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Abstract—Software build system (e.g., make) plays an im-
portant role in compiling human-readable source code into an
executable program. One feature of build system such as make-
based system is that it would use a build configuration file (e.g.,
Makefile) to record the dependencies among different target and
source code files. However, sometimes important dependencies
would be missed in a build configuration file, which would cause
additional debugging effort to fix it. In this paper, we propose
a novel algorithm named BuildPredictor to mine the missed de-
pendncies. We first analyze dependencies in a build configuration
file (e.g., Makefile), and establish a dependency graph which
captures various dependencies in the build configuration file.
Next, considering that a build configuration file is constructed
based on the source code dependency relationship, we establish
a code dependency graph (code graph). BuildPredictor is a com-
posite model, which combines both dependency graph and code
graph, to achieve a high prediction performance. We collected
7 build configuration files from various open source projects,
which are Zlib, putty, vim, Apache Portable Runtime (APR),
memcached, nginx, and Tengine, to evaluate the effectiveness of
our algorithm. The experiment results show that compared with
the state-of-the-art link prediction algorithms used by Xia et al.,
our BuildPredictor achieves the best performance in predicting
the missed dependencies.

Keywords—Build System, Link Prediction, Build Graph, Code
Graph, Makefile

I. INTRODUCTION

In a modern software, build system is an indispensable
component. Build systems compile source code, libraries and
other data into executable programs by orchestrating the ex-
ecution of different compilers and other tools [1]. There are
various build systems, such as make, ant, scon, cmake, and
maven, and they work on different programming languages
and platforms. Due to the complexity of modern software
systems, the maintenance of build systems is a difficult job. A
prior research study has shown that build maintenance could
add 12%-36% additional costs to software development [2].

In the build process, a build system (e.g., make) first reads
a build configuration file (e.g., Makefile), and then executes
the rules in the configuration file to build a system. These
rules in the build configuration file represent the dependencies
among different targets and source code files. However, for a
large-scale software project, such as Linux, the dependencies
among the targets and source code files are complex. Thus, it
is easy to miss some dependencies, which is hard to detect.

‡The work was done while the author was visiting Singapore Management
University.

§Corresponding author.

To address the dependency mining problem, Xia et al. first
reverse engineer a build configuration files (e.g., Makefile) into
a dependency graph where nodes in the graph correspond to
entities in the Makefile and edges in the graph correspond to
relationships among these entities, and then map the problem
into a link prediction problem which would predict the missed
edges (links) in the dependency graph [3].

In this paper, we further investigate the dependency mining
problem. Similar with Xia et al., we focus on make build
tool, since it is one of the most widely used build tools.
Our goal is to improve the effectiveness of the nine link
prediction algorithms used by Xia et al. [3] which is still
low. The algorithms used by Xia et al. only analyze build
configuration file and ignore source code to infer missed
dependencies. Furthermore, the nine link prediction algorithms
are originally proposed to solve social network and biological
problems [4], and they ignore some basic rules that are obeyed
by dependencies in build configuration files. To overcome the
limitations of Xia et al.’s approach for dependency mining, we
propose BuildPredictor to achieve a better performance.

BuildPredictor combines two graphs – dependency graph
which is constructed from the dependencies in a build config-
uration file, and code graph which is constructed from the
dependencies in source code files – to predict the missed
dependencies. It then computes a number of similarity scores
between pairs of nodes in the dependency and code graphs.
These similarity scores are used to rank candidate pairs of
nodes in the dependency graph that are not connected together
with an edge. BuildPredictor leverages a number of rules that
are observed by build configuration files to prune candidate
pairs (a, b) where it is impossible or highly unlikely that
an edge exists between a and b. BuildPredictor would then
recommend the remaining top pairs for developers to check to
identify missed dependencies.

