
Characterization and Prediction of Popular Projects
on GitHub

Junxiao Han∗, Shuiguang Deng∗, Xin Xia †, Dongjing Wang‡, Jianwei Yin∗
∗Zhejiang University, Hangzhou, China

†Monash University, Australia
‡Hangzhou Dianzi University, Hangzhou, China

{junxiaohan, dengsg, tokyo1, zjuyjw}@zju.edu.cn, xin.xia@monash.edu

Abstract—GitHub is a large and popular open source project
platform, which hosts various open source projects. Despite the
prevalence of GitHub platform, not every project has gained
high popularity. Identification of popular projects on GitHub can
help developers choose proper projects to follow or contribute
to, as well as provide guidance in building a popular project. In
this paper, we propose an approach to predict the popularity of
GitHub projects. We first conducted online surveys with GitHub
users to determine the threshold (the number of stars of a
project) of popular and unpopular projects. Next, we extract
35 features from both GitHub and Stack Overflow, which are
divided into three dimensions: project, evolutionary, and project
owner. A random forest classifier is built based on these features
to identify popular GitHub projects. To evaluate the performance
of our approach, we collect a large-scale dataset from GitHub
which contains a total of 409,784 GitHub projects and 174,784
GitHub users. Our model achieves an average AUC of 0.76, which
statistically significantly improves state-of-the-art by a substantial
margin. We also study which features are of the most importance
in distinguishing popular projects from unpopular ones. Exper-
imental results show that number of branches, number of open
issues, and number of contributors play the most important roles
in identification of popular projects, and all of them have large
effect size.

Index Terms—GitHub project, Feature Engineering, Popular-
ity, Prediction Model

I. INTRODUCTION

GitHub[1] is a large and popular open source project

platform, which hosts various open source projects in different

domains. On GitHub, developers use fork and pull operations

to create their own copies of a repository, and submit pull

requests when they want project maintainers to merge their

changes into main branch [2]. Also, if developers are interested

in a project, they can “star” it. Prior studies use the number

of stars as a proxy for the popularity of a project [3], i.e., the

larger the number of star is, the more popular a project is.

In this paper, we aim to predict popular open source projects

on GitHub based on 35 features mined from both GitHub and

Stack Overflow. Prediction of popular projects on GitHub can

bring a lot of benefits. For example, it can help developers

to determine whether their projects will gain popularity and

provide a guidance in how to gain more acceptance. Since

different developers have different definitions of a popular

project, we first conducted an online survey with 1,000 active

developers on GitHub to assess which indicators (e.g., the

number of stars, forks, or pulls) can be used as a proxy for the

popularity of a GitHub project. As a result, we received 108

responses. 97 out of 108 participants agreed that the number

of stars can be used as the proxy for project popularity. Then,

the threshold for a popular project is chosed as 100, i.e., if a

project has more than 100 stars, it can be regarded as a popular

project.

Then, we extract 35 features from two information sources,

i.e., GitHub and Stack Overflow, which are divided into three

dimensions: project, evolutionary, and project owner. The

project dimension refers to the project’s innate features, e.g.,

the main programming language. The evolutionary dimension

refers to the project’s dynamic features, such as contributor

count, commit count, the size of project increased since its

creation. As for the owner dimension, we characterize the

project owners’ features. We mine the history of GitHub

owners, such as repositories that they owned, list of developers

that they followed, and list of followers. We also extract project

owners’ features from Stack Overflow, including reputation

and the number of views. The rational is that we would like

to investigate whether the project owners’ behaviors on Stack

Overflow will affect the popularity of projects that they owned

on GitHub. Based on the 35 extracted features, we use random

forest [4] as the default underlying classifier to build models,

which can effectively determine whether a GitHub project is

popular or not.

To our best knowledge, Borges et al.’s study [3] is the most

related to ours. Borges et al. [3] performed an empirical study

by analyzing the relationship between the various features

and the popularity of GitHub projects. In this paper, to

make a comparison, we leverage random forest to build a

classifier based on their proposed features, and we refer to this

baseline as RFB. Besides, we also make a comparison with

other two baseline methods, i.e., Random Guess (RG) and

Text Categorization(TC). Following prior studies in software

analytics [5], [6], we use AUC as the evaluation metric. AUC

measures the probability that a popular project is ranked higher

than an unpopular project.

