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Abstract—Software change-proneness prediction (whether or
not class files in a project will be changed in the next release)
can help software developers to focus on preventive actions to
reduce maintenance costs, and managers to allocate resources
more effectively. Prior studies found that change-proneness
prediction works well if there is sufficient amount of training
data to build a model. However, it is not feasible for projects
with limited historical data especially for new projects. To
address this issue, cross-project change-proneness prediction,
which builds a prediction model by using data in another
project (i.e., source project), and predicts the change-proneness
in a target project, is proposed. Considering there are a large
number of source projects, one challenge for cross-project
change-proneness prediction is that given a target project, how
to automatically select a source project which could show good
prediction accuracy on it.

In this paper, we propose a selective cross-project (SCP)
model for change-proneness prediction. SCP automatically
finds the source project which has the similar data distribution
with the target project by measuring distribution similarity
between source and target projects. We evaluate SCP by
conducting an empirical study on 14 open source projects.
We compare it with 2 most related change-proneness models,
including RCP (Random Cross-Project prediction) proposed
by Malhotra and Bansal, and CLAMI+ developed by Yan
et al. Experiment results show that SCP improves RCP and
CLAMI+ by 25.34% and 4.30% in terms of AUC respectively;
and by 171.42% and 172.31% in terms of cost-effectiveness,
respectively.
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I. INTRODUCTION

In the whole life cycle of software development, software
maintenance consumes most of the cost, both in terms of
time and money [1]. In the maintenance phase, developers
spend significant efforts to modify source files to fix bugs,
refactor code, and improve functional or nonfunctional at-
tributes [2], [3], [4]. Hence, for timely release of a project,
classes files that are going to be changed in next release
indicate that the development requirements are not clear or
the classes require most tests [5]. Precisely predicting the
change-proneness of classes (whether or not each class file
will be changed in the near future, i.e., next release) can help
software developers focus on preventive actions to reduce
maintenance costs, and software managers allocate resources
more effectively [6], [7].

Existing Work and Challenge. In the past two decades, re-
searchers have spent significant efforts on predicting change-
prone classes. They found that some object-oriented metrics
[7], [6] (e.g., depth in inheritance tree, and number of
children) and internal quality attributes [8] (e.g., lines of
code) strongly correlate to the change-proneness of classes.
Based on these metrics and attributes, machine learning
(ML) models have been successfully used to improve the
prediction performance [9], [5], e.g., Bayesian network [10],
neural network [8], support vector machine (SVM) [5], and
ensemble methods [11].

Most of the above-mentioned models based on ML build
the prediction model by learning from historical labeled data
within a project (i.e., within-project prediction). However, in
practice, it is often time-consuming and expensive to collect
labeled data. Moreover, it is also difficult to apply these
models on projects with limited historical data, especially
for new projects [12].

To address the drawback of within-project prediction,
Malhotra and Bansal [13] investigated the cross-project
prediction, and they built a change-proneness model by using
data in another project (i.e., source project), and predicted
the change-proneness of classes in a target project. However,
considering there are a large number of source projects, one
challenge for cross-project change-proneness prediction is
that given a target project, how to automatically select a
source project which could show good prediction accuracy
on it. We refer to this problem as source project selection.

The Proposed Approach. To address the problem of source
project selection, we propose a Selective Cross-Project
(SCP) model to automatically find a better source project
from candidates for improving the performance of cross-
project change-proneness prediction. To the best of our
knowledge, this is the first work of proposing selective cross-
project model for change-proneness prediction. In detail,
SCP works in two steps: 1) SCP first estimates the unknown
labels (change-prone or not) of classes in target project by an
unsupervised approach; 2) SCP then finds the source project
with best-matched distribution, compared with the target
project with previously estimated label information, to train
a classifier. The final predicted labels by the classifier are
evaluated by measured ones (the ground-truth is described
in Section III).



To evaluate the effectiveness of our model, we conduct
an empirical study on 14 open source projects, containing
a total of 10,739 class files. We evaluate the performance
of SCP in terms of AUC and cost-effectiveness. AUC
measures the discriminatory power of a prediction model.
Cost-effectiveness measures the percentage of real change-
prone classes that developers can identify, when developers
spend code inspection efforts (e.g., reading 20% lines of
code) on change-prone classes recommended by a model. A
model with better cost-effectiveness saves more developers’
efforts in software maintenance. Cost-effectiveness has been
widely used for evaluating software prediction models [14],
[15], [16], [17].

In the experiment, we compare the SCP with 2 most
related models for change-proneness prediction. One is
the Random Cross-Project (RCP) prediction by randomly
selecting source project [13]. The other is a state-of-the-
art model for change-proneness prediction, namely CLAMI+
(Clustering, Labeling, Metric selection, and Instance Selec-
tion Plus) [12]. CLAMI+ outperforms RCP in discriminatory
power, but it does not consider the cost-effectiveness [12].
The empirical results show that, on average across 14
datasets, our model achieves the best performance in terms
of AUC (0.687) and cost-effectiveness score (38.40%). SCP
outperforms RCP and CLAMI+ by 25.34% and 4.30% in
terms of AUC respectively; by 171.42% and 172.31% in
terms of cost-effectiveness, respectively.