To evaluate the benefits of BuildPredictor, we collect 7
build configuration files from various open source projects,
such as Zlib, putty, vim, Apache Portable Runtime (APR),
memcached, nginx, and Tengine. BuildPredictor achieves an
average top-n precision and AUC score of 80.38% and 0.8512
across the 7 projects. Top-n precision measures the accuracy
of the top few recommendations made by a dependency
mining approach, while AUC measures the overall accuracy
of the entire recommendations. Since developers are likely to
investigate only top few recommendations and would likely not
use the tool if the top few recommendations are bad (c.f., [5]),
achieving high top-n precision is more important than high
AUC. The experiment results show that our BuildPredictor
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1: calculator :add.o subtract.o mult.o divide.o lib.a
2: gcc add.o subtract.o mult.o divide.o -L . lib.a -o

calculator
3:
4: add.o: add.c num.h add.h
5: gcc -c add.c
6:
7: subtract.o: subtract.c num.h add.h
8: gcc -c subtract.c
9:
10: mult.o: mult.c num.h mult.h
11: gcc -c mult.c
12:
13: divide.o: divide.c num.h mult.h
14: gcc -c divide.c
15:
16: clean:
17: rm -rf *.o

Fig. 1. An Example Makefile which Specifies the Build Process for
calculator.

outperforms the nine link prediction algorithms used by Xia
et al. [3] substantially, especially in terms of top-n precision.
The highest performing link prediction algorithm only achieves
a top-n precision and AUC of 1.73% and 0.83.

II. PRELIMINARIES AND PROBLEM DEFINITION

make build tool uses a specific configuration file called
Makefile, and the goal of a Makefile is to tell make tool how
to build a system. A Makefile constitutes of a number of rules.
The rules have a similar structure [1]:

target... : prerequisites...

commands (1)

The target can be an object file, an executable file, or even
a label. prerequisites specify source code files, object files
or executable file that are needed, or other targets that need
to be processed to build target. Thus prerequisities store
dependencies between a target to other targets or source code
files. commands tells the build system how to generate target
from prerequisites.

Figure 1 presents an example of Makefile which specifies
the build process of a calculator. There are 6 targets in the
Makefile: add.o, subtract.o, mult.o and divide.o are object files;
calculator is an executable file; clean is a label, since its
prerequisites is empty. calculator target depends on several
prerequisites: add.o, substract.o, mult.o, divide.o, and a static
library lib.a. The object files (e.g., add.o, subtract.o, mult.o
and divide.o ) depends on their own source code files and a
common header file num.h.

By analyzing Figure 1, we could create a dependency
graph. Figure 2 shows the dependency graph derived from
the example Makefile shown in Figure 1. The target and
prerequisites in the Makefile become nodes, and the depen-
dencies become edges in the dependency graph. Note that the
dependency graph is a directed acyclic graph (DAG), and it is
also a rooted graph with calculator as the root note. The formal
definition of dependency graph is shown in Definition 1. Based
on this graph, we formally define dependency mining problem
in Definition 2.

Definition 1: (Dependency Graph.) We denote a depen-
dency graph as G(V,E), where each node v ∈ V corresponds
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Fig. 2. Dependency Graph for the Example of Makefile in Figure 1
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Fig. 3. Overall Framework of BuildPredictor.

to a target or a member of a prerequisites list in a corre-
sponding build configuration file (e.g., Makefile), and each link
e ∈ E denotes the dependency relationships between a target
and its prerequisites. Since the prerequisites of a target
can have multiple members, a target node can be linked to
more than one node in a dependency graph. Notation-wise, we
use e(v′, v) to denote a link from node v′ to node v.

Definition 2: (Dependency Mining.) Given a dependen-
cy graph G(V,E), let us denote the set containing all the
|V |×(|V |−1)

2 edges in the graph as U . Then, the dependency
mining problem is to recover the edges in the U − E edges
that correspond to missed dependencies.

III. OUR PROPOSED APPROACH

In this section, we present our proposed approach named
BuildPredictor. We first describe our overall framework. Then
we propose the way to extract dependency graph and code
graph, respectively. Next, we describe the dependency pruning
and ranking method.

