moderate) 0.63 (substantial) −0.06 (poor)

S9 0.63 (substantial) 0.29 (fair) 0.14 (slight)

S10 0.69 (substantial) 0.46 (moderate) 0.32 (fair)

substantial for S8. The agreement levels using the SVM baseline were the poorest. For par-
ticipants S2 and S8, the Kappa values of the SVM baseline were actually less than zero,
which indicates poor agreement.

To compare the performance of CRF, the heuristic-rules method, SVM baseline, and
random weighted classifier for each participant, we also calculated the macro-averaged pre-
cisions, recalls and F1-scores of different classifiers for each participant (see Table 14). We
found that the macro-averaged precisions of CRF were greater than those of the heuristic-
rules method for all participants except S8. For participant S8, the macro-averaged precision
of CRF was virtually the same as that of the heuristic-rules method (0.66 vs. 0.67). Although
the macro-averaged recalls of the heuristic-rules method for some participants (e.g., S2, S3)
were greater than those of CRF, but the majority of the macro-averaged F1-scores of CRF
were greater than those of the heuristic-rules method except for participants S2 and S8. For
participants S2 and S8, the macro-averaged F1-scores of CRF were essentially the same as
those of the heuristic-rules method (0.63 vs. 0.64, and 0.65 vs. 0.67). The macro-averaged
metrics of the SVM baseline and random weighted classifier were all less than those of CRF

Table 14 Macro-averaged precisions, recalls and f1-scores of CRF, heuristic-rules and SVM for each
participant

Marco-precision Marco-recall Marco-F1-score

CRF RULE SVM Random CRF RULE SVM Random CRF RULE SVM Random

S1 0.847 0.580 0.428 0.167 0.746 0.454 0.335 0.167 0.779 0.423 0.454 0.167

S2 0.698 0.651 0.132 0.167 0.664 0.676 0.124 0.167 0.631 0.644 0.228 0.167

S3 0.623 0.560 0.462 0.167 0.471 0.588 0.248 0.167 0.633 0.522 0.542 0.167

S4 0.790 0.600 0.442 0.167 0.769 0.649 0.378 0.167 0.801 0.638 0.489 0.167

S5 0.798 0.476 0.470 0.167 0.680 0.512 0.282 0.167 0.806 0.385 0.536 0.167

S6 0.789 0.559 0.384 0.167 0.621 0.626 0.256 0.167 0.636 0.511 0.504 0.167

S7 0.751 0.632 0.284 0.167 0.519 0.744 0.167 0.167 0.685 0.635 0.331 0.167

S8 0.659 0.670 0.117 0.167 0.680 0.700 0.151 0.167 0.645 0.669 0.208 0.167

S9 0.737 0.527 0.351 0.167 0.644 0.622 0.296 0.167 0.712 0.491 0.490 0.167

S10 0.796 0.525 0.583 0.167 0.634 0.628 0.363 0.167 0.705 0.584 0.669 0.167
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and the heuristic-rules method. Overall, the proposed CRF achieved the best performance
for the majority of the participants.

3.5.3 RQ1: Effectiveness of CRF—Performance for Each Label

We used box plot to compare the results of precision, recall, and F1-score for each label
using CRF, the heuristic-rules method, SVM, and the random weighted classifier on each
participant’s data—see Figs. 3, 4 and 5, respectively. To plot the boxplot, we used the aver-
age metrics of nine rounds of testing for each participant. However, in some rounds of
testing, there existed very minimal or no action records labeled by one label in the test
data of a participant. For example, when we used the first seven working sessions of action
records to predict the remaining three working sessions of action records for participant S2,
there were only six “Documentation” action records in the S2’s testing data. For such rarely
occurring labels, the performance metrics of CRF, the heuristic-rules method, and SVM
baseline were invalid, Therefore, we ignored these data when plotting the boxplot.