In addition, we also compare SCP with 2 similar cross-
project models studied in defect prediction, i.e., TCA+
(Transfer Component Analysis Plus) [18], and TDS (Train-
ing Data Selection) [19]. TCA+ improves the performance of
cross-project prediction by reducing distribution difference
between source and target projects [20], [21]. TDS is to
select source projects by using a distribution similarity
measure between a set of candidate source projects and
a target project. The main difference between TDS and
our approach is the way to measure project similarity. The
similarity measure of TDS is based on the distribution
characteristics of software metrics between two projects,
while our similarity measure uses the label information
between two projects, and we use an unsupervised learning
approach to estimate the labels for the classes in the target
project. We estimate labels in the target projects since a prior
study found that it can help to identify a source project
with a similar data distribution as the target project [22].
Experimental results show that SCP outperforms TDS and
TCA+ by 21.26% and 17.62% in terms of AUC; by 131.75%
and 5.70% in terms of cost-effectiveness, respectively.

Contributions. The main contributions of this study are:
• We propose a novel selective cross-project model (SCP)

for software change-proneness prediction, which can
train a classifier better by using the selected source
project with the best-matched distribution to the target
project.

Figure 1. Overall architecture of SCP.

• We conduct an empirical study on 14 open source
projects to evaluate the effectiveness of our model.
Results show that SCP outperforms the most related
two models RCP and CLAMI+ considering AUC and
cost effectiveness. And SCP also outperforms 2 similar
cross-project prediction techniques (TDS and TCA+)
in a substantial range.

• We find that using more source projects has negative
effect on the performance of SCP. And if SCP is trained
by multiple source projects, its performance is sensitive
to the training sequence of used source projects.

Paper Organization. The remainder of this paper is orga-
nized as follows. Section II presents the details of the pro-
posed model. Section III describes experimental setup and
evaluation criteria. Section IV presents experiment results
and threats to validity. Section V briefly mentions related
work. Finally, Section VI summarizes our findings.

II. METHODOLOGY

In this section, we first describe the overall architecture of
our SCP model in Section II-A. Next, we present the details
of each component in SCP.

A. Overall Architecture
Cross-project prediction is unstable due to the mismatched

distribution between source and target projects [13], [23].
Our model aims to find the best-matched source project
from a set of candidate source projects, instead of randomly
choosing one project, to train a classifier. The trained clas-
sifier thus can identify change-prone classes in the target
project with better performance. In this study, each class in
a source or target project is represented by 7 code metrics,
following prior studies [13], [6], [24], such as depth in
inheritance tree, and lines of code (details in Section III-A).

Fig. 1 presents the overall architecture of SCP. Unlike
the traditional cross-project prediction (Steps 3-4) that trains
a classifier with a randomly selected source project, SCP
automatically chooses a candidate source project that has a
high distribution similarity with the target project (Steps 1-
2). Specifically, SCP first estimates the missed labels of the
target project by an unsupervised approach (Step-1), which



is elaborated in Section II-B. It then selects a source project
from candidates by comparing the similarity between a set
of candidate source projects and the target project (Step-
2), where we leverage 3 similarity strategies in Section
II-C. The strategies are based on the label information of
source and target projects, because researchers observed that
label information can help the source project selection [22].
As the labels of classes in target project are unknown in
practices, so we use the estimated labels by Step-1 as a
substitute. Afterwards, SCP trains an underlying classifier
with the selected source project (Step-3). We use Bayesian
network as the classifier. It will be described in Section
II-D. The trained classifier finally predicts the labels of
the target project (Step-4), which are estimated by the
measured labels (the ground-truth is described in Section
III-A). The following 3 subsections respectively describe the
implementation details of label estimation, source project
selection, and the classifier.

B. Step-1: Label Estimation (LE)
To estimate the unknown labels of classes in a target

project, we use an unsupervised label estimation (LE) ap-
proach that is also used in prior study [12]. The basic idea
of this estimation is to cluster classes with different levels
of complexity, and label the classes with higher complexity
to be change-prone. One main concern that the LE step has
already estimated the labels of target project. Why do we
still need to build a cross-project prediction model? The
reason is that we observe that unsupervised model has a poor
performance in terms of cost-effectiveness. We investigate
the effectiveness of LE and compare it with our proposed
model in Section IV-A. Thus, we only use the LE step to
help select source project.

Generally, LE works in two phases: 1) clustering classes
in the target project into groups; 2) labeling some groups of
classes with higher complexity to be change-prone. Fig. 2
shows an example to estimate the labels of a target project
with 5 classes (C1-C5) represented by 3 code metrics (M1-
M3). The two phases of LE are detailed as below.
Clustering Phase. The goal of this phase is to cluster classes
in the target project into groups, according to the complexity
of classes. As researchers found that a class whose metric
values exceed the median of that metric is more likely to be
change-prone [25], [12], we can represent the complexity
of a class by counting the number of metrics whose values
larger than corresponding median values.

