
Reducing Bug Triaging Confusion by Learning from
Mistakes with a Bug Tossing Knowledge Graph

Yanqi Su
Australian National University

Australia
Yanqi.Su@anu.edu.au

Zhenchang Xing∗
Australian National University

Australia
Zhenchang.Xing@anu.edu.au

Xin Peng
Fudan University

China
pengxin@fudan.edu.cn

Xin Xia
Monash University

Australia
xin.xia@monash.edu

Chong Wang
Fudan University

China
wangchong20@fudan.edu.cn

Xiwei Xu
Data61, CSIRO

Australia
Xiwei.Xu@data61.csiro.au

Liming Zhu†
Data61, CSIRO

Australia
Liming.Zhu@data61.csiro.au

Abstract—Assigning bugs to the right components is the pre-
requisite to get the bugs analyzed and fixed. Classification-based
techniques have been used in practice for assisting bug component
assignments, for example, the BugBug tool developed by Mozilla.
However, our study on 124,477 bugs in Mozilla products reveals
that erroneous bug component assignments occur frequently and
widely. Most errors are repeated errors and some errors are
even misled by the BugBug tool. Our study reveals that complex
component designs and misleading component names and bug
report keywords confuse bug component assignment not only for
bug reporters but also developers and even bug triaging tools.
In this work, we propose a learning to rank framework that
learns to assign components to bugs from correct, erroneous
and irrelevant bug-component assignments in the history. To
inform the learning, we construct a bug tossing knowledge graph
which incorporates not only goal-oriented component tossing
relationships but also rich information about component tossing
community, component descriptions, and historical closed and
tossed bugs, from which three categories and seven types of
features for bug, component and bug-component relation can
be derived. We evaluate our approach on a dataset of 98,587
closed bugs (including 29,100 tossed bugs) of 186 components
in six Mozilla products. Our results show that our approach
significantly improves bug component assignments for both tossed
and non-tossed bugs over the BugBug tool and the BugBug tool
enhanced with component tossing relationships, with >20% Top-
k accuracies and >30% NDCG@k (k=1,3,5,10).

Index Terms—Bug Triaging, Learning to Rank, Knowledge
Graph

I. INTRODUCTION

Large software projects (e.g., Mozilla) receive a huge num-
ber of bug reports every day. To get the attention of suitable
developers on the bugs quickly, it is essential to assign bugs to
the right product and component (referred to as bug triaging
in this work) whose developers have the expertise to review,
analyze and fix the bugs. Manual bug triaging is a labor-
intensive task, and is often error prone [1]–[4]. If the bug is
not assigned to the right component, it has to be re-assigned
(or tossed) to the correct one. For example, the Mozilla’s
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Bug 1194529 was initially assigned to Toolkit::Password
Manager (Product::Component) and then was tossed to Fire-
fox::about:logins and fixed there. In this work, we refer to
bugs that have been tossed as tossed bugs, and bugs that are
initially assigned to correct components as non-tossed bugs.
We refer to the component where a bug gets fixed as resolver,
and the component(s) that a bug is erroneously assigned to as
bystander(s). For example, Bug 1194529 is a tossed bug, and
its resolver is Firefox::about:logins. This bug has a bystander
Toolkit::Password Manager.

Since the seminal work by Anvik et al [5], machine learning
techniques have been used to assist bug triaging [1], [2]. These
techniques treat bug triaging as a multi-class classification
task, taking as input the information of a bug (e.g., bug
summary) and predicting the most likely resolving component
as the class label. BugBug [6] is such a tool developed by
the Mozilla product team. We investigate 124,477 bugs of
186 components of the six Mozilla products. We find that
38,374 (30.8%) bugs have been tossed at least once. Overall,
tossed bugs take 2.9 times longer to get fixed than non-
tossed bugs. Compared with the statistics of bug tossing
phenomena reported in early studies [1], [2], [4], the bug
tossing situation actually does not change much, even after a
long-time deployment of machine learning based bug triaging
techniques.