Overall Framework. We present the whole framework for
BuildPredictor in Figure 3. Our approach takes as input a
build configuration file (1) and source code files (4). The
configuration file is input to the dependency graph extractor
component (2) which analyzes the build configuration file and
outputs a dependency graph (3). The source code files are
analyzed by the code graph extractor (5) which eventually
produces a code graph (4). The generated dependency and
code graphs are then input to the dependency pruning and
ranking component (7) which eventually produces a list of
top-N candidate missed dependencies sorted based on their
likelihood to be true.

Dependency Graph Extraction. To extract a dependen-
cy graph from a build configuration file we make use of
MAKAO [6]. MAKAO takes in a build configuration file
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and outputs a dependency graph whose definition is given in
Definition 1.

We divide the nodes in dependency graph into two types,
i.e., source nodes and target nodes. Source nodes refer to the
files which exist before we build a system, which include
different types of files, such as source code files, configuration
files, etc. Target nodes refer to the targets which appear after
we run make command to build a system, such as the object
files, and executables. Definition 3 formally define source and
target nodes. It makes use of the concept of out-neighbors and
out-degree which are defined in Definition 4.

Definition 3: (Source Node and Target Node.) Given a
dependency graph G(V,E), a node v is a source node if it has
zero out-neighbor, i.e., kout(v) = 0; a node v is a target node
if it has at least one out-neighbors, i.e., kout(v) ≥ 1.

Definition 4: (Out-neighbors and Out-degree of a Node.
) Given a dependency graph G(V,E), and a node v ∈ V , the
out neighbors of v is a set of nodes v′ which e(v, v′) exist. Let
Γout(v) denotes the out neighbors in G. And the out-degree
of v is the total number of out-neighbors of v. Let kout(v)
denotes the degree of node v in G.

kout(v) = |Γout(v)| (2)

Code Graph Extraction. A code graph is a homogeneous
network, i.e., each node in the code graph has the same type,
and each node corresponds to a source code file. In C/C++
language, there are various types of source code files, such
as .c, .h, .cpp and .hpp. In this paper, we do not differentiate
them. To extract a code graph, we analyze the source code files
and extract the “include” statement from C/C++ source code
files. We search the whole project space to build the mapping
of source code files to the files that they depend on, and we
ignore files which are in the standard C/C++ library.

Algorithm 1 Dependency Pruning and Ranking Method.

1: BuildPredictor(depGraph, codeGraph, buildNodes, codeNodes)
2: Input:
3: depGraph: dependency braph
4: codeGraph: code graph
5: Output: top-n missed dependencies
6: Method:
7: Let targetNodes = Target nodes in depGraph (see Definition 3)
8: Let sourceNodes = Source nodes in depGraph (see Definition 3)
9: Let codeNodes = Nodes in the codeGraph

10: Map nodes in codeNodes to sourceNodes;
11: Infer hierarchical structure of depGraph, following Algorithm 2;
12: Let candidateMissed = {p|p = a pair of unlinked nodes in depGraph};
13: Prune node pairs in candidateMissed which violate Rule 1, 2 and 3;
14: Compute code similarity scores according to Definition 6;
15: Compute target to target node similarity scores using to Algorithm 4;
16: Compute target to source node similarity scores using Algorithm 3;
17: Rank target-to-target links, and target-to-source links in candidateMissed based

on the similarity scores;
18: Return top-n missed dependencies in candidateMissed;

Definition 5: (Code Graph.) We denote a code graph as
G(V,E), where each node v ∈ V denotes a source code file,
and each link e ∈ E denotes the dependencies between the
node pairs. For each source code file v, we extract its “include”
statements to find the source code files it depends on. We create
a link from source code file v to each of the source code files
that it depends on. We denote the link from node v to node v′
as e(v, v′) .

Dependency Pruning and Ranking. After the dependency
and code graphs are constructed, we analyze dependencies that
are missed in the dependency graph. We then prune improbable
dependencies based on some rules that build system obeys.
We then rank the remaining missed dependencies based on
their likelihood to be true. The goal is to rank real missed
dependencies (i.e., these dependencies are erroneously missed)
high in the ranked list.