Fig. 2 illustrates the way we cluster classes in a target
project. Specifically, we first calculate median values for
3 code metrics, Median([M1,M2,M3]) = [1, 2, 2]. We
then identify whether a metric value exceeds the median
value of that metric. Afterwards, we transform the difference
from metric values to their median values to a complexity
table, which indicates whether each metric value exceeds
corresponding median (exceeded values are highlighted).
Finally, by counting the number of higher valued metrics,

Figure 2. Illustration of label estimation for a target project with 5 classes
(C1 − C5) represented by 3 code metrics (M1 −M3).

we can cluster classes into 3 groups according to their
complexity, i.e. count = 0, 1, 2.
Labeling Phase. As a class with higher complexity tends
to be change-prone [25], [26], [12], therefore the clustered
groups can be divided by two halves, where the half with
larger count value is likely to be change-prone. We use
the median count as the division coefficient following re-
searchers’ studies [12], [27]. Therefore, the classes in the
groups with count value larger than the division coefficient
are labeled as change-prone.

In specific, as exemplified in Fig. 2, 3 clustered groups
with count 0-3 respectively have 2, 1, and 2 classes. By
dividing these counts with their median (equaling to 1),
two classes (C1 and C4) in the group with count = 2 are
labeled as change-prone, while other classes are labeled as
not change-prone.

C. Step-2: Source Project Selection
To find the best source project from candidates, we design

3 strategies to measure the similarity between source and
target projects. Since label information is beneficial to the
source project selection [22], all the designed strategies
thus involve label information, where the unknown labels
of target projects are estimated by the first phase. Note
that we only use the estimated labels in step 1 to measure
the similarity between candidate source project and target
project. The strategies are:
Strategy 1: Similarity on Change-Proneness Rate. It is
shown that classes can be clustered based on their change
rates, because clustered classes have similarity in impor-
tance, underlying architecture, or chronic problems [28].
Similarly, we assume that projects can be also clustered
based on their percentages of change-prone classes, where
the clustered projects have similarity in underlying archi-
tecture, development phase, or etc. As the source project
selection aims to find a source project similar to the target
project, this strategy therefore represents the similarity be-
tween source and target project by calculating the absolute



difference of change-proneness rates between two projects.
For example, Fig. 2 shows that 2 of 5 classes are estimated
to be change-prone, so that its change-proneness rate is 0.4.

Strategy 2: Similarity on Metric Distribution of Not
Change-Prone Classes. Researchers have found that a
source project with high similarity to the target project in
terms of their metric distribution is beneficial to the classifier
training [19], and incorporating label information to the
similarity measure can select a better source project for
training [22]. We therefore use the label information as a
factor to distinguish the type of classes (change-prone or
not). This strategy measures the metric distribution of not
change-prone classes between source and target project, and
the next strategy focuses on the change-prone classes.

Specifically, the metric distribution of one project can
be represented by a characteristics vector [19]. This vector
contains the mean and variance values of each code metric
among not change-prone classes. Hence, the characteristics
vector of the exemplified target project in Fig. 2 has 3
means (0.67, 1.33, 1.33) and 3 variances (0.33, 2.33, 0.33).
Then, the metric distribution similarity of two projects
can be calculated by the Euclidean distribution on their
characteristics vectors [19]. In this way, a shorter distance
indicates higher similarity between two projects.

Strategy 3: Similarity on Metric Distribution of Change-
Prone Classes. Similar to the strategy 2, this strategy
measures the metric distribution similarity between source
and target projects, but focusing on change-prone classes.

Section IV-C compares the performance of SCP applied
with 3 designed strategies (respectively called SCP1-3), and
it also investigates the prediction performance of SPC with
linear combined strategies.

D. Step-3: Classifier Building

After the step 2 for source project selection, we train a
classifier by learning from the selected source project. We
use Bayesian network, a powerful classifier for the change-
proneness prediction [29], as our default classifier. It is a
probabilistic graphical model that represents a set of random
variables and their dependencies via a directed acyclic graph
(DAG). In the graph, a directed edge from node Ni to
node Nj indicates that the variable Nj is conditionally
dependent on the variable Ni. Each node keeps a conditional
probability distribution (CPD) p(Nj |Ni). The graph together
with the CPD describes a joint distribution of all random
variables. In this study, we use the Bayesian network for
SCP due to its good performance in cross-project predictions
[30], [31]. We also investigate the impact of varying other
common classifiers in Section VII. The Bayesian network is
implemented by invoking Weka1 with default settings [32].

1Weka contains a collection of common machine learning models written
in Java. http://www.cs.waikato.ac.nz/ml/weka/

III. EXPERIMENTAL SETUP

A. Experimental Dataset
Dataset. We evaluate our model on 14 open source projects
from a public dataset Qualitas Corpus [33] same as Yan
et al. [12] These projects are written in Java and have
multiple evolution versions. For a project, we choose its
latest two versions to study the change-proneness prediction,
as the studied version and next version listed in Table II. We
aim to predict whether class files of a project in the studied
version will be changed in the next version. Table II shows
the number of classes (#Class) and lines of code (#LOC) in
the studied versions.
Dependent Variable. We measure the labels of studied
projects by tracking the version control system following
previous studies [34], [29], [12], where a change-prone class
in the studied version is the one modified in the next version.
Table II provides the change-proneness rate (%Changed) of
projects in their studied versions with a substantial range,
which can validate the model ability among a wide range.
Independent Variables. To predict the change-proneness
of a class, we represent it by 7 typical object-oriented
code metrics, following previous studies [13], [6], [24]. It
is shown that these metrics are strongly correlated with
the change-proneness of classes [6], [24]. Table I lists the
definition of these metrics.
Source and Target Projects in Cross-Project Prediction.
To simulate the practical usage of our model and follow
the cross-project setting used in previous studies [13], [6],
when we consider a project (e.g., ant-1.8.3) as the target
project, we use other 13 projects (antlr-3.2, ..., weka-3.5.7)
as the candidate source projects. In total, we perform 14
cross-project change-proneness predictions.