As detailed in Section II, bug tossing is mostly caused by re-
peated erroneous bug-component assignments. These repeated
errors (no matter manually or by machine learning) stem from
the lack of effective mechanisms to model and differentiate
confusing concepts related to bugs and software components,
in particular complex component designs and relationships
and misleading component names and bug report keywords.
In practice, developers often resort to additional informa-
tion such as detailed component descriptions and component
communities, rather than relying on only the information in
bug reports, to correct erroneous bug-component assignments.
Unfortunately, current bug triaging techniques [1], [2], [6] do
not make use of such additional information. Furthermore,
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the formulation of bug triaging as a multi-class classification
problem learns from each bug-component assignment indepen-
dently. However, this is not sufficient to distinguish misleading
information from key problem information in bug reports and
how different information relates to different components.

In fact, bug tossing history archives rick knowledge about
bug-component relations including both correct and erroneous
assignments. We propose a novel framework (called LR-
BKG, short for Learn-to Rank with Bug tossing Knowledge
Graph) to reduce bug triaging confusion by learning from
bug tossing history. Inspired by the goal-oriented developer
tossing graph [7], our approach builds a goal-oriented com-
ponent tossing graph from bug tossing history. Driven by our
empirical observation, we enrich this basic tossing graph into
a bug tossing knowledge graph by attaching three types of
information on each component (component name/description,
non-tossed bugs and tossed bugs), and by detecting component
communities based on historical tossing paths. We develop
three categories of features: bug features, component fea-
tures and bug-component relation features. The feature design
makes full use of the concept- and community-enriched bug
tossing graph. Instead of traditional multi-class classification,
we adopt a learning-to-rank framework which learns to differ-
entiate confusing bug-component relationships by contrasting
correct and erroneous bug assignments.

To evaluate our approach, we collect 98,587 closed bugs
(including 29,100 tossed bugs) of 186 components in six
Mozilla products. To simulate real-world context, we sort these
bugs by their creation time and split them at 25th February,
2020. This gives us 80% of bugs as “historical” training data
and the rest 20% as “future” bugs to test the trained model.
We compare our approach with two baselines: BugBug and
BugBug with tossing graph. Overall, LR-BKG achieves 20%
or higher accuracy in recommending resolver components than
the two baselines at all Top-ks (k=1, 3, 5, 10). It achieves
same-level improvement for both tossed and non-tossed bugs,
and achieves improvement for 73%-85% of components at
different Top-ks. Furthermore, LR-BKG can better rank by-
stander components that have historical tossing relationships
with resolver components (30% or higher NDCG@k (k=1, 3,
5, 10) than BugBug). Our feature importance analysis shows
that all three categories of features as a whole contribute to
the significant improvement LR-BKG achieves.

This paper makes the following contributions:

• We conduct an empirical study on the root cause of
repeated bug tossing, which sheds the light on novel ways
to reduce bug triaging confusion.

• We propose a learning-to-rank framework that learns
to distinguish correct, erroneous and irrelevant bug-
component assignments, based on a rich set of features
derived from our novel bug tossing knowledge graph.

• Our experiments confirm our approach’s superior perfor-
mance than the tool used in development practice, and
confirm the effectiveness of our novel feature design. Our

TABLE I: Tossed-In Bug Percentage of Product::Component

Tossed-In (%) 2.9-20% 20-40% 40-60% 60-80% 80-84.9%

#P::C 39 96 39 11 1

replication package can be found here1.

II. EMPIRICAL STUDY

We conduct an empirical study of bug tossing phenomena
to answer the following three research questions:

RQ1: Does bug tossing occur frequently and widely?
RQ2: Is bug tossing accidental mistake or repeated error?
RQ3: What causes such repeated bug tossing?