Our algorithm to prune and rank dependencies is shown
in Algorithm 1. The algorithm begins by extracting the set of
source and target nodes from the dependency graph (Lines
7-8). It then also extracts the set of nodes from the code
graph (Line 9). The algorithm then proceeds to map nodes
in source nodes with nodes in the code graph (Line 10). It
then infers the hierarchical structure of the dependency graph
(Line 11). This process assigns to each node its unique level,
which corresponds to its distance to the root of the dependency
graph. After the hierarchical structure is inferred, we get the
set of missed dependency candidates candidateMissed which
correspond to each pair of nodes in the dependency graph that
are not linked to each other (Line 12). We then prune some
of the dependencies in candidateMissed that are improbable
based on some basic rules that build configuration files obey
(Line 13). Next, we compute the similarity score between two
nodes in the code graph (Line 14). These similarity scores are
then used to compute the similarity between one target node
to another target node, and one target node to a source node in
candidateMissed (Lines 15-16). These scores are then used
to rank dependencies in candidateMissed (Line 17). The top-
n dependencies with the highest scores are then output.

In the next few subsections, we elaborate the process to
infer hierarchical structure, prune dependencies that violate
some rules, compute code similarity, compute target-to-source
node similarity, and compute target-to-target node similarity.

1) Infer Hierarchical Structure: A dependency graph has
a hierarchical structure. There is a root node v, which is at
level 0. For the root node v, there is no other node v′ where
e(v′, v) exists. Nodes that are directly connected to the root
node v is at level 1. The highest levels in a dependency graph
are source nodes, i.e., their out-neighbor is 0. The procedure to
infer the levels of each node in a dependency graph is shown in
Algorithm 2. We first identify the root node in the dependency
graph (Line 7). Next, the out-neighbors of the root node are
the level 1 nodes (Line 8). We iterate the process until all the
nodes in dependency graph have their assigned levels (Lines
9-11). As an example, consider the graph shown in Figure 2,
calculator is the root node, and there are 3 levels (i.e., 0, 1,
and 2) in the dependency graph.

2) Dependency Pruning: In the dependency pruning step,
we remove links in candidateMissed that violate one of the
following rules:

Rule 1: (Redundant Link Rule.) The link between node
v and v′ is not a missed dependency if there exists a path in
the dependency graph that connects v and v′.

Rule 2: (Source Nodes Rule.) No link would exist among
source nodes, and no link would exist from a source nodes to a
target node, i.e., only two types of links exist in a dependency
graph: links from target nodes to target nodes, and links from
targets nodes to source nodes.

55



Algorithm 2 Hierarchical Structure Inference

1: InferHierarchicalStructure(graph, nodes)
2: Input:
3: graph: dependency graph
4: nodes: nodes in graph
5: Output: The level of each node in nodes
6: Method:
7: Find the root node v ∈ nodes where there exists no other nodes v′ where e(v′, v)

exists;
8: Find the level-1 node sets Vlevel1 = {v|v ∈ Γout(v)};
9: Find the level-2 node sets Vlevel2 = {v|v ∈ Γout(v1) ∧ v1 ∈ Vlevel1};

10: ......
11: Find the level-n node sets Vleveln = {v|v ∈ Γout(v(n − 1)) ∧ v(n − 1) ∈

Vlevel(n−1)};
12: Return The level of each node in nodes

Rule 3: (Hierarchy Rule.) It is impossible for node x at
level l to have an edge to a node y at level k iff l is larger
than k, i.e., e(x, y) must not exist if l > k.

Algorithm 3 Computation of Target to Source Nodes Similar-
ity

1: ComputTargetToSourceSimilarity(target,source)
2: Input:
3: target: Target node
4: source: Source node
5: Output: Similarity Score sim of target to source
6: Method:
7: Let sim = 0;
8: Get the out-neighbors outs of target;
9: for all node ∈ outs do

10: if node is a source node then
11: sim+=codeSim[node][source];
12: else
13: sim+=ComputTargetToSourceSimilarity(node,source);
14: end if
15: end for
16: if |outs| �= 0 then
17: Set sim=sim/|outs|;
18: end if
19: Return Similarity Score sim of target to source;

3) Code Similarity: Next, we want to compute the similar-
ity between two nodes in a code graph. The code similarity
between two nodes v and v′ is given in Definition 6.