B. Baseline Models
We compare the proposed model with two most related

change-proneness models, CLAMI+ [12] and RCP [13].
RCP is based on the logistic regression classifier. We re-
implemented RCP by invoking Weka [32] with default
settings. CLAMI+ is a state-of-the-art model, which has
already proved its advantages over RCP. We used the source
code of CLAMI+ provided by the author. Moreover, we
also compared SCP with two similar successful cross-project
models for defect prediction, TDS [19] and TCA+ [18].
TDS is the most related work to SCP for source project
selection, we re-implemented it according to the pseudo-
code written in the original paper. TCA+ is an extended
version of TCA with some data preprocessing. We developed
TCA part according to [20] and the extended part following
the algorithm in Nam et al. [18].

C. Performance Metrics
We adopt two widely used metrics to evaluate our model:

AUC. AUC measures a model’s discriminatory power, which
represents the area under receiver operating characteristic



Table I
SUMMARY OF ADOPTED CODE METRICS.

Name Full Name Description

DIT Depth in Inheritance Tree The level for a class file within its class inheritance hierarchy.
NOC Number Of Children Number of immediate subclasses inherited to the given class file.
CBO Coupling Between Object class files Number of class files perform interaction with a given class file.
WMC Weighted Methods per Class Count of methods implemented within a class file.
RFC Response For a Class Number of different executive methods when received message as an object.
LCOM Lack of Cohesion in Methods Count of the set of methods in a class file that are not sharing its fields.
LOC Lines Of Code Number of lines of one source code class file.

Table II
STATISTICS OF THE DATASETS.

Studied Version Next Version #Class %Changed #LOC

ant-1.8.3 ant-1.8.4 846 12.20% 105,153
antlr-3.2 antlr-3.3 226 84.07% 32,227
argouml-0.32.2 argouml-0.32.3 1505 27.51% 114,707
azureus-4.1.0.4 azureus-4.2.0.0 3150 07.17% 447,704
freecol-0.10.6 freecol-0.10.7 630 09.52% 99,937
freemind-0.6.7 freemind-0.7.1 74 89.19% 9,978
hibernate-3.1.2 hibernate-3.1.3 925 93.62% 86,438
jgraph-5.12.1.0 jgraph-5.12.2.1 53 20.75% 13,588
jmeter-2.8.0 jmeter-2.9.0 830 58.07% 82,872
jstock-1.0.7.2 jstock-1.0.7.3 276 10.14% 48,128
jung-1.7.5 jung-1.7.6 467 02.78% 33,657
junit-4.8.2 junit-4.9.0 143 20.98% 6,608
lucene-4.0.0 lucene-4.1.0 620 34.19% 74,863
weka-3.5.7 weka-3.5.8 994 68.61% 238,144

(ROC) curve [12]. We use the AUC as the previous studies
et al. [12], [35], [36], [37]. The advantages of AUC over
other metrics (e.g., F1-score) are that: 1) AUC is a thresh-
old independent measure [38]. A threshold represents the
likelihood threshold for deciding an instance is classified
as positive or negative. Usually, the threshold is set as
0.5 and other performance measures (such as F1-score) for
a classifier rely on the determination of a threshold. 2)
AUC is robust towards imbalanced dataset [30], [39]. Other
performance measures such as precision, recall, and F1-score
are highly affected by imbalanced dataset, which are difficult
to fairly compare models [40], [27].
PofB20. PofB20 is a widely used cost-effectiveness measure
for evaluating prediction models [41], [42], [43], [17], [44],
[45], [46]. PofB20 measures the percentage of real change-
prone classes that developers can identify, when developers
spend code inspection efforts (i.e. reading 20% lines of
code) on change-prone classes recommended by a model.
Therefore, a model with higher PofB20 saves more devel-
opers’ efforts in software maintenance. Specifically, it first
sorts classes in a project by a confidence level (i.e. the
probability to be change-prone predicted by a classifier). A
class with higher confidence level has higher probability to
be change-prone. Then, we simulate developers’ behaviors
to inspect predicted change-prone files one by one from the
highest confidence level. We finally calculate the recall for
the classes that hold 20% of total lines of code.

D. Research Questions
In the experiment, we design 5 research questions (RQs)

to evaluate our model as follows.
RQ1. How effective is SCP? How much improvement

Table III
CLIFF’S DELTA AND THE EFFECTIVENESS LEVEL [49].

No. Cliff’s Delta (|δ|) Effectiveness Level

1 0.000 ≤ |δ| < 0.147 Negligible
2 0.147 ≤ |δ| < 0.330 Small
3 0.330 ≤ |δ| < 0.474 Medium
4 0.474 ≤ |δ| ≤ 1.000 Large

can it achieve over two existing cross-project models for
change-proneness prediction?