A. Dataset

We use software products of Mozilla Foundation as study
subjects. We crawl 124,477 bugs from the Mozilla’s Bugzilla
website (https://bugzilla.mozilla.org/home) which involve six
products (Firefox, Firefox Build System, Toolkit, Core, Dev-
Tools, WebExtensions) and their 186 components. Although
Mozilla’s Bugzilla website has thousands of components,
many components have very few bugs. We restrict our study to
the components with at least 1% of the number of bugs of the
component with the largest number of bugs. These components
cover very frontend and backend features of Mozilla products.
Thanks Bugzilla, we can extract the complete bug assignment
history of each bug. The history contains initially assigned
component and all subsequent components a bug has been
tossed to in chronological order.

B. RQ1: Bug Tossing Frequency and Impact

Among 124,477 bugs, 30.8% (i.e., 38,374 bugs) has been
tossed. Table I shows the tossed-in bug percentage of a compo-
nent (i.e., the bugs that are currently assigned to a component
but were not initially assigned to this component). None of
186 components have zero tossed-in bug percentage. That is,
all 186 components have some bugs that has been tossed-
in from other components. Toolkit::Blocklist Policy Requests
is the only component whose tossed-in bug percentage is
below 5% (in particular 18/615 bugs, 2.9%). Tossed-in bug
percentage is 20-40% for 96 components and 40-60% for 39
components. For 12 components, tossed-in bug percentage is
even higher than 60%. For example, out of 258 bugs of Firefox
Build System::Android Studio and Gradle Integration, 219 are
tossed-in bugs which give tossed-in bug percentage 84.9%. For
the tossed bugs, the time it takes to close them is on average
about 2.9 times longer than the non-tossed bugs.

Bug tossing not only occurs frequently but also widely on
Mozilla product components. In fact, bug tossing statistics
do not change much in the past 15 years [1], [2], [4].

C. RQ2: Accidental Mistake or Repeated Error

For each tossed bug, we obtain a path from its ini-
tial component to its current component. We identify dis-

1https://github.com/SuYanqi/LR-BKG
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TABLE II: Examples of Real Tossing Paths

Product::Component Tossing Path Frequency

Toolkit:: a. Firefox::Security→ Toolkit::Password Manager 6
Password Manager b. Toolkit::Password Manager:Site Compatibility→ 6

Toolkit::Password Manager
c. Firefox::about:logins→ Toolkit::Password Manager 4

Toolkit:: a. Firefox::Untriaged→ 23
Password Manager: Toolkit::Password Manager→
Site Compatibility Toolkit::Password Manager:Site Compatibility

b. Toolkit::Password Manager→ 10
Toolkit::Password Manager:Site Compatibility

Firefox:: a. Toolkit::Password Manager→ Firefox::about:logins 269
about:logins b. Firefox::Untriaged→ Toolkit::Password Manager→ 17

Firefox::about:logins
Firefox::Security a. Core::Security:PSM→ Firefox::Security 3

b. Core::Networking:DNS→ Firefox::Security 3
c. Firefox::Theme→Firefox::Security 2

Core::Security: PSM a. Firefox::Untriaged→ Core::Security:PSM 207
b. Firefox::Security→ Core::Security:PSM 16
c. Core::Networking→ Core::Security:PSM 11

Toolkit::Themes a. Firefox::Theme→ Toolkit::Themes 18
b. Firefox::Preferences→ Toolkit::Themes 6
c. Toolkit::XUL Widgets→ Toolkit::Themes 5
d. Toolkit::Password Manager→ Toolkit::Themes 3
e. Firefox::Bookmarks & History→ Firefox::Theme→ 2

Toolkit::Themes
Firefox::Theme a. Firefox::General→ Firefox::Theme 33

b. Firefox::Bookmarks & History→ Firefox::Theme 8
c. Toolkit::Themes→ Firefox::Theme 6

tinct tossing paths and count their occurrence frequen-
cies among all tossed bugs. Table II shows some tossing
paths. For example, one tossing path is Firefox::Security →
Toolkit::Password Manager, with the frequency 6. That is, 6
bugs have been initially assigned to Firefox::Security, and then
tossed to Toolkit::Password Manager, and is currently with
Toolkit::Password Manager. This path is just one of the 60
paths along which a bug has been tossed to Toolkit::Password
Manager.