Definition 6: (Code Similarity.) Given a code graph
G(V,E), and two nodes v and v′, if e(v, v′) exists, their
similarity score is 1. However, if e(v, v′) does not exist, we
define the code similarity score between nodes v and v′ as
the the ratio of the number of common out-neighbors and
the number of out-neighbors of either node v or v′, which
is similar to the definition of Jaccard Index (JI) [4]. Formally,
we define code similarity of two nodes v and v′ as follows:

codesim(v, v
′) = { 1, if e(v, v′) = 1

|Γout(v)∩Γout(v
′)|

|Γout(v)∪Γout(v′)| , if e(v, v′) �= 1
(3)

4) Target to Source Nodes Similarity: Algorithm 3 presents
an algorithm to compute a similarity score between a target
node and a source node. Let’s denote their similarity score as
sim which is initialized to 0 (Line 7). After initializing this
score, the algorithm gets the out-neighbors outs of the target
node (Line 8). Next, for each node in outs, it checks the type
of the node (Line 9). If the node is a source node, it adds sim
by the code similarity score of this node to the input source
node (Lines 10-11). If the node is another target node, then it
recursively calls itself (Lines 12-13). The final similarity score
is computed as sim divided by the number of out-neighbors
the target node has (Lines 16-17).

TABLE I. STATISTICS OF COLLECTED BUILD SYSTEMS.

Projects # Nodes # Edges #Potential Links # Sparsity
Zlib 91 233 4,095 5.69%

putty 99 411 4,851 8.48%

vim 146 1,144 10,585 10.81%

APR 289 1,223 41,616 2.94%

Memcached 227 2,443 25,651 9.52%

Nginx 291 6,798 42,195 16.11%

Tengine 320 8,258 51,040 16.18%

5) Target to Target Similarity: Algorithm 4 presents an
algorithm to compute the similarity between a target node
targeta to another target node targetb. We denote their sim-
ilarity score as sim which is initialized to 0 (Line 7). Similar
to the computation of target to source node similarity, for each
out-neighbor of targeta, the algorithm checks the type of the
node. If the node is a source node, it adds a value to sim by
calling ComputeTargetToSourceSimilarity method (Line
11). If the node is a target node, then it recursively calls
itself (Line 13). The final similarity score is computed as
sim divided by the number of out-neighbors the target node
targeta has (Lines 16-17).

Algorithm 4 Computation of Target to Target Nodes Similarity

1: ComputeTargetToTargetSimilarity(targeta,targetb)
2: Input:
3: targeta: target node
4: targetb: target node
5: Output: Similarity Score sim of targeta to targetb
6: Method:
7: Let sim = 0;
8: Get the out-neighbors outs of targeta;
9: for all node ∈ outs do

10: if node is a source node then
11: sim+=ComputeTargetToSourceSimilarity(targetb, node)
12: else
13: sim+=ComputeTargetToTargetSimilarity(node,targetb);
14: end if
15: end for
16: if |outs| �= 0 then
17: Set sim=sim/|outs|;
18: end if
19: Return Similarity Score sim of targeta to targetb;

IV. EXPERIMENTS AND RESULTS

We evaluate BuildPredictor on the collected datasets in Ta-
ble I. The columns correspond to the project name (Projects),
the number of nodes in build graph (# Nodes), the number of
edges (links) in Build Graph (# Edges), the number of potential
links (#Nodes(#Nodes-1)/2) (# Potential Links), and the degree
of sparsity (#Nodes/# Links) (# Sparsity), respectively. The
experimental environment is a Windows 7 64-bit, Intel(R)
Xeon(R) 2.53GH server with 24GB RAM.

Experiment Setup. We randomly divide the actual links from
each build configuration file of the 7 projects into 10 sets of
roughly equal sizes. Nine sets are used to create a partial build
configuration file which is used as input to our approach, while
the remaining 1 set is used to evaluate the performance of
our approach. The whole process repeats 10 times, and finally
we compute the average performance across the ten iterations.
Our approach is similar to ten-fold cross validation which is
an effective way to avoid the overfitting, and is widely used
in software engineering studies, c.f., [7], [8], [9], [10], [11],
[12].