In this RQ, we investigate the extent SCP outperforms
existing cross-project change-proneness prediction models.
We answer this question by comparing SCP with a state-of-
the-art model CLAMI+ [12], and a cross-project model RCP
[13]. We use AUC and PofB20 to evaluate the performance
of these models on 14 datasets (described in Table II). For
each dataset, as RCP trains its classifier with one randomly
selected source project. To suppress the randomness, we thus
run RCP 20 times for each dataset, and report the mean value
of its performance.

Moreover, we also compare SCP with its component
LE, an unsupervised approach described in Section II-B,
to investigate the effectiveness of LE. Note that LE has
no value in PofB20, because it cannot provide confidence
level as other supervised models, so that LE cannot guide
developers identify change-prone classes one by one as other
models.

To analyze the statistical difference between two models
across 14 datasets, we apply the Wilcoxcon signed-rank test
[47] at 95% significance level on 14 paired values that
corresponds to a performance metric (AUC or PofB20).
Since the study conducts several statistical tests at the same
time (one test per dataset per evaluation metric), we thus
use the Bonferroni correction [48] to counteract the results
of multiple comparisons.

To quantify the amount of difference between two models,
we utilize the Cliff’s delta (δ) [49], a non-parametric effect
size measure. δ ranges from -1 to 1, where δ = -1 or
1 indicates that one model outperforms another model on
all datasets in terms of a performance metric (such as
AUC), while δ = 0 means that results of two models are
completely overlapping without any difference. Table III
presents interpretations for different delta values [49].

RQ2. How effectively can SCP perform as compared to
similar cross-project defect prediction models?

Although the problem of cross-project setting has not



been solved in the change-proneness prediction, there are
some viable solutions for the cross-project setting in defect
prediction. We thus compare SCP with 2 previously suc-
cessful and most related defect models, including a source
selection model TDS [19], and a data preprocessing model
TCA+ [18]. Notice that TCA+ trains its classifier with
randomly selected one source project, we thus repeat TCA+
20 times for one cross-project prediction to suppress its
randomness as the setting of RCP model in RQ1. The
prediction performance between SCP and other 2 models
are also analyzed by Wilcoxon signed-rank test [47] (also
corrected by the Bonferroni correction [48]), and Cliff’s
delta [49] as the settings in RQ1.
RQ3. How different source project similarity strategies
affect the performance of SCP?

Section II provides 3 similarity strategies to help SCP find
better source project: 1) SCP1, an absolute difference of the
change-proneness rates between source and target projects;
2) SCP2, a metric distribution similarity of not change-prone
classes in source and target projects; 3) SCP3, a similarity
strategy also likes SCP2 but measures the metric distribution
on change-prone classes. Due to the limited space in this
paper, we only report the average performance of SCP with
different strategies across 14 datasets, and analyze which
strategy is the best choice for SCP. Additionally, to test
if above 3 strategies are complementary, we also explore
the prediction performance of SCP with different linearly
combined strategies.
RQ4. How the classifier affects the performance of SCP?

SCP helps a classifier find better source project, and the
classifier finally determines the performance of cross-project
change-proneness prediction. Thus, this RQ investigates how
different classifiers affect the prediction performance of SCP.
Table VII shows 7 commonly used classifiers, which are
implemented by invoking Weka [32] with default settings.
RQ5. How the number of source projects influences the
performance of SCP?

In default, SCP trains its classifier with only one selected
source project. To investigate whether the prediction can be
further improved by using more source projects, we hence
compare the performance of SCP with top-n and bottom-n
selected source projects, where n ∈ [1, 13].

IV. RESULTS AND DISCUSSION

A. RQ1: SCP vs. Two Related Change-Proneness Models.
Table IV presents the AUC and PofB20 values of our SCP

model compared with 2 related change-proneness prediction
models, a cross-project prediction model RCP and a state-of-
the-art model CLAMI+. From the table, we can find that the
improvements of our SCP over 2 baselines are substantial.
Specifically, across 14 datasets, the AUC scores of SCP
vary from 0.581 to 0.870 with average 0.687, and SCP
improves RCP and ClAMI+ in average AUC by 25.34% and

4.30%. Meanwhile, the PofB20 of SCP within the range of
03.95% and 64,59% (average = 38.40%), and SCP improves
two baselines in mean PofB20 by 171.42% and 172.31%
respectively.

Table IV lists the number of projects where each baseline
model obtains better (W, win), equal (T, tie), or worse
(L, lose) performance comparing to SCP. We can find that
SCP achieves better AUC and PofB20 on more than 10
projects compared with 2 baselines, which indicates that
SCP achieves better performance in most of cases.

Table IV also provides the p-value and Cliff’s delta, when
we compare SCP with 2 baseline models. And we consider
a comparison is significantly different when the p-value is
less than 0.05. We can observe that, in terms of AUC,
SCP shows significant increases for RCP (p<0.001) with
large effect size (δ = 0.938); meanwhile, SCP shows little
improvement over CLAMI+ on AUC (p>0.05, δ=0.122).
Comparing PofB20 of 3 models, we can find out that SCP is
significantly better than other two models (both p < 0.001
and δ>0.7).