We identify 8,487 tossing paths for 38,374 bugs. Only 932
tossing paths occur once, accounting for 11.0% of all tossing
paths and 2.4% of all tossed bugs. The rest 7,555 tossing paths
have two or more bugs. Fig. 1(a) shows the distribution of
tossing path frequencies. We remove 10 large outliers (≥ 307)
to show this distribution more clearly. The median frequency is
8, with 3 at 25% quantile and 19 at 75% quantile. 26 tossing
paths occurred even more than 200 times. The first tossing
path for Firefox::about:logins in Table II is one of these most
frequent paths, which occurs 269 times. Fig. 1(b) show the
distribution of the number of tossing paths per component,
i.e., the number of paths ending with a particular component.
The median is 33, with 18 at 25% quantile and 60 at 75%
quantile. There are 18 components (e.g. Core::Security:PSM)
with 100 or more different tossing paths.

Accidental mistake may account for only a small percent-
age of bug tossing, while the majority of bug tossing are
caused by repeated erroneous bug-component assignments,
and those repeated errors can occur in many different ways.

D. RQ3: Cause of Repeated Bug Tossing

Through observing repeated bug tossing paths, we find that
confusing concepts are an important cause of erroneous bug-
component assignments. Confusing concepts come from two
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Fig. 1: Distribution of Tossing Paths

sources: complex component designs and relationships, and
misleading component names and bug report keywords.

1) Complex Component Designs and Relationships: A
complex feature often involves a set of correlated components.
For example, according to the Mozilla wiki and a meet-
ing note, password management involves four components:
Toolkit::Password Manager for remembering usernames and
passwords on sites and filling them when the user returns
to the sites, Firefox::about:logins for issues with the Fire-
fox Lockwise Logins and Passwords page, Toolkit::Password
Manager:Site Compatibility for issues of autofill, autocomplete
or saving of logins/passwords/usernames not working on a
specific site, and Firefox::Migration for profile migration from
other browsers. In total, 353 bugs that were initially assigned
to one of these four components were tossed to the other
of these four components. Fig. 3 shows a partial tossing
graph constructed from bug tossing paths. Toolkit::Password
Manager, Firefox::about:logins and Toolkit::Password Man-
ager:Site Compatibility actually form a bug tossing community
(blue nodes and edges). This bug tossing community largely
matches the component design for password management.

In face of complex correlated components, bug reporters,
especially those without expertise background, often have
difficulties in assigning bugs to the correct components. For
this problem, Mozilla sets general placeholder components
for reporters to report bugs, such as Firefox::General, Fire-
fox::Untriaged. Then, developers have to toss them into right
components. Table II shows some examples of tossing paths
starting from Firefox::Untriaged or Firefox::General. First,
this general-then-toss practice incurs significant burden on
developers due to the sheer amount of bugs initially reported
to general placeholder components. Second, even developers
may not make right tossing decisions in many cases. 4,251
bugs that have been tossed from general components were
tossed again (e.g. Firefox::Untriaged → Toolkit::Password
Manager → Toolkit::Password Manager:Site Compatibility,
Firefox::Untriaged → Toolkit::Password Manager → Fire-
fox::about:logins). Sometimes developers may just randomly
assign a bug to one of correlated components and hope that
other developers who have the expertise will toss the bug to
the right component (Bug 1650593 is such an example).

2) Misleading Names and Keywords: Many components
have confusing names, which make them seem relevant to
some bugs. Such confusing names often confuse bug reporters
and developers. For example, three bug reporters assigned
bugs to Toolkit::Form Autofill, but these bugs were tossed

https://wiki.mozilla.org/Toolkit:Password_Manager
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to Toolkit::Password Manager, even though Toolkit::Form
Autofill and Toolkit::Password Manager have no relation ac-
cording to component design. An experienced developer com-
mented one of these bugs (Bug 1595114) “The Form Autofill
component is for address and credit card autofill, not logins
(see the description).” Moreover, a developer assigned two
bugs from Firefox::Untriaged to Toolkit::Form Autofill. Then,
another developer tossed these two bugs to Toolkit::Password
Manager and commented Bug 1596805 “please don’t move
login/password bugs to Form Autofill as it is only about
address and credit card autofill. Please use Toolkit::Password
Manager.” The developer who made the mistakes replied “Now
I know, but the name of this component is obviously not
intuitive.” Not only was this developer confused, but BugBug
could also make similar mistakes. For example, the user who
reports Bug 1653547 states “Bugbug thinks this bug belongs
to Form Autofill, please revert in case of error”, and it was
indeed an error and tossed to Toolkit::Password Manager.