One feature of our dependency mining problem is the
imbalanced data phenomenon, i.e., the number of actual de-
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TABLE II. TOP-N PRECISION SCORES FOR BuildPreditor AND 9 LINK

PREDICTION ALGORITHMS USED BY XIA ET AL. FOR THE 7 BUILD

SYSTEMS. AVER. = THE AVERAGE TOP-N PRECISION SCORES ACROSS

THE 7 BUILD SYSTEMS.

Algo. Zlib putty vim APR Mem. Nginx Tengine Aver.
Build. 57.00% 100% 97.44% 51.20% 57.10% 100% 99.9% 80.38%

CN 0 0 0 0 0 0 0 0

CS 0 0 0 0.10% 0 0 0 0.01%

JI 0 0 0 0 0 0 0 0

AA 0 0 0.10% 0 0.10% 0 0 0.03%

RA 0 0 0.10% 0 0 0 0 0.01%

LHN1 0 0 0.10% 0 0 0 0 0.01%

PA 2.50% 0 0.10% 0.30% 9.20% 0 0 1.73%

Katz 0 0 0.30% 0 0 0 0 0.04%

LP 0 0 0 0 0 0 0 0

pendencies is small compared to the total number of possible
dependencies. For example, in APR project, the number of
nodes is 289, and thus the number of possible dependencies
is 289∗288

2 = 41, 616, but the number of actual dependencies

is 1,223, which is only 1,223
41,616 = 2.94% of the number of

possible dependencies. Even for a denser dataset Tengine, the
number of actual dependencies only takes 8,258

51,040 = 16.18% of
the number of possible dependencies.

To evaluate the performance of our approach, we choose
top-n precision and area under the ROC curve (AUC) val-
ues [4] as the evaluation metrics. They are defined in Defini-
tions 7 & 8.

Definition 7: (Top-n Precision. ) Consider a ranked list
of top-n missed dependencies where Nr of them are actual
missed dependencies. Then top-n precision is Nr/n. Clearly,
a higher top-n precision means a higher prediction accuracy.

Definition 8: (AUC Value.) Given a dependency graph
G(V,E), we denote the nonexisting links in the graph as
U−E, and denote the actual missed links as ET . We randomly
select a link from ET , and compute its similarity score scoreT ;
We also randomly select a link from U −E, and compute its
similarity score scorenone. We repeat this procedure with m
times, and record the number of times scoreT > scorenone
(denoted as m1), and the number of times scoreT = scorenone
(denote as m2). The AUC value is computed as:

AUC =
m1 + 0.5×m2

m
(4)

AUC measures the likelihood that an actual missing depen-
dency is given a higher similarity score than a false positive
(i.e., a non-existent dependency). If all the similarity scores are
generated from an independent and identical distribution, the
AUC should between 0.5 and 1 [4]. The higher an AUC value
is, the better performance an algorithm achieves. Moreover, if
AUC is below 0.5, it means this algorithm is even worse than
random guess.

In the evaluation, we set the parameters for the computation
of top-n precision and AUC as follows:

• For Zlib and putty, since the number of nodes and
links are small, we set n to 20. For the remaining
projects, we set n to 100.

• The parameter m for AUC value computation is set
as 10,000;

Experiment Results. We compare BuildPredictor with the
nine link prediction algorithms used by Xia et al. – common

TABLE III. AUC SCORES FOR BuildPredictor AND 9 LINK

PREDICTION ALGORITHMS USED BY XIA ET AL. FOR THE 7 BUILD

SYSTEMS. AVER. = AVERAGE AUC SCORES ACROSS THE 7 BUILD

SYSTEMS

Algo. Zlib putty vim APR Mem. Nginx Tengine Aver.
Build. 0.8550 0.8603 0.8639 0.8716 0.6136 0.9235 0.9703 0.8512