Figure 3 shows that the precisions of CRF were the best for all labels, and that the pre-
cisions of heuristic-rules were superior to those of SVM for all labels. There were some
cases where heuristic-rules or SVM provided improved performance compared to CRF, for
example, for the label “Web Browsing”, participant S7 using the heuristic-rules method and
participant S4 using SVM (i.e., the outliers in Fig. 3e). However, the median values (the
band inside the box) of CRF were all greater than those of the heuristic-rules method and
SVM. For the label “Debugging”, the median value of CRF was marginally greater than that
of the heuristic-rules method. However, in some cases, the precision of CRF for the label
“Debugging” was less than that of the heuristic-rules method (see Fig. 3b). This is because
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Fig. 3 Precisions for each label using CRF, heuristic-rules, SVM and random weighted classifier
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Fig. 4 Recalls for each label using CRF, heuristic-rules, SVM and random weighted classifier

developers performed the majority of debugging activities in the debugging perspective of
IDEs, which can be easily inferred by heuristic rules.

For the results of recall, CRF demonstrated superior performance compared to the
heuristic-rules method on all labels except the label “Web Browsing” and “Documenta-
tion”, whereas the SVM baseline provided the poorest performance on all labels (see Fig. 4).
For the label “Web Browsing” and “Documentation”, we used heuristic-rules to address
the majority of web pages and documents that existed in our collected data based on the
data observation. Therefore, the heuristic-rules method achieved improved performance
compared to CRF. However, this may not be generalizable on new data. For the result of
F1-score, which combines precision and recall, CRF demonstrated superior performance
compared to the heuristic-rules method except for the label “Debugging” and “Documenta-
tion”, whereas the SVM baseline had the poorest F1-score on all labels (see Fig. 5). In some
cases, the performance of SVM was unacceptable. For example, for the label “Debugging”,
the F1-scores of SVM are considerably less than those of CRF and the heuristic-rules. This
could be because the SVM baseline does not consider context information when inferring
developers’ activities.

Table 15 lists the maximum, minimum, median, mean and standard deviation of F1-
scores for each label. The maximum F1-scores of CRF are all greater than those of the
baseline classifiers. The minimum F1-scores of all classifiers are typically small, because
there could be no action records for a particular label when the size of the training data
is small. In such cases, the F1-score of random weighted classifier is zero. The heuristic-
rules method achieved considerably greater minimum F1-scores than other classifiers on
labels “Debugging”, “Navigation”, and “Documentation”. This is because the heuristic rules
are not directly influenced by the size of the training data. The median and mean values



Empir Software Eng

CRF RULE SVM Random

0.
0

0.
5

1.
0

CRF RULE SVM Random
0.

0
0.

5
1.

0
CRF RULE SVM Random

0.
0

0.
5

1.
0

CRF RULE SVM Random

0.
0

0.
5

1.
0

CRF RULE SVM Random

0.
0

0.
5

1.
0

CRF RULE SVM Random
0.

0
0.

5
1.

0

Fig. 5 F1-Scores for each label using CRF, heuristic-rules, SVM and random weighted classifier

of F1-scores of CRF are all greater than those of the baseline classifiers except for the
label “Documentation” using the heuristic-rules method. The random weighted classifier
achieves the smallest standard deviation, because its results depend on only the proportion
of instances that belong to a class in the testing data. The standard deviations of CRF are
all greater than those of the heuristic-rules method except for the label “Testing”. This is
because the results of the heuristic-rules method depend on its defined rules, not the size of
the training data. The standard deviations of CRF are less than those of the SVM baseline
except for the labels “Debugging” and “Web Browsing”.

To measure whether the F1-score improvement of the proposed CRF classifier was
significant over the heuristic-rules method and SVM baseline, we applied the Wilcoxon
signed-rank test (Wilcoxon 1945) for each label on F1-score (see the last column in
Table 15). We also calculated Cliff’s delta,4 which is a non-parametric effect size measure,
to show the effect size of the difference between the two groups (see the last second col-
umn in Table 15). For the heuristic-rules method, the p-values for four labels, i.e. “Coding”,
“Debugging”, “Testing” and “Navigation”, were less than 0.05 and the Cliff’s deltas were
at least at the small effectiveness level, which means that the improvement of the proposed
CRF classifier was statistically significant at the confidence level of 95%. However, the
improvement for the other two labels, i.e., “Web Browsing” and “Documentation” was not
statistically significant, because there existed participants for whom the F1-scores of the
heuristic-rules method were greater than those of CRF. For the SVM baseline, the p-values
were all less than 0.05 and the Cliff’s deltas were all at the large effectiveness level, which