In fact, the information provided in the comments about bug
tossing is available in the detailed description of Toolkit::Form
Autofill. Unfortunately, many bug reporters, even developers
in Mozilla, have no knowledge of these detailed component
descriptions. Similarly, 18 Toolkit::Themes bugs were initially
assigned to Firefox::Theme. No matter for bug reporters or de-
velopers, the two names are confusing. However, the detailed
component descriptions tell the differences. Firefox::Theme
is responsible for general user interface, user experience, and
visual design for the default theme used in Firefox. Bugs about
packaged browser themes and about WebExtensions that use
the “themes” API should be triaged into Toolkit::Themes.

Bug reports very likely contain misleading information,
which may confuse bug reporters, developers, and auto-
matic bug triaging tool BugBug developed by Mozilla. For
example, Bug 1194529 states “Ask the user for their OS
account password/biometrics before showing the passwords
in the password manager.” It contains keywords “password”
and “password manager”, and was initially assigned to
Toolkit::Password Manager. But this bug is essentially about
an issue in Logins and Passwords page, and thus was tossed
to Firefox::about:logins. For Bug 1584846, the situation is the
opposite. Its summary states “Separate preference setting for
Autofill logins/passwords from Ask to save logins/passwords”.
It mentions “logins” and “password” a couple of times. This
bug was initially assigned to Firefox::about:logins, but was
tossed to Toolkit::Password Manager as it is about password
autofill that Toolkit::Password Manager is responsible for.

As bug report summary and description is the most impor-
tant input to machine learning based bug triaging techniques,
misleading information in bug reports could also mislead
machine learning techniques. For example, misled by the
BugBug’s recommendation, the bug reporter assigned Bug
1644112 “Password displayed too short with Standard Font
14 in Firefox access data” to Core::Graphics:Text. Unfor-
tunately, this was a completely non-sense assignment. The
Bug 1644112 was tossed to Firefox::WebPayments UI, and
then Firefox::about:logins and closed there. This mistake by

BugBug is because the Bug 1644112’s summary contains key-
words like “font”, “display”, “data” that are often in the bug
reports correctly assigned to Core::Graphics:Text. However,
the key problem of this bug is about password display that
Firefox::about:logins is responsible for. The initial non-sense
assignment challenges the Core::Graphics:Text developers as
they lack experience in handling bugs like Bug 1644112. As a
result, they tossed the bug to Firefox::WebPayments UI which
was still incorrect, and it took one day before this bug was
tossed to the right component Firefox::about:logins.

Complex component designs and misleading component
names and bug report keywords cause a lot of confusion
in bug triaging and tossing. Developers often resort to
additional information such as detailed component descrip-
tions and component communities to correct erroneous bug
assignments. Furthermore, existing bug triaging techniques
learn from each bug-component assignment independently,
which often cannot effectively distinguish misleading infor-
mation and key problem information in bug reports.

III. APPROACH

Inspired by our empirical study findings, we propose a
novel bug triaging approach with two aims: improve bug
triaging accuracy and avoid tossing-irrelevant bug triaging.
As shown in Figure 2, our approach builds on a novel bug
triaging knowledge graph, which enriches basic goal-oriented
component tossing graph with rich information about compo-
nent, component community, and correctly and erroneously
assigned bugs. Instead of only bug-report centric features,
we derive a rich set of features from bug tossing knowledge
graph, which represent additional knowledge (i.e., component
descriptions and component community) commonly used to
correct erroneous bug assignments, and rich relations between
an input bug and those correctly or erroneously assigned
bugs. In contrast to learning from each bug-component as-
signment independently, our approach adopts a learning-to-
rank framework which ranks bug-component relevance by
contrasting correct, erroneous and irrelevant bug assignments
in the history.