CN 0.3876 0.3772 0.3958 0.3853 0.2974 0.3384 0.3376 0.3599

CS 0.3886 0.3781 0.3896 0.3862 0.2962 0.3398 0.3378 0.3595

JI 0.3870 0.3775 0.3915 0.3857 0.2984 0.3370 0.3380 0.3593

AA 0.3870 0.3784 0.3944 0.3865 0.3014 0.3385 0.3376 0.3605

RA 0.3873 0.3769 0.3933 0.3853 0.3076 0.3379 0.3380 0.3609

LHN1 0.3875 0.3777 0.3958 0.3859 0.2943 0.3393 0.3382 0.3598

PA 0.7169 0.8264 0.8503 0.8654 0.8728 0.8485 0.8522 0.8332

Katz 0.5865 0.5954 0.6445 0.7134 0.5020 0.6462 0.6466 0.6192

LP 0.6137 0.6447 0.6496 0.7007 0.5058 0.7071 0.7051 0.6467

neighbors (CN), cosine similarity (CS), Jaccard Index (JI),
Adamic-Adar (AA), Resource Allocation (RA), Leicht-Holme-
Newman (LHN1), preferential attachment (PA), Katz, and local
path index (LP) [3].

Table II presents the results of the algorithms’ top-n
precision scores for the 7 build systems. The results show that
BuildPredictor achieves much better performance than all the
other algorithms. The top-n precision scores for BuildPredictor
vary from 51.2% to 100%, and the average top-n precision
across the 7 build systems is 80.38%. For the link prediction
algorithms, only PA could predict some missed dependen-
cies correctly in its top-n returned results; its average top-
n precision is only 1.73%, which is very poor as compared
to the performance of BuildPredictor. Table III presents the
results of the algorithms’ AUC scores for the 7 build systems.
The AUC values of CN, CS, JI, AA, RA, and LHN1 are
extremely low; they are lower than 0.5. And the AUC values
for BuildPredictor, PA, Katz and LP are much better, which are
more than 0.5. Among the 10 algorithms, we notice that our
BuildPredictor achieves the best performance in terms of AUC;
its AUC scores vary from 0.6136 to 0.9703, and its average
AUC across the 7 build systems is 0.8512. PA achieves the
second best performance; its AUC scores vary from 0.7169 to
0.8268, and its average AUC is 0.8332.

Top-n precision measures the accuracy of the top few
recommendations made by a dependency mining approach,
while AUC measures the overall accuracy of the entire rec-
ommendations. Since developers are likely to investigate only
top few recommendations and would likely not use the tool
if the top few recommendations are bad (c.f., [5]), achieving
high top-n precision is more important than high AUC.

Threats to Validity. Threats to internal validity relate to errors
in our experiments. We have double checked our experiments,
still there could be errors that we did not notice. We reuse
the datasets provided by Xia et al. which are previously used
to evaluate the 9 link prediction algorithms [3]. Threats to
external validity relate to the generalizability of our results.
We have evaluated BuildPredictor on 7 build configuration
files from various projects. In the future, we plan to reduce
this threat further by analyzing more build configuration files
from other projects, including commercial and open source
projects. Threats to construct validity refer to the suitability of
our evaluation metrics. We use top-n precision and AUC as
the main evaluation metrics which are also used by many past
software engineering and data mining studies to evaluate the
effectiveness of a prediction technique [4], [13], [14]. Thus,
we believe there is little threat to construct validity.
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V. RELATED WORK

Dependency Mining. The most related work to our paper
is the work by Xia et al. [3], which proposes the depen-
dency mining problem, which is the task to predict missed
dependencies in build configuration files. Xia et al. leverage 9
state-of-the-art link prediction algorithms to predict the missed
dependencies, and they conclude that preferential attachment
(PA) achieves the best performance. It’s AUC values vary from
0.71 - 0.87. Our study extends their study: we consider both
the dependency graph extracted from build configuration files,
and code graph extracted from source code files, and propose
a more accurate method to predict the missed dependencies.