Additionally, when comparing LE (the component of
SCP) with other models in Table IV, we can find that its
mean AUC (0.633) is close to the state-of-the-art model
CLAMI+, outperforming RCP. Thus the lightweight un-
supervised method LE can effectively estimate the label
information of target project. We can also observe that with
the help of the estimated labels by LE, SCP can further
improve the prediction performance in terms of AUC and
PofB20.

Result 1: The proposed model SCP outperforms RCP
and CLAMI+ on AUC and PofB20 for most of datasets
with larger mean values, where the improvements on
PofB20 are significant with large effect size.

B. RQ2: SCP vs. Two Similar Cross-Project Defect Models.

Table V compares the performance of SCP with 2 similar
defect models (TCA+ and TDS) succeeded in handling
cross-project prediction, in terms of AUC and PofB20. Com-
pared with these 2 models, SCP shows better performance.
Specifically, the average AUC and PofB20 of TCA+ are
respectively enhanced by 21.26%, and 131.75%. And all
of these improvements are significant (p<0.001) with large
effect size (δ>0.78). For the TDS, it has a high average
PofB20 (36.34%), where SCP only makes 5.70% improve-
ments without statistical difference (p>0.05, δ=0.122). How-
ever, TDS has low average AUC (0.584) across 14 projects,
where SCP improves it by 17.62% in statistical significance
(p<0.001) with large effect size (δ>0.64). These results
produced by TDS imply that source project selection can
help developers save efforts for identifying change-prone
classes. And a better selection method as SCP can further
improve the prediction performance.



Table IV
PERFORMANCE COMPARISON (AUC AND POFB20) OF 3 CROSS-PROJECT CHANGE-PRONENESS MODELS (RCP, CLAMI+, SCP) AND THE
COMPONENT OF SCP (LE). ’W/T/L’ INDICATES THE NUMBER OF PROJECT THAT A BASELINE IS BETTER, EQUAL TO, WORSE THAN SCP.

Dataset
AUC PofB20

RCP LE CLAMI+ SCP RCP LE CLAMI+ SCP

ant-1.8.3 0.533 0.646 0.750 0.811 05.00% - 00.00% 46.94%
antlr-3.2 0.554 0.641 0.653 0.654 05.21% - 12.04% 64.59%

argouml-0.32.2 0.533 0.562 0.577 0.566 07.79% - 11.22% 49.06%
azureus-4.1.0.4 0.573 0.662 0.654 0.714 15.15% - 18.52% 24.07%
freecol-0.10.6 0.572 0.695 0.699 0.723 21.50% - 23.33% 17.39%
freemind-0.6.7 0.538 0.642 0.625 0.689 09.70% - 19.70% 50.77%
hibernate-3.1.2 0.530 0.573 0.597 0.601 07.23% - 05.66% 61.06%
jgraph-5.12.1.0 0.630 0.764 0.752 0.798 25.45% - 18.18% 31.20%

jmeter-2.8.0 0.532 0.637 0.667 0.646 14.90% - 13.07% 45.44%
jstock-1.0.7.2 0.552 0.608 0.608 0.618 13.39% - 15.63% 30.10%

jung-1.7.5 0.545 0.681 0.756 0.870 30.38% - 14.29% 03.95%
junit-4.8.2 0.525 0.560 0.538 0.581 13.50% - 10.00% 36.80%

lucene-4.0.0 0.526 0.608 0.666 0.641 13.77% - 21.13% 34.89%
weka-3.5.7 0.524 0.588 0.670 0.700 15.09% - 14.66% 41.35%

Average 0.547 0.633 0.658 0.687 14.15% - 14.10% 38.40%
Improved% +25.34 +08.53 +04.41 - +171.42 - +172.31 -

W/T/L 0/0/14 0/0/14 3/0/11 - 2/0/12 - 2/0/12 -
p-Value <0.001 >0.05 >0.05 - <0.001 - <0.001 -
δ 0.938 0.389 0.122 - 0.796 - 0.816 -

Table V
PERFORMANCE COMPARISON (AUC AND POFB20) OF SCP WITH 2

CROSS-PROJECT DEFECT MODELS (TCA+ AND TDS). THE BEST
VALUES ARE IN BOLD. ’W/T/L’ INDICATES THE NUMBER OF PROJECT
THAT A BASELINE MODEL IS BETTER, EQUAL TO, WORSE THAN SCP.

Dataset
AUC PofB20

TCA+ TDS SCP TCA+ TDS SCP

ant-1.8.3 0.709 0.681 0.811 30.00% 29.16% 46.94%
antlr-3.2 0.511 0.544 0.654 10.47% 61.26% 64.59%

argouml-0.32.2 0.520 0.600 0.566 11.67% 49.57% 49.06%
azureus-4.1.0.4 0.600 0.650 0.714 16.17% 28.03% 24.07%
freecol-0.10.6 0.565 0.500 0.723 20.50% 17.95% 17.39%
freemind-0.6.7 0.564 0.652 0.689 13.94% 66.61% 50.77%
hibernate-3.1.2 0.562 0.542 0.601 09.57% 59.88% 61.06%
jgraph-5.12.1.0 0.621 0.500 0.798 25.55% 23.15% 31.20%
jmeter-2.8.0.0 0.524 0.500 0.646 13.18% 22.57% 45.44%
jstock-1.0.7.2 0.523 0.500 0.618 14.46% 35.07% 30.10%

jung-1.7.5 0.619 0.776 0.870 25.38% 06.61% 03.95%
junit-4.8.2 0.521 0.563 0.581 12.33% 38.51% 36.80%

lucene-4.0.0 0.549 0.576 0.641 15.31% 40.38% 34.89%
weka-3.5.7 0.540 0.589 0.700 14.44% 30.04% 41.35%