To evaluate the performance of our approach, we collect a

large-scale dataset which contains a total of 409,784 GitHub

projects and 174,784 GitHub users. In our study, we extract

features from these projects in 2015, and use them to predict

whether a project will be popular in 2018. Experimental results

show that our approach achieves an average AUC of 0.76,

21

2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC)

978-1-7281-2607-4/19/$31.00 ©2019 IEEE
DOI 10.1109/COMPSAC.2019.00013

which outperforms RG, RFB and TC by 52%, 43% and

49%, respectively. The results also show that among the 35

features extracted, number of branches, number of open issues,

and number of contributors are the top three most important

features in distinguishing popular projects from unpopular

ones.

The main contributions of this paper are summarized as

follows:

• We propose an approach which includes a total of 35

features to predict the popularity of GitHub projects.

• We evaluate the proposed approach on a large-scale

dataset collected from GitHub, and experimental results

show that the proposed approach statistically significantly

outperform the baseline by a substantially margin. Be-

sides, we find that the number of branches, the number

of open issues, and the number of contributors are the

top three most important features in determining whether

a GitHub project is popular or not.

Paper Organization. The remainder of this paper is organized

as follows. Section II describes the research questions that we

explore in this study, elaborates the details of our data col-

lection process and the experiment setup. Section III presents

experimental results and answers to the research questions.

Section IV discusses the threats to validity. Section V reviews

prior studies related to ours. Finally, the conclusions and future

works are given in Section VI.

II. EXPERIMENT SETUP

In this section, we first introduce the collection of het-

erogeneous data sources such as GitHub dataset and Stack

Overflow dataset, then we present the details of the 35 features

used to predict popular projects, which are grouped into

three dimensions: project, evolutionary, and owner. Then, we

describe classifiers (i.e., random forest) used in this paper,

evaluation metric, and experiment setup. In this paper, we

would like to answer three research questions:

RQ1: Can we effectively predict the popularity of a GitHub
project?

RQ2: How effectively does our model perform on different
dimensions of features?

RQ3: Which features are of the most importance in
distinguishing popular GitHub projects from unpopular
ones?

A. Data Collection

GitHub Dataset: In this study, we collected GitHub projects

and users via the GitHub API1. We crawled all the information

of GitHub projects and users. Each project contains a project

ID, full name, the ID of the owner who owned the project, the

homepage, contributors, programming languages, the created

time, the updated time and so on. Each user contains a user

ID, name, email, the follower list, the following list, the ID

of the repos that he owned, the created time and so on.

1https://api.github.com

All the projects collected spanning from October 2007

to December 2015. As a result, our dataset consisted of

28,362,019 projects and 15,647,255 users. In the preprocessing

phase, we removed projects with less than two contributors

because that many users use GitHub mainly for their own

projects instead of collaborating with others [2]. After that,

we analyzed the project age (i.e., the time period between the

project creation date and December 31st, 2015) and removed

the projects whose ages are less than 1 year, to reduce the bias

caused by new projects. We also removed the projects which

has only 0 or 1 star, since these projects have a high chance to

be inactive [2]. As a result, we obtained 409,784 projects with

174,784 users, and 45,926 (11%) projects are popular. To make

a prediction, we also obtained the stargazers of all the 409,784

projects in snapshot of April 2018 via the GHTorrent, i.e., we

extracted features from projects on December 31st, 2015, and

used them to predict whether a project will be popular in April

2018.

Stack Overflow Dataset: To figure out if project owners’

behaviors on Stack Overflow have an influence on the pop-

ularity of GitHub project, we retrieved the identical users

on GitHub and Stack OverFlow by comparing their email

addresses, which is inspired by Vasilescu et al.’s study [7]. To

reduce the bias due to the time difference in Stack Overflow

and GitHub, we use the Stack Overflow data dump released

in December 2015. After that, we found 16,679 common

users with 54,034 GitHub projects and obtained the GitHub

project owners’ features on Stack Overflow, such as reputation

and views, etc. Besides, some project owners might mention

GitHub projects on Stack Overflow, and we also retrieved

posts containing URLs that begin with https://github.com. By

intersecting with previous intersection, we identified 8,121

users with 31,552 GitHub projects who have published posts

with mentioning the GitHub projects on Stack Overflow.