4Cliff defines a delta of less than 0.147, between 0.147 to 0.33, between 0.33 and 0.474, and above 0.474 as
negligible, small, medium, and large effect size, respectively.
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Table 15 Results of test statistics of F1-scores for each label

Approach max min median mean std δ pvalue

Coding CRF 0.963 0.222 0.783 0.733 0.190 – –

RULE 0.666 0.143 0.489 0.472 0.139 0.778 0.002

SVM 0.894 0.003 0.498 0.443 0.294 0.901 0.002

Random 0.642 0.013 0.222 0.262 0.154 0.549 <0.001

Debugging CRF 0.983 0.006 0.668 0.594 0.268 – –

RULE 0.827 0.225 0.526 0.560 0.159 0.188 0.020

SVM 0.253 0.004 0.128 0.128 0.176 0.969 0.004

Random 0.215 0.000 0.046 0.062 0.060 0.608 <0.001

Testing CRF 1.000 0.085 0.877 0.788 0.230 – –

RULE 0.951 0.003 0.697 0.552 0.305 0.407 0.049

SVM 0.996 0.000 0.814 0.638 0.365 0.580 0.010

Random 0.692 0.022 0.251 0.264 0.124 0.333 <0.001

Navigation CRF 1.000 0.057 0.792 0.726 0.190 – –

RULE 0.851 0.319 0.560 0.589 0.137 0.531 0.010

SVM 0.964 0.001 0.644 0.504 0.338 0.827 0.002

Random 0.611 0.022 0.147 0.263 0.189 0.587 <0.001

Web browsing CRF 0.955 0.008 0.634 0.561 0.268 – –

RULE 0.887 0.089 0.455 0.434 0.232 −0.012 0.500

SVM 0.607 0.002 0.072 0.204 0.241 0.875 0.004

Random 0.395 0.000 0.041 0.083 0.089 0.600 <0.001

Documentation CRF 1.000 0.029 0.790 0.673 0.301 – –

RULE 1.000 0.200 0.860 0.788 0.190 −0.469 0.992

SVM 0.955 0.003 0.254 0.367 0.372 0.611 0.016

Random 0.480 0.000 0.007 0.061 0.117 0.471 <0.001

Measurements are reported in the following columns: maximum, minimum, median, mean, standard
deviation (std), Cliff’s delta (δ) and p-value

means that the improvement of the proposed CRF classifier was statistically significant at
the confidence level of 95%.

3.5.4 RQ2: The Effect of the Size of Training Data

Table 16 shows the accuracy of all participants predicted by the CRF classifier over different
sizes of the training data ranging from 0.5 to 4.5 working days. Table 17 shows the accuracy
of all participants predicted by the CRF classifier over the different sizes of the training data
ranging from 100 to 1,000. For each participant, we also calculated the mean and standard
deviation of the accuracies (see the last column in these two tables).

From these two tables, we found that the performance of the CRF classifier was signif-
icantly stable for some participants (i.e., S1, S2, S5, and S10). Their standard deviations
were small. Given a extremely small size of training data, their accuracies were high. For
example, when the size of the training data was only 100 action records, the accuracy of par-
ticipant S1 was greater than 0.70. For other participants, when the size of the training data
increased, the accuracy became stable. However, the required sizes of training data were
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Table 16 Accuracies of different sizes of the training data (working session)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 MeanDay Std