Studies on Build System Maintenance. MAKAO is a vi-
sualization and smell detection tool for make-based build
system [6]. MAKAO generates a dependency graph from a
Makefile, and based on this, it supports various functionalities
such as querying build-related data, and viewing the build
architecture from different aspects. McIntosh et al. investigate
coupling between source code and build system changes in
ten software projects to measure the cost and effort of build
maintenance [17]. Suvorov et al. perform an empirical study
to investigate the migration of build systems performed in two
open source projects: Linux Kernel and KDE [18]. Neitsch
et al. study issues in build systems for multiple programming
languages, and explore the root cause of the issues [19]. Tu and
Godfrey investigate the characteristics and benefits of build-
time software architecture on GCC, Perl, and JNI [20]. Xia el
al. perform an empirical study on bugs in 4 software build
systems – make, ant, cmake, and qmake [21]. Zhao et al.
investigate bugs related to software build process, and they
find that build process related bugs take approximately double
the amount of time to be fixed than other bugs [22].

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose BuildPredictor to automatically
predict the missed dependencies in build configuration files.
BuildPredictor considers both dependency graph extracted
from a build configuration file and code graph extracted from
source code, and recommends a list of candidate dependencies
that are likely to be missed. We evaluate the effectiveness
of BuildPredictor on 7 build configuration files from various
open source software projects. We compare the performance
of BuildPredictor against the performance of 9 link prediction
algorithms used by Xia et al. to predict missed dependencies.
The experiment results show that on average our BuildPredic-
tor achieves the best performance; it achieves an average top-n
precision and AUC score of 80.38% and 0.8512 respectively
across the 7 projects, which are higher than the results of the
9 link prediction algorithms.

In the future, we plan to investigate more build con-
figuration files from other projects to further evaluate the
effectiveness of BuildPredictor. We also plan to improve the
accuracy (e.g., top-n precision and AUC values) of BuildPre-
dictor further.
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[4] L. Lü and T. Zhou, “Link prediction in complex networks: A survey,”
Physica A: Statistical Mechanics and its Applications, vol. 390, no. 6,
pp. 1150–1170, 2011.

[5] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proceedings of the 2011 International Sym-
posium on Software Testing and Analysis. ACM, 2011, pp. 199–209.

[6] B. Adams, H. Tromp, K. De Schutter, and W. De Meuter, “Design
recovery and maintenance of build systems,” in Software Maintenance,
2007. ICSM 2007. IEEE International Conference on. IEEE, 2007,
pp. 114–123.

[7] E. Shihab, A. Ihara, Y. Kamei, W. M. Ibrahim, M. Ohira, B. Adams,
A. E. Hassan, and K.-i. Matsumoto, “Predicting re-opened bugs: A case
study on the eclipse project,” in Reverse Engineering (WCRE), 2010
17th Working Conference on. IEEE, 2010, pp. 249–258.

[8] X. Xia, Y. Feng, D. Lo, Z. Chen, and X. Wang, “Towards more accurate
multi-label software behavior learning,” in CSMR-WCRE, 2014.

[9] X. Xia, D. Lo, X. Wang, and B. Zhou, “Tag recommendation in software
information sites,” in Proceedings of the Tenth International Workshop
on Mining Software Repositories. IEEE Press, 2013, pp. 287–296.

[10] Y. Tian, J. Lawall, and D. Lo, “Identifying linux bug fixing patches,” in
Software Engineering (ICSE), 2012 34th International Conference on.
IEEE, 2012, pp. 386–396.

[11] T. Menzies and A. Marcus, “Automated severity assessment of software
defect reports,” in Software Maintenance, 2008. ICSM 2008. IEEE
International Conference on. IEEE, 2008, pp. 346–355.

[12] F. Thung, D. Lo, and J. Lawall, “Automated library recommendation,”
in Reverse Engineering (WCRE), 2013 20th Working Conference on.
IEEE, 2013, pp. 182–191.

[13] A. Menon and C. Elkan, “Link prediction via matrix factorization,”
Machine Learning and Knowledge Discovery in Databases, pp. 437–
452, 2011.
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