B. Definition of Popular GitHub Projects

One challenge of this study is the definition of popular

GitHub projects. In this paper, we performed a simple survey

to developers on their perceptions of a popular project. In our

survey, we asked three questions to developers: (1) What kinds

of GitHub projects can be regarded as popular projects? (2)

Can we use an indicator (e.g., the number of forks, downloads,

or stars) as a proxy for the popularity? And (3) If you said yes

to (2), what is the threshold between popular and unpopular

GitHub projects?

We randomly chose 1,000 developers from our collected

data, and sent emails to them. As a result, 97 out of 108

responses mentioned that the number of stars can be used as

a proxy for the popularity of GitHub projects, and the median

value of the threshold from responses is 100. As a result, we

choose 100 as the threshold in this paper, i.e., if a project

has more than 100 stars, we consider it as a popular project;

otherwise it is regarded as an unpopular project.

22

TABLE I
STUDIED FEATURES.

Dimension Feature Name Description

Project

has wiki Whether the GitHub project
has wiki, 1 if it has wiki, 0
otherwise

has pages Whether the GitHub project
has homepage, 1 if it has
homepage, 0 otherwise

readme size Calculated size of readme
file for a given project

branch count The number of branches for
a given project

main programming
language

The main programming
language for a given project

topicVector [0,14] The topic distribution of a
project

Evolutionary

contributor count The number of contribu-
tors contributed to a given
project

commit count The number of commits for
a given project

increased size Lines of code increased s-
ince the creation date of the
project

open issues The number of open issues
for a given project

has downloads Whether the GitHub project
has been downloaded

has issues Whether the GitHub project
has issues

Owner

owner repos The number of projects
owned by the project owner

owner followers The number of followers
owned by the project owner

owner following The number of developers
that the project owner fol-
lowed

owner gists The number of gists owned
by the project owner

owner organizations The number of organiza-
tions the project owner be-
longs to

owner type The type of project owner,
such as general user, orga-
nization

owner so reputation The reputation of project
owner on Stack Overflow

owner so views The number of views that
the project owner received
on Stack Overflow

owner so mention Whether the project owner
mentions the project on S-
tack Overflow

C. Studied Features

Here, we carry out an exploration on the GitHub dataset

to seek out the features that might play an important role

in determining the popularity of GitHub projects. We extract

35 features as summarized in Table I, which are divided into

three dimensions: project, evolutionary and owner. The project

dimension is derived from the GitHub projects directly, where

the evolutionary dimension is the evolutionary features of

GitHub projects, and the owner dimension is composed of

characteristics of project owner and the owner features from

Stack Overflow.

Project Dimension refers to the innate features that are direct-

ly related to the GitHub projects. In this dimension, we focus

on the projects themselves and extract 20 features from GitHub

projects. Based on Borges et al.’s study, we take programming

language and application domain into account. Then, the

project dimension will be made up of 20 different features,

which are has wiki, has pages, readme size, branch count,
main programming language and topic distributions. The top-

ic distributions are inferred by the LDA topic model. The

details of project features can be seen in Table I.

Evolutionary Dimension: In this dimension, we assume that

if a project has more contributors or commits and the size of

it increases substantially since its creation, then the project

has a higher chance to be popular. We name this dimension

evolutionary dimension, since all of these features appear in

the process of software evolution. Specially, we extract 6 fea-

tures, i.e., contributor count, commit count, increased size,

open issues, has downloads and has issues. The details of

evolutionary features are shown in Table I.

Owner Dimension refers to features that are related with the

GitHub project owners. In this dimension, we focus on the

project owners and their features on both GitHub and Stack

Overflow. As a result, we extract 9 features, which can be seen

in Table I.

D. Classifiers

The 35 extracted features are then used to construct a

prediction model to determine the popularity for a given

GitHub project. In our study, we use random forest [4] as

default classifier to construct the model. The main strengths

of random forest is that it can automatically generate feature

importance and is highly accurate in most cases. Besides, since

random forest gathers up multiple results of decision trees to

make a prediction, it exhibits robustness to noises and outliers.