Average 0.566 0.584 0.687 16.57% 36.34% 38.40%
Improved% +21.26 +17.62 - +131.75 +05.70 -

W/T/L 0/0/14 1/0/13 - 2/0/12 8/0/6 -
p-Value <0.001 <0.001 - <0.001 >0.05 -
δ 0.806 0.643 - 0.786 0.122 -

Result 2: TCA+ is not applicable for change-proneness
prediction, while TDS can help developers identify more
change-prone classes when they inspect source code line
by line. And SCP outperforms TDS for its better source
project selection method.

C. RQ3: Impact of the Similarity Strategies on SCP
Table VI lists the average performance (AUC and PofB20)

of SCP with 3 source project selection strategies designed
in Section II and their linear combinations (i.e. choosing
training data according to the addition result of two or more
selection strategies), across 14 datasets. We can find that
SCP1 achieves the best AUC (0.687) with the second high in
PofB20 (38.40%). Although SCP3 and SCP1+SCP3 obtain

Table VI
PERFORMANCE COMPARISON (AVERAGE AUC AND POFB20) OF SCP

MODEL WITH DIFFERENT SIMILARITY STRATEGIES FOR SOURCE
PROJECT SELECTION ACROSS 14 PROJECTS, WHERE SCP1-3 ARE BASIC

STRATEGIES, AND THE REST ARE LINEAR COMBINED STRATEGIES.

Strategy AUC PofB20

SCP1 0.687 38.40%
SCP2 0.575 27.72%
SCP3 0.617 39.43%

SCP1 + SCP2 0.575 27.72%
SCP1 + SCP3 0.617 39.43%

SCP1 + SCP2 + SCP3 0.594 36.67%

the best PofB20 (39.43%), this improvement over SCP1 is
negligible while their AUC (0.617) are much lower than
SCP1. Therefore, the SCP1 strategy is the best one to choose
source project for building a classifier in SCP.

Result 3: To find a better source project for cross-project
prediction, the absolute difference of change-proneness
rates between source and target projects is the best
strategy for SCP.

D. RQ4: Impact of the Classifier on SCP
To investigate the impact of classifier in SCP, we replace

the default classifier Bayesian network with 7 other com-
monly used classifiers in Table VII. The table shows the
average performance of these settings in AUC and PofB20
across 14 datasets. Results indicate that the default classifier,
Bayesian Network, achieves the best AUC and PofB20.
Therefore, we suggest using the Bayesian network when
applying our model.

Result 4: Compared with 7 commonly used classifiers,
Bayesian network is the best one for SCP.

E. RQ5: Impact of the Number of Source Projects on SCP
Fig. 3 shows the average performance (AUC and PofB20)

on SCP trained with different numbers of source projects,



Table VII
PERFORMANCE COMPARISON (AVERAGE AUC AND POFB20) OF SCP

WITH DIFFERENT COMMON CLASSIFIERS.

Classifier AUC PofB20

LogitBoost 0.622 13.06%
Adaptive Boosting 0.646 34.39%

Alternating Decision Tree 0.650 33.06%
Back Propagation Network 0.628 19.78%

Bayesian Network 0.687 38.40%
Radial Basis Function Network 0.652 20.11%

Simple Logistic Regression 0.638 17.11%
Support Vector Machine 0.645 16.19%
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Figure 3. Performance comparison (average AUC and PofB20) of SCP
with different number of source projects. For one prediction, we combine
the top-n or bottom-n source projects recommended by source project
selection method in SCP sequentially.

across 14 datasets. The blue fold line with squares in the
figure shows the performance of SCP using top-n source
projects recommended by our model, n∈[1, 13]. We can
observe that AUC and PofB20 have some decreases as we
use more source projects, which implies that combining
source projects does not have a higher matched distribution
compared with the target project. In contrast, the black fold
line with triangles in the figure shows a large decrease for
AUC and PofB20, when we use the bottom-n, especially
n∈[1, 6], source projects recommended by our model. These
results suggest that the training sequence of source projects
largely affects the performance of SCP. These results may
be caused by the project difference in domain, development
phase, developers’ expertise, and etc.

Result 5: SCP trained with more source projects does
not have a better performance. If a classifier is trained
with multiple source projects, its performance is sensitive
to the training sequence of used source projects.

F. Threats to Validity
The SCP uses 7 code metrics for model inputs by fol-

lowing [13], [6], [24]. We assume that they are sufficient
for change-proneness prediction. However, using more code
metrics may achieve better performance, but it is reasonable
to simplify the modeling complexity while maintaining
acceptable performance. On the other hand, we use linear
additivity to combine different similarity strategies to choose
source project. But experiment result indicates the linear
additivity cannot draw advantages from different strategies.
In the future, we will explore a better way to combine
similarity measures to improve the model performance.