A. Construction of Bug Tossing Knowledge Graph

To make effective use of historical bug tossing information,
we first construct a bug tossing knowledge graph from which
a rich set of bug and component features can be derived.

1) Goal-Oriented Bug Tossing Graph: Bug tossing rela-
tionships among components provide useful information for
learning the relevance of a bug to its resolver component as
opposed to all other bystander components that the bug has
been erroneously assigned to. These relationships are captured
in real bug tossing paths (see Table II for some examples).
We convert real tossing paths into goal-oriented tossing paths.
The conversion is straightforward. For each component (except
the resolver component) in a real tossing path, we create a
goal-oriented tossing path from this component to the resolver
component. Consider the real tossing path Firefox::Bookmarks

https://bugzilla.mozilla.org/show_bug.cgi?id=1595114
https://bugzilla.mozilla.org/show_bug.cgi?id=1596805
https://bugzilla.mozilla.org/show_bug.cgi?id=1653547
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https://bugzilla.mozilla.org/show_bug.cgi?id=1584846
https://bugzilla.mozilla.org/show_bug.cgi?id=1644112
https://bugzilla.mozilla.org/show_bug.cgi?id=1644112
https://bugzilla.mozilla.org/show_bug.cgi?id=1644112
https://bugzilla.mozilla.org/show_bug.cgi?id=1644112
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& History → Firefox::Theme → Toolkit::Themes in Table II.
From this real tossing path, we create two goal-oriented tossing
paths: Firefox::Bookmarks & History → Toolkit::Themes and
Firefox::Theme → Toolkit::Themes. After processing all real
tossing paths, we identify distinct goal-oriented tossing paths
and count their occurrence frequencies

Goal-oriented tossing paths can avoid the two limitations
of real tossing paths. First, real tossing paths capture only
what have occurred in the past, but they will not cover all
possible tossing paths. For example, the presence of the tossing
path Firefox::Bookmarks & History → Firefox::Theme →
Toolkit::Themes indicates that Firefox::Bookmarks & History
→ Toolkit::Themes is possible to occur. In fact, after 2.5 years
that Firefox::Bookmarks & History → Firefox::Theme →
Toolkit::Themes occurred for Bug 1468080 and Bug 1476790,
Firefox::Bookmarks & History → Toolkit::Themes occurred
for Bug 1671000. However, before Bug 1671000 appeared,
Firefox::Bookmarks & History → Toolkit::Themes is not a
real tossing path for 2.5 years.

Second, the bystander components (e.g., Firefox::Theme
in the above path) may be somehow relevant to the tossed
bug, but they are definitely not as relevant as the resolver
component (e.g., Toolkit::Themes in the above path). Even
worse, in many cases bystander components may not be
relevant at all to the tossed bug. For example, in the tossing
path Core::Graphics:Text → Firefox::WebPayments UI →
Firefox::about:logins for Bug 1644112, Firefox::WebPayments
UI is irrelevant as the Core::Graphics:Text developers did
not know where is appropriate to toss Bug 1644112 either.
Learning from such tossing mistakes would not be beneficial.

Given all goal-oriented tossing paths obtained, we construct
a goal-oriented bug tossing graph. The graph nodes are com-
ponents. The edges are directed and represent goal-oriented

tossing paths from one component to another. Fig. 3 shows a
subgraph of the goal-oriented bug tossing graph constructed
in our empirical study on Mozilla product::components. The
nodes of Toolkit::Password Manager and its direct neigh-
bors are highlighted. From the faded background, we can
observe rather complex tossing relationships among Mozilla
product::components. For each component node, the graph
records two metrics: the number of bugs currently assigned
(including initially assigned and tossed from other compo-
nents) to this component (e.g., 594 for Toolkit::Password
Manager); the number of bugs tossed from this component to
other components (e.g., 277 for Toolkit::Password Manager).
For each edge, the graph records one metric: the occurrence
frequencies of the tossing between two components (e.g., 240
from Toolkit::Password Manager to Firefox::about:logins).