In this paper, we implement random forest on the basis of

scikit-learn [8].

E. Evaluation Metrics

In this study, we use AUC to evaluate the effectiveness of

the proposed model and the baseline methods. The AUC value

reduces the ROC curve to a number, where higher AUC value

means better performance, i.e., 0.5 corresponds to random

guessing and 1 indicates a perfect prediction. Previous studies

consider the AUC of 0.7 as promising performance [9] and

AUC has been widely used in many software engineering

researches, e.g. [6], [5]. In this study, we choose AUC as our

performance measure for the following reasons: 1) AUC is a

threshold independent measure [10]. 2) AUC is robust to class

imbalance and is insensitive to class distribution [9]. 3) AUC

has a statistical interpretation [9].

23

F. Experiment Setup

All the experiments are performed under the setting of 10

times stratified 10-fold cross-validation. In each round of 10-

fold cross-validation, our dataset are randomly divided into

10 folds through the use of stratified random sampling. The

purpose of stratified random sampling technique is to keep the

class distribution of each fold the same as the original dataset.

As a result, one of the 10 folds is chosen as the testing dataset,

and the other nine folds are used as training dataset to train the

classifier. We repeated the process 10 times, so that each of

the 10 folds is used exactly once as the testing dataset. Then

we calculate the average AUC scores across the 10 rounds of

stratified 10-fold cross-validation. After that, 100 AUC scores

are generated and then we can calculate the average AUC

scores across the 100 AUC scores.

III. RESULTS

In this section, we present answers to the three research

questions proposed in Section II.

A. RQ1: Can we effectively predict the popularity of a GitHub
project?

Approach: To answer this research question, we implement

our proposed model using Random Forest classifier based on

the 35 features extracted and adopt 10 times stratified 10-

fold cross validation to estimate the accuracy of our model

as default. To make a comparison, we adopt three baseline

methods which are random guess (RG), random forest model

built on Borges et al.’s proposed features (RFB) and text

classification (TC), respectively. The baseline approaches are

introduced as follows:

RG: RG is usually accepted as a baseline when no previous

method exists to address the same research question [11]. This

model randomly predicts whether a project is popular or not.

As for the performance measures, the AUC of RG is 0.5 [11].

RFB: Borges et al. [3] analyzed the relationship between

popularity and seven features, i.e., project age, commits,

contributors, forks, main programming language, application
domain and owner type. In this paper, we compare our

approach with the model built on Borges et al.’s proposed

features. To avoid the potential bias, we remove the forks and

project age. The number of forks and the number of stars are

highly correlated, and both of them can be used as a proxy of

popularity [12]. Borges et al. [3] also found that the project

age has no correlation with the star of GitHub projects. To

make a fair comparison, we build the baseline using random

forest as the underlying classifier based on the remaining five

features, and the baseline is referred to as RFB.

TC: As the last baseline, we use random forest to build

a classifier based on the natural language description (i.e.,

readme file and project description) of GitHub projects.

Results: Results show that our approach achieves an average

score of 0.76, which shows a large improvement compared

with the baseline methods whose AUC scores are of 0.50,

0.53 and 0.51, respectively. We employ Wilcoxon signed-rank

test [13] with a Bonferroni correction [14] to investigate the

improvements of our approach over the baseline methods and

determine whether the improvements are statistically signifi-

cant. Besides, we compute Cliff’s delta, which measures the

effect size of the differences between two groups. The effect

size is assessed using the thresholds provided by Cliff [15] 2.

As a result, we find that in terms of AUC, our approach on

average improves RG, RFB, and TC by 52%, 43% and 49%,

respectively. Statistical tests show that the improvements on

AUC are all statistically significant and the effect sizes are

large. Moreover, since RFB and TC only consider a subset

of features to predict popular projects, the results also show

that incorporating all features will significantly help to build

an accurate model.

B. RQ2: How effectively does our model perform on different
dimensions of features?

Approach: In this research question, we attempt to inves-

tigate how effectively does our model perform on different

dimensions of our features. To this end, the 35 studied features

are decomposed into three dimensions, which include project

dimension, evolutionary dimension and owner dimension. This

research question is designed to explore whether all features

significantly help in our approach. With this intention, we

make a comparison of the AUC scores of our approach (all

dimensions) and the random forest models using features in

each dimension.