S1 0.80 0.82 0.80 0.80 0.78 0.75 0.71 0.86 0.96 0.81 0.07

S2 0.74 0.72 0.73 0.72 0.71 0.73 0.72 0.86 0.88 0.76 0.06

S3 0.65 0.63 0.76 0.77 0.77 0.77 0.71 0.73 0.69 0.72 0.05

S4 0.60 0.77 0.78 0.82 0.84 0.87 0.86 0.83 0.91 0.81 0.08

S5 0.85 0.85 0.86 0.85 0.85 0.83 0.89 0.89 0.90 0.86 0.02

S6 0.68 0.72 0.75 0.75 0.74 0.80 0.81 0.85 0.84 0.77 0.05

S7 0.54 0.73 0.73 0.73 0.69 0.68 0.75 0.84 0.89 0.73 0.09

S8 0.36 0.50 0.57 0.58 0.73 0.70 0.71 0.65 0.74 0.62 0.12

S9 0.45 0.58 0.61 0.60 0.58 0.93 0.92 0.95 0.91 0.72 0.19

S10 0.77 0.78 0.79 0.76 0.79 0.82 0.79 0.89 0.90 0.81 0.05

different. For participants S3, S4, S6, and S7, when the number of action records in training
data was 500 or greater, the accuracies became stable with small standard deviation. How-
ever, for participants S8 and S9, it required considerably more training data. For participant
S8, when the size of the training data was greater than 2.5 days, the accuracy value became
stable and equal to ∼0.7. The accuracy values of participant S9 were high (i.e., greater than
0.9) when the size of training data was greater than three days. We found that the size of
the training data where the accuracy became stable depended on the label distribution in the
training data and testing data. For example, there was no action record labeled by “Cod-
ing” in the previous 500 action records of participant S9 and the majority of actions were
labeled as “Testing” and “Web Browsing”. Therefore, the accuracies of participant S9 were
extremely low (i.e., less than 0.3) when the size of the training data was less than 500 action
records.

Overall, we confirmed the CRF classifier was robust and effective with small training
data. However, to achieve acceptable performance, the labels in the training data must be
diverse. To decrease the effort of manual annotation in practice, rather than labeling behav-
ior data by consecutive working sessions (which could be uniform), we observed the action

Table 17 Accuracies of different sizes of the training data (number of action records)

100 200 300 400 500 600 700 800 900 1000 Mean ± Std

S1 0.70 0.78 0.80 0.80 0.80 0.81 0.81 0.81 0.82 0.81 0.79 ± 0.03

S2 0.70 0.72 0.73 0.73 0.73 0.74 0.73 0.73 0.74 0.73 0.73 ± 0.01

S3 0.46 0.51 0.54 0.65 0.64 0.64 0.63 0.63 0.65 0.68 0.60 ± 0.07

S4 0.50 0.50 0.52 0.51 0.61 0.59 0.58 0.61 0.70 0.71 0.58 ± 0.07

S5 0.84 0.85 0.85 0.85 0.85 0.84 0.84 0.84 0.85 0.85 0.85 ± 0.00

S6 0.39 0.55 0.64 0.66 0.68 0.71 0.72 0.73 0.73 0.73 0.65 ± 0.10

S7 0.58 0.58 0.58 0.52 0.52 0.52 0.65 0.62 0.71 0.74 0.60 ± 0.07

S8 0.37 0.34 0.36 0.35 0.36 0.33 0.34 0.32 0.32 0.52 0.36 ± 0.05

S9 0.29 0.26 0.23 0.26 0.45 0.44 0.43 0.54 0.54 0.57 0.40 ± 0.12

S10 0.58 0.73 0.75 0.78 0.77 0.79 0.79 0.79 0.80 0.80 0.76 ± 0.06
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Table 18 Accuracies of the cross-person prediction

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Mean ± Std.