In the experiment, we evaluate our model by investigating
14 open source projects as [12], but the experiment results
on more datasets may be different as all the other empirical
evaluations. Moreover, the collected software systems are all
open source and written in Java, thus the conclusions may be
different for closed source projects, and the projects written
in other programming languages. However, the prediction is
mainly based on the object-oriented metrics. Therefore, if
the programming language is object-oriented and its code
metrics are extracted in the same way, this threat could be
minimized.

V. RELATED WORK

A. Change-Proneness Prediction
In terms of the used code metrics, the relationship between

change-prone class files and code metrics has been studied
since decades ago. It is shown that larger sized classes are
likely to be change-prone [50]. Later, researchers concluded
that a number of Object-Oriented (OO) metrics are strongly
correlated with the change-proneness [51], [28], [52] includ-
ing coupling, cohesion, inheritance, complexity, etc. And the
size of code file is a primary indicator, such as the lines of
source code [9], [26]. However, the highest value of those
OO metrics does not always indicate the change-proneness
of a class [26], and the size of code file overestimates
the change-proneness [53]. Therefore, researchers started
to research on the combination of the code metrics, and
validated that the Chidamber and Kemerer (CK) metric suite
associated with the size metric is an effective combination
to predict change-proneness [54], [55]. Following their re-
search, we use the CK metric suite and size metric as our
independent variables.

In terms of the techniques, a few studies first used
the traditional statistical approaches for developing change-
proneness prediction models [6], [53]. To improve their
performance, some other studies found it is effective by
using ML techniques for building change-proneness models,
such as tree-based models, artificial neural network, support
vector machine, and ensemble methods [26], [9], [5], [56],



[57], [10], [11], [58]. However, most of them conduct the
prediction by learning from historical labeled data from the
target project (i.e., within-project prediction). It is not feasi-
ble for new projects or projects with limited historical data.
To address this limitation, Malhotra and Bansal [13] pro-
posed cross-project change-proneness prediction that uses
labeled data of other projects to conduct the prediction on
target data. However, the performance is not stable due to
the data distribution difference between source and target
projects. The difference of our model and the work of
Malhotra and Bansal [13] is that we provide an automatically
source project selection method, instead of their random
selection. Yan et al. [12] proposed a model (CLAMI+)
that outperforms the cross-project work of Malhotra and
Bansal [13] in terms of AUC. However, we found that it
is not feasible in terms of cost-effectiveness. Therefore, we
aim to enhance the performance of cross-project prediction
performance, in terms of both AUC and cost-effectiveness.

B. Selective Prediction Models
The challenge of cross-project prediction is that the pre-

diction performance is unstable if we randomly choose one
alternative project as the source project. To the best of our
knowledge, the selective prediction has not been explored
in the change-proneness prediction. But a different research
problem, defect prediction, supplies some useful ideas.

Previously, Watanabe et al. [59] verified the possibility
of cross-project prediction by using 2 projects. And they
attributed such possibility to the similarity of the domain,
programming language, metrics between the projects for
model training and testing. Later, Zimmermann et al. [23]
conducted a large scale cross-project prediction among 12
real-world applications. They found that the cross-project
prediction is challenging (only 3.4% predictions worked).
To solve this issue, Herbold [19] proposed a training data
selection (TDS) method to find a better source project.
Specifically, the author uses a nearest neighbor based model
to choose the source project closest to the target project
from alternative projects for defect prediction. The results
indicated the TDS can improve the prediction performance
(the success rate improved to 18%).

The TDS is the most similar work to our model SCP. The
difference is that our similarity measure considers the label
information (change-proneness) of files, where the missed
labels of target project are estimated by an unsupervised
approach in advance. We make this difference motivated by
the empirical finding of He et al. [22]. They found that it
is possible to achieve much higher performance (success
rate can be over 50%), if selecting the source project via a
similarity measure on data distribution on condition of their
label information.

VI. CONCLUSION

Predicting change-prone class files for software systems
has long been a challenging problem. The cross-project

prediction performance is usually unstable because the dis-
tribution between a randomly selected source project and
a target project is not matching. To tackle this issue, we
propose a model named SCP to find the best-matched source
project from alternatives. We conduct an empirical study on
14 open source projects to evaluate the effectiveness of SCP,
the results show that:
• The SCP is an effective model for cross-project change-

proneness prediction compared with 2 related change-
proneness prediction models, including a cross-project
model RCP and a state-of-the-art model CLAMI+. On
average across 14 projects, our SCP improves RCP
and CLAMI+ by 25.34% and 4.30% in terms of AUC
respectively, and by 171.42% and 172.31% in terms of
cost-effectiveness respectively.

• Compared with 2 similar cross-project defect prediction
models (TCA+ and TDS), our SCP also achieves sig-
nificant improvements. On average across 14 projects,
SCP improves TCA+ and TDS by 21.26% and 17.62%
in terms of AUC respectively, and by 131.75% and
5.70% in terms of cost-effectiveness respectively.

• Among 3 designed strategies for source project selec-
tion, the best one is to choose the source project with
close rate of change-prone classes to a target project.

• Training a classifier with more selected source projects
has negative effect on SCP. And if training a classifier
with multiple source projects, and the performance of
classifier is sensitive to the training sequence of used
source projects. Thus, it is recommended to use the top-
1 source project selected by SCP to train a classifier.
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