We learn the random forest models based on features in

each dimension. As a result, we construct three random forest

models for each dataset and the constructed random forest

models are denoted the same as the dimension names (i.e.,

project, evolutionary and owner, respectively). After that, we

experiment the three random forest models in each dataset

and obtain the average AUC scores in the 10-times 10-fold

cross-validation.

Results: Results show that our approach (all dimensions)

achieves substantial improvements over the prediction models

built on project, evolutionary and owner dimensions whose

AUC scores are of 0.58, 0.66 and 0.53, respectively. Fur-

thermore, the improvements are statistically significant and

the effect sizes are large, which implies that incorporating

all features will significantly help to build an effective mod-

el compared to three models built on different features in

different dimensions. Moreover, the evolutionary dimension

plays a more crucial role in determining the popularity of

GitHub projects than the other two dimensions, and the

owner dimension does not perform as well as the other two

dimensions.

C. RQ3: Which features are of the most importance in distin-
guishing popular GitHub projects from unpopular ones?

Approach & Results: In this research question, we aim to

identify the most important features to distinguish popular

from unpopular projects. Being aware of what features impact

2Cliff defines a delta of less than 0.147, between 0.147 and 0.33, between
0.33 and 0.474 and above 0.474 as negligible, small, medium, large effect
size, respectively.

24

TABLE II
IMPORTANCE OF THE FEATURES OF THE GITHUB PROJECTS AS RANKED

ACCORDING TO THE SCOTT-KNOTT ESD TEST. THE SECOND AND THIRD

COLUMNS SHOW P-VALUES, CLIFF’S DELTA FOR THE FEATURES. THE

FEATURES WITH NON-NEGLIGIBLE EFFECT SIZES ARE IN BOLD.

Groups Features P-value Cliff’s delta
1 branch count <0.001 0.64(Large)
2 open issues <0.001 0.63(Large)
3 has issues <0.001 0.21(Small)
4 contributor count <0.001 0.44(Medium)
5 readme size <0.001 0.30(Small)
6 commit count <0.001 0.33(Small)
7 increased size <0.001 0.21(Small)
8 main programming language <0.001 0.06
9 owner repos <0.001 0.02
10 topicVector.14 >0.05 -0.12

popular projects the most can help to gain a deeper under-

standing on how to formulate a popular project. The detailed

process is as follows:

Step 1: Correlation Analysis. Feature selection aims to remove

correlated features which may lead to poor models [16].

To reduce the bias of the model and avoid the interaction

between features, we make the correlation analysis and remove

2 features in the dataset, which are owner followers and

owner so views. As a result, 33 features are remained.

Step 2: Redundancy Analysis. After correlation analysis, we

reduce the collinearity among the features and the redun
function provided by the R package rms is applied. By

redundancy analysis, we find that none of the remaining

features are redundant.

Step 3: Important Features Identification. For that random

forest allows for the estimation of feature importance, we build

a new random forest model based on the 33 remaining features

using the python tool of sklearn [8]. In the training process,

we use the feature importances function in the python

package RandomForestClassifier to compute the importance

of features. In this process, 10 times 10-fold cross-validation is

used. To determine which features are of the most importance

for the whole dataset, we employ Scott-Knott Effect Size

Difference (ESD) test [17] using the importance values from

all 10 rounds of 10-fold cross-validation.

Table II presents the top 10 importance ranking of the

features according to the Scott-Knott ESD test. The results

reveal that branch count, open issues and has issues are

ranked in the top three important features that affect the

random forest model to predict the popularity of GitHub

projects. Moreover, two of them belong to the evolutionary

dimension, which is consistent to the conclusions in RQ2

that evolutionary dimension plays a more important role in

determining the popularity of GitHub projects than project

dimension and owner dimension.