S1 – 0.44 0.48 0.65 0.89 0.43 0.34 0.51 0.62 0.53 0.54 ± 0.15

S2 0.66 – 0.65 0.60 0.76 0.38 0.40 0.71 0.41 0.73 0.59 ± 0.14

S3 0.80 0.63 – 0.70 0.83 0.66 0.77 0.35 0.64 0.63 0.67 ± 0.13

S4 0.58 0.64 0.58 – 0.60 0.35 0.31 0.67 0.53 0.69 0.55 ± 0.13

S5 0.89 0.41 0.44 0.62 – 0.46 0.38 0.37 0.65 0.50 0.52 ± 0.16

S6 0.77 0.74 0.76 0.64 0.80 – 0.84 0.68 0.56 0.55 0.70 ± 0.10

S7 0.49 0.73 0.66 0.57 0.48 0.80 – 0.63 0.61 0.71 0.63 ± 0.10

S8 0.58 0.42 0.46 0.49 0.61 0.42 0.32 – 0.56 0.43 0.48 ± 0.09

S9 0.75 0.66 0.59 0.68 0.79 0.63 0.62 0.54 – 0.70 0.66 ± 0.07

S10 0.79 0.60 0.65 0.71 0.84 0.70 0.67 0.35 0.43 – 0.64 ± 0.15

All others 0.90 0.81 0.75 0.70 0.90 0.84 0.81 0.71 0.71 0.74 0.79 ± 0.074

distribution in working sessions and tried to prepare the training data with diverse labels
from non-consecutive working sessions.

3.5.5 RQ3: Cross-Developer Prediction

In the experiment, we used each participant’s action list as the training data to train a CRF
model to predict the label of the other nine participants’ actions. We also used all other
participants’ action lists as the training data to train a CRF model to predict the label of the
remaining participant’s actions. Tables 18 and 19 show the accuracies and Kappa values of
cross-developer prediction using the proposed CRF classifier, respectively. For each cell in
these two tables except the last column and the last row, the row participant indicates the
training data and the column participant is the test data. In the last column of these two
tables, each cell is the mean and standard deviation of the accuracy values (or Kappa values)
of using the participant’s data in a row to predict the other participants in the column. In

Table 19 Kappa values of the cross-person prediction

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Mea ± Std.

S1 – 0.42 0.44 0.64 0.89 0.40 0.31 0.48 0.60 0.49 0.52 ± 0.16

S2 0.64 – 0.63 0.59 0.75 0.35 0.38 0.69 0.39 0.71 0.57 ± 0.15

S3 0.79 0.62 – 0.69 0.83 0.65 0.76 0.32 0.62 0.59 0.65 ± 0.14

S4 0.56 0.63 0.55 – 0.59 0.32 0.28 0.65 0.51 0.67 0.53 ± 0.13

S5 0.90 0.40 0.43 0.62 – 0.44 0.35 0.34 0.64 0.47 0.51 ± 0.17

S6 0.76 0.73 0.74 0.63 0.80 – 0.83 0.67 0.55 0.51 0.69 ± 0.10

S7 0.47 0.72 0.63 0.56 0.46 0.79 – 0.62 0.60 0.68 0.61 ± 0.10

S8 0.56 0.40 0.42 0.48 0.60 0.40 0.29 – 0.55 0.38 0.45 ± 0.09

S9 0.74 0.65 0.56 0.68 0.79 0.62 0.60 0.52 – 0.67 0.65 ± 0.08

S10 0.78 0.59 0.63 0.71 0.84 0.69 0.66 0.32 0.41 – 0.63 ± 0.16

All others 0.90 0.81 0.74 0.70 0.91 0.83 0.81 0.69 0.69 0.72 0.78 ± 0.08
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the last row of these two tables, each cell is the accuracy (Kappa values) of using all other
participants’ data to predict a particular participant in the column.

The accuracy results of cross-person prediction using CRF are acceptable. In the results
using one participant to predict the other participant, there are many cases where the accu-
racy results were close to or higher than 60%. The mean accuracy of using the model trained
by the action lists of participant S6 to predict other participants’ actions was the greatest
(i.e., 70%). Using all other participants to predict the remaining one, all accuracy results
were greater than 0.70. This shows that cross-developer prediction using CRF is feasible.
However, we would like to point out that there were only ten developers in our experiment
and they all used Java as the main programming language. More data from different devel-
opers and projects is required to verify whether the cross-developer prediction is feasible in
general. We are considering to collect more data from different developers in the future.

Furthermore, the accuracy of cross-developer prediction can indicate the similarity
between two developers’ behavior or working context. For example, the accuracy results of
cross-developer prediction between participants S1 and S5 are approximately 90%. Indeed,
we find S1 and S5 are working on the same module of the same project. They closely col-
laborated in their daily work. This indicates opportunities for mining and transferring best
practices (usually not explicitly documented) among developers.

From the Kappa metrics in Table 19, we can observed that the results of the proposed
classifier trained using all other participants’ data for predicting the remaining participant
had substantial agreement with the actual labels for six participants, and almost perfect
agreement for four participants (S1, S5, S6, and S7). This is because all other participants’
data exposes the classifier to diverse behavior and labels for accurate prediction. For the
results of the proposed classifier trained using one participants’ data for predicting others,
31.1% of the cases had moderate agreement and 51.1% had substantial or virtually perfect
agreement. For 17.8% of the cases with below-moderate agreement, it was mainly because
the training data of one participant did not include the labels in the other participant’s data.
For example, using S8’s data to predict S7’s data, the agreement was only 0.29 (fair). This
is because S8 performed many “Documentation” actions, whereas S7 does had only a small
number of “Documentation” actions in his working data.

4 Discussion

In this section, we introduce implications based on the proposed approach and experiment
results:

4.1 Mining and Using Behavior Patterns for Software Development

Software artifacts (e.g., code, bug reports) are well archived, and many approaches have
been proposed to mine and use the knowledge in software artifacts to assist software
development. Conversely, behavior data in software development tasks are discarded, even
though they have great potential to improve software development practices. In fact, a devel-
oper study by Wang et al. (2011) discovered distinct phases and recurring patterns in the
process of feature location tasks. They further show that the phases and patterns discovered
from senior developers’ behavior can be taught to junior developers. Once junior develop-
ers learn better feature location practices, their performance in feature location tasks can
be improved. The study by Wang et al. was conducted in controlled experiments and their
behavior pattern discovery and analysis were performed manually. Our study echoes their
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findings in real development tasks, and we show the potential of using a machine learning
approach to infer phases and behavior patterns in the process of software development tasks.

To verify this potential, we chose two participants (S1 and S2) and collected one more
week’s of interaction data in their work. Then, we used the trained CRF classifier to pre-
dict their activities in that week. We found that there were more action records labeled in
“Coding” and “Web Browsing” (37% and 35%, respectively) than other classes of actions
for participant S1, whereas for participant S2, “Coding”, “Testing” and “Debugging” were
the three most common action records accounting for 34%, 29%, and 22% of the total num-
ber of action records, respectively. We let the two developers examine the prediction results.
They agreed that our analysis result was consistent with their real development activities.
S1 stated “I was required to implement a new function that used a Java library I had never
used before. Therefore, during this week I read several online tutorials and developed a
demo application to learn this library.” Consequently, he expended considerable amount of
time on “Coding” and “Web Browsing”. S2’s tasks in that week were mainly bug fixing
because several bugs were reported in the module for which he was responsible. Hence, he
expended the majority of his time on investigating the root causes of the bugs and validating
his code changes.

Our study indicates that a knowledge repository of behavior data can be as useful
as an artifact repository for software development. The proposed approach can be the
first step towards validating the feasibility and applicability of a knowledge repository of
behavior data for software development. Such a behavior knowledge repository can not
only archive the behavior data, but also be mined to discover good or bad practices in
software development tasks. As such, this knowledge repository could complement the
current artifacts-based evaluation of developers’ performance with new behavior-oriented
aspects. It could facilitate addressing some key challenges in software engineering knowl-
edge management, such as the best practice of completing tasks in a timely fashion despite
the departure of key developers. Behavior patterns in the knowledge repository could
enable a more systematic transfer of best practices between developers, for example, by
recommending better practices to improve a developer’s current less-effective practices.

4.2 Deployment Challenges of Behavior Tracking Systems

The importance of studying developers’ behavior has long been recognized in many stud-
ies. However, compared with software artifacts that have been well studied, behavior data
in software engineering has been much less explored. This can be attributed to the diffi-
culties in collecting and analyzing behavior data. The proposed approach is an attempt to
mitigate these difficulties in the study of developers’ behavior. First, by operating-system
level instrumentation, it can be relatively easy to adapt our approach in different study set-
tings. Secondly, using a machine learning approach can reduce the amount of human efforts
required to manually examine the data.