Step 4: Effect of Important Features. To understand the impact

of each feature, we compare the values of the remaining

features between popular and unpopular GitHub projects. We

apply the Wilcoxon rank-sum test [18] with Bonferroni cor-

rection to analyze the statistical significance of the difference

between popular and unpopular GitHub projects. We use

Cliff’s delta to measure the effect size of differences between

the two groups of GitHub projects.
Table II presents the top 10 p-values and Cliff’s delta of the

features. As we can see, branch count, open issues and con-
tributor count are the most important features to distinguish

popular from unpopular GitHub projects, while branch count,
open issues and has issues are more important in affecting the

random forest model. These features are ranked in the top four

most important features, and they have statistically significant

and non-negligible positive effect.

IV. THREATS TO VALIDITY

One threat to internal validation relates to the fairness of

our results derived from online survey. Because the users are

random selected according to their commits, which may make

the results derived from survey not be accurate enough. The

other threat relates to the stars of the GitHub projects. In this

paper, we use the number of stars of a project as a proxy for

popularity, which may not be perfect enough. In the future,

we plan to reduce this threat by using compound indicators

(e.g., the number of forks and the number of stars) as the

proxy of popularity. Threats to external validity are related to

the features. Except the features considered in this paper, there

might be additional features that could be more relevant to the

popularity of GitHub projects. Future studies should consider

more features to make the relationship between features and

the popularity of GitHub projects more precise.

V. RELATED WORK

In this section, we first describe the related work on popu-

larity of GitHub projects. Then, we describe other studies on

GitHub.

A. Studies on Popularity of GitHub Projects
To the best of our knowledge, Borges et al.’s study [3] is the

most related to ours. Borges et al. [3] performed an empirical

study on the popularity of projects hosted on GitHub. They

analyzed 7 features on project popularity and identified four

main patterns of popularity growth, and all of the analyses

were based on 2,279 popular GitHub repositories.
Compared with Borges et al.’s study, our study aims to ad-

dress a related but different problem. Specifically, we propose

an automated approach to predict the popularity of a project.

Our study uses a larger scale dataset, which is composed of

409,784 GitHub projects, while Borges et al.’s dataset only

consists of 2,279 popular GitHub projects. Moreover, our

approach considers more features. We extract not only features

mentioned in Borges et al.’s study, but also more domain-

specific features from both GitHub and Stack Overflow. Then,

we build a model to predict the popularity of GitHub projects,

but Borges et al.’s study mainly focused on the empirical

analysis of the correlations between the features and the

popularity of GitHub projects. Last but not least, their study

only analyzed features on the popular GitHub projects, but did

not investigate the unpopular ones.

25

B. Studies on GitHub

GitHub [1] has gained more and more popularity and

attracted many researchers. The most comprehensive studies

on GitHub were achieved by Kalliamvakou et al. [2] and

Gousios et al. [19]. In these studies, the authors described the

quality and properties of the available GitHub dataset, which

can help researchers better understand the characteristics of

the projects and users on GitHub. Ray et al. [20] performed

an analysis and statistics on GitHub dataset, and attempted

to explore the effect of programming language features on

software quality. According to the results, language design

does have a significant, but modest effect on software quality.

Bissyand et al. [21] also made an analysis of the popularity, in-

teroperability, and impact of various programming languages.

In this paper, we also take programming language into account.

Due to the prevalence of GitHub, many researches are

proposed to evaluate contributions on GitHub [22], [23]. Tsay

et al. [22] focused on evaluating pull requests to study the

contribution on GitHub and also analyzed the association of

various technical and social measures with the likelihood of

contribution acceptance. Gousios et al. [23] provided insights

into the factors that they considered in their decision-making

process to accept or reject a contribution.

VI. CONCLUSION

In this paper, we propose an automated approach to predict

popular projects on GitHub. We extract 35 features to char-

acterize the GitHub projects and these features are grouped

into three dimensions: project, evolutionary and owner. To

explore the effectiveness of our approach, we conduct an

experiment on GitHub dataset with a total of 409,784 projects.

Our experimental results show that our approach can achieve

an average AUC of 0.76, which outperforms the baseline

methods of RG, RFB, and TC by 52%, 43% and 49%,

respectively. We also find that branch count, open issues, and

contributor count are the most important features to predict

the popularity of GitHub projects, and all of them have large

effect size. In the future, we intend to extract more features

that can have a significant influence on the popularity of

GitHub projects, and design a better approach to improve the

performance further.