We would like to highlight some technical prerequisites in deploying the proposed
approach in real work settings. First, although operating-system level instrumentation
improves the generalizability of data collection in different working environments, it
remains necessary to investigate the applications’ support for operating-system accessibil-
ity APIs before deploying the data collection framework in a specific working environment,
similar to the survey we conducted to test the generalizability of our ACTIVITYSPACE

framework1 for different applications and operating systems. The focus is to confirm what
information applications expose to the accessibility APIs and whether the exposed informa-
tion is sufficient for further abstraction. Secondly, although a machine learning approach
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can potentially reduce the human efforts for analyzing behavior data in the end, the human
labeling of behavior data is a mandatory step in the beginning. The goal is to obtain high-
quality training data with effective behavior diversity and precise labels. These initial human
efforts remain significant. A way to mitigate this effort is to devise statistical methods to
estimate how much data must be annotated by observing the overall data required to train a
high-quality machine learning model.

We also experienced interesting ethical debates regarding deploying a behavior data anal-
ysis tool such as the proposed approach in the company. The company managers appreciated
the value of behavior analysis and a behavior knowledge repository to improve the project
management and developers’ practices in their daily work. Developers also acknowledged
the potentials of behavior analysis for supporting their information needs in their work (Bao
et al. 2015b). However, they are reluctant to openly release their working data with others.
With the growth of the open source movement, developers have significantly less prob-
lem sharing their code. Traditionally, developers share how they code in video tutorials.
Recently, experienced developers share how they code in real time using live programming
broadcast on Reddit. This suggests that it is not completely impossible for developers to
share their behavior data if the developer’s privacy is protected and the data is used in a
constructive manner to facilitate developer growth.

5 Threats to Validity

Threats to Internal Validity One of the threats to internal validity is the annotation errors
in the manually labeled action list. We collected more than 50,000 action records from ten
developers’ daily work. Owing to the large quantity of action records to be labeled and
human misunderstanding of developers’ activities, there could exist annotation errors. To
minimize errors, two human annotators participated in labeling all the records and expended
approximately 80 h to complete this task. The two annotators independently annotated the
same data; then, the disagreements were resolved by discussion and assistance from devel-
opers. Furthermore, we sampled 10% of the action records to let developers verify that our
annotation results were accurate. In retrospect, we could improve the participants’ valida-
tion step by intentionally planting false information (e.g., annotations that are obviously
false), and verify if the participants identify these errors when they validate the data.

Another threat to internal validity is the definition of the development-activity labels in
our coding schema. In this work, we considered only six basic development activities: cod-
ing, debugging, testing, navigation, web search, and documentation. However, developers’
behavior can be more complex, which could involve behaviors not covered by the defined
six development activities. There could also potentially be activities that are more difficult
to recognize, especially when the annotators lack domain-specific knowledge. Furthermore,
there could be levels of ambiguities among the six development activities, which could lead
to the erroneously labeling results. According to our experiment results, we believe that
the six development activities in our schema are reasonable and can address the developers’ daily
working behavior in our collected data. However, for other studies with different purposes
or involving special activities, other labels could be defined for training the CRF model.

Threats to External Validity The major threat to external validity is the generalizabil-
ity of our results. In this study, we collected approximately 240 effective working-hours
behavior data from ten developers’ one-week work; these 10 developers were from three
different projects. Although the data was collected in real work settings, we acknowledge
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the limitation of the data and the limitation of the developers. In the future, we will reduce
this threat by collecting more data from more developers and projects.

Threats to Construct Validity In this study, we use accuracy, precision, recall, and
F1-scores as the main evaluation metrics; these are also widely used by past software engi-
neering studies to evaluate the effectiveness of a prediction technique (Nguyen et al. 2012;
Wu et al. 2011; Xia et al. 2013). Thus, we believe there is minimal threat to construct
validity.

6 Related Work

Developers’ Behavior Analysis There exist many studies that investigate and model
developers’ behavior in software development tasks such as debugging (von Mayrhauser
and Vans 1997; Lawrance et al. 2013; Sillito et al. 2005), feature location (Wang et al. 2011),
program comprehension (Corritore and Wiedenbeck 2001; Ko et al. 2006; Li et al. 2013;
Robillard et al. 2004; Lawrance et al. 2008; Piorkowski et al. 2011; Fritz et al. 2014; Minelli
et al. 2015), using unfamiliar APIs (Dekel and Herbsleb 2009; Duala-Ekoko and Robillard
2012), and testing (Beller et al. 2015). The data collection methods of these studies usually
include screen-capture video, think-aloud, instrumentation, and survey. However, the data
analysis in these studies typically requires a significant amount of human effort (Bao et al.
2017). For example, the researchers must encode and transcript the video and other obser-
vation data manually. Furthermore, for ease of understandability, the collected data must be
abstracted in the data transcription process. For example, Coman and Sillitti (2009) use the
code access location (e.g. methods, classes, files) to segment the development sessions into
task-related subsections automatically; however, they only consider developers’ interaction
in IDE and no semantic labels are assigned to the subsections.

We represent an approach using the CRF model that can segment and label the low-
level interaction data automatically. Although training the CRF model does require a certain
amount of human annotation, our study shows that a small amount of training data can
achieve effective classification results. Therefore, the human efforts required in the pro-
posed approach can be considerably less than the efforts to transcribe all the behavior data
manually. Furthermore, the proposed approach does not rely on any application-specific
support to collect the interaction data. Therefore, the proposed approach provides a generic
and less demanding solution to study developers’ behavior in software engineering.

Sequential Data Analysis Exploratory Sequential Data Analysis (ESDA) is a popular
technique that has been applied in many behavior analysis studies. ESDA is any empiri-
cal undertaking seeking to analyze systems, environment, and/or behavior data where the
sequential integrity of events has been preserved (Sanderson and Fisher 1994). ESDA can
be subdivided into two basic categories: (1) techniques sensitive to sequentially separated
patterns of events, for example, Fisher’s cycles (Fisher 1991) and Lag sequential analysis (LSA)
(Sackett 1978); (2) techniques sensitive to strict transitions between events, for example,
Maximal Repeating Pattern Analysis (MRP) (Siochi and Hix 1991), Log linear analysis.

There are also many sequential data segmentation and labeling techniques including Hid-
den Markov Model (HMM) (Rabiner 1989), Maximum Entropy Markov Model (MEMM)
(McCallum et al. 2000), and Conditional Random Field (CRF) (Lafferty et al. 2001). These
techniques have been applied in many fields, such as bioinformatics (Durbin et al. 1998),
natural language processing (Berger et al. 1996) and speech recognition (Lawrence 2008).
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Researchers have used these segmentation and labeling techniques to mine game strategies.
For example, Dereszynski et al. (2011) assumed equal length segments of 30 s, and applied
HMM to learn the segment labels. Gong et al. (2012) proposed a CRF-based method to seg-
ment and label action list of a real-time strategy game called StarCraft. Their segmentation
method does not consider human annotated ground truths in training and evaluation.

Because CRFs have proven to provide superior performance compared to both HMM
and MEMM on many real-world sequence segmentation and labeling tasks (Lafferty et al.
2001; Pinto et al. 2003) and have been successfully applied to game action list segmentation
and labeling (Gong et al. 2012), we chose CRF to segment and label the developers’ action
list in our work.

7 Conclusion

In this paper, we presented an approach for labeling and segmenting the time series of devel-
opers’ interaction with the complete working environment in real software projects. We
conducted an experiment using ten developers’ daily working data in a real software project,
which included approximately 240 effective working hours and 50,000 action records. Our
experiment confirmed the following: (1) Compared with the classic classifier SVM, the
proposed CRF-based approach provided superior performance with approximately 75%
prediction accuracy. This is because the CRF model considers the neighboring context in
model training. (2) The proposed approach was robust over the size of the training data. It
required only a small amount of training data to produce accurate classification results. (3)
Cross-developer prediction using the proposed approach achieved acceptable accuracy (i.e.,
approximately 60%). Overall, our experiment confirmed that the proposed approach was
more generic and less demanding compared with existing approaches on studying develop-
ers’ behavior. Therefore, the proposed approach is considerably easier to be replicated in
new studies, and provides a foundation for mining high-level behavior patterns in software
development. In the future, we plan to collect more data from more developers and different
projects to further validate the proposed approach.
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