ACKNOWLEDGMENT

This research was partially supported by the National Key

Research and Development Program of China (No. 2017YF-

B1400601), Key Research and Development Project of Zhe-

jiang Province (No. 2017C01015), National Science Founda-

tion of China (No. 61772461), Natural Science Foundation of

Zhejiang Province (No. LR18F020003 and No.LY17F020014).

REFERENCES

[1] L. Yu, A. Mishra, and D. Mishra, “An empirical study of the dynamics
of github repository and its impact on distributed software development,”
in OTM Confederated International Conferences” On the Move to
Meaningful Internet Systems”. Springer, 2014, pp. 457–466.

[2] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian, “An in-depth study of the promises and perils of mining
github,” Empirical Software Engineering, vol. 21, no. 5, pp. 2035–2071,
2016.

[3] H. Borges, A. Hora, and M. T. Valente, “Understanding the factors that
impact the popularity of github repositories,” in Software Maintenance
and Evolution (ICSME), 2016 IEEE International Conference on. IEEE,
2016, pp. 334–344.

[4] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[5] Y. Fan, X. Xia, D. Lo, and S. Li, “Early prediction of merged code
changes to prioritize reviewing tasks,” Empirical Software Engineering,
pp. 1–48, 2018.

[6] S. Wang, T.-H. Chen, and A. E. Hassan, “Understanding the factors for
fast answers in technical q&a websites,” Empirical Software Engineer-
ing, pp. 1–42, 2017.

[7] B. Vasilescu, V. Filkov, and A. Serebrenik, “Stackoverflow and github:
Associations between software development and crowdsourced knowl-
edge,” in Social computing (SocialCom), 2013 international conference
on. IEEE, 2013, pp. 188–195.

[8] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of Machine Learning
Research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[9] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed frame-
work and novel findings,” IEEE Transactions on Software Engineering,
vol. 34, no. 4, pp. 485–496, 2008.

[10] A. P. Bradley, “The use of the area under the roc curve in the evaluation
of machine learning algorithms,” Pattern recognition, vol. 30, no. 7, pp.
1145–1159, 1997.

[11] X. Xia, E. Shihab, Y. Kamei, D. Lo, and X. Wang, “Predicting
crashing releases of mobile applications,” in Proceedings of the 10th
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement. ACM, 2016, p. 29.

[12] J. Jiang, D. Lo, J. He, X. Xia, P. S. Kochhar, and L. Zhang, “Why and
how developers fork what from whom in github,” Empirical Software
Engineering, vol. 22, no. 1, pp. 547–578, 2017.

[13] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[14] H. Abdi, “Bonferroni and šidák corrections for multiple comparisons,”
Encyclopedia of measurement and statistics, vol. 3, pp. 103–107, 2007.

[15] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal
questions.” Psychological Bulletin, vol. 114, no. 3, p. 494, 1993.

[16] A. Mockus, M. Nagappan, and A. Hassan, “Best practices and pitfalls
for statistical analysis of se data,” in Proc. ICSE, 2014.

[17] H. Li, W. Shang, Y. Zou, and A. E. Hassan, “Towards just-in-time
suggestions for log changes,” Empirical Software Engineering, pp. 1–35,
2016.

[18] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The annals of
mathematical statistics, pp. 50–60, 1947.

[19] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining github,” in Proceedings
of the 11th working conference on mining software repositories. ACM,
2014, pp. 92–101.

[20] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale study of
programming languages and code quality in github,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2014, pp. 155–165.

[21] T. F. Bissyandé, F. Thung, D. Lo, L. Jiang, and L. Réveillere, “Popular-
ity, interoperability, and impact of programming languages in 100,000
open source projects,” in Computer Software and Applications Confer-
ence (COMPSAC), 2013 IEEE 37th Annual. IEEE, 2013, pp. 303–312.

[22] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical
factors for evaluating contribution in github,” in Proceedings of the 36th
international conference on Software engineering. ACM, 2014, pp.
356–366.

[23] G. Gousios, A. Zaidman, M.-A. Storey, and A. Van Deursen, “Work
practices and challenges in pull-based development: the integrator’s
perspective,” in Proceedings of the 37th International Conference on
Software Engineering-Volume 1. IEEE Press, 2015, pp. 358–368.

26