2) Bug Tossing Community Detection: Frequent tossing
relationships among components will form some bug tossing
communities in the bug tossing graph. In this work, we use
the community detection algorithm [8] to detect bug tossing
communities in the bug tossing graph. This algorithm is based
on modularity optimization. We use the implementation in the
Gephi tool. For community detection, we filter out edges with
frequency=1 as we deem them as likely accidental.

In the tossing graph used in our empirical study, the algo-
rithm detects 18 communities covering 186 components. The
community size is 10.3±16.2. In Fig. 3, nodes and edges with
the same color belong to one community detected by the algo-
rithm. Red and green communities are two large communities
which involve 48 and 46 components, respectively. As we
highlight nodes centered around Toolkit::Password Manager,
many components in the red and green communities are not
included or faded in the background (e.g., Firefox::Theme and
WebExtensions::Themes at top-left corner).

The blue community in Fig. 3 is one of the small com-
munities, which includes Toolkit::Password Manager, Fire-
fox::about:logins, Toolkit::Password Manager:Site Compati-
bility and Toolkit::Form Autofill. This tossing community is
the result of complex component design and misleading com-
ponent name. The first three components are all related to pass-
word management (see Mozilla wiki and meeting note). The
fourth password management component Firefox::Migration
does not appear in this community because it did not have
tossing paths from or to these components. Toolkit::Form
Autofill is not part of password management. It is in the
community because five bugs were erroneously assigned to
Toolkit::Form Autofill due to misleading component name, but
these bugs were finally tossed to Toolkit::Password Manager.

3) Information Enrichment: Existing bug triaging tech-
niques [1], [2] treat components just as class labels and learn
from only correctly assigned bug reports. However, in the bug
tossing comments, additional information, such as component
descriptions and the contrast of correctly and erroneously
assigned bugs, often provides the basis and justification for bug
tossing decisions. Therefore, we enrich each component in the
bug tossing graph with two types of information: component
description, and two sets of bugs (closed bugs versus tossed-

https://bugzilla.mozilla.org/show_bug.cgi?id=1468080
https://bugzilla.mozilla.org/show_bug.cgi?id=1476790
https://bugzilla.mozilla.org/show_bug.cgi?id=1671000
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TABLE III: Three Categories of Features
Feature Dimension

Bug Feature
a. number of bug summary tokens 1

Component Features
a. bug tossing community index 1
b. number of closed bugs 1
c. number of tossed-out bugs 1
d. in-degree (unweighted & weighted) 2
e. out-degree (unweighted & weighted) 2
f. degree (unweighted & weighted) 2

Bug-Component Relation Features
a. sim(bug summary, component name) 2
b. sim(bug summary, component description) 2
c. Top30 sim(bug summary, closed bug summary) 60
d. Top30 sim(bug summary, tossed-out bug summary) 60
e. Percentage(nonzero(sim(bug summary, closed bug summary))) 2
f. Percentage(nonzero(sim(bug summary, tossed-out bug summary))) 2

out bugs). This allows us to model and differentiate confusing
bug and component information more effectively.

Component description: Unlike class label which is just
a component index, component names reveal the identity of
components (e.g., key functionality or concept) in a concise
form. As component names are sometimes misleading, we
also attach component descriptions which provide more details
about the components. Sometimes a component name may
contain acronyms, and the full names can generally be found
in the component description. In such cases, we keep the
original acronym and also expand the acronym into the full
name, for example Gecko Media Plugin for GMP. For acronym
expansion, we first split the component name into tokens and
identify acronyms (i.e., tokens with all capital letters like
GMP). Then, we match the letters in an acronym with the
word initials in the component description by the same order
(i.e., G→M→P). If the concatenated initials of a sequence of
words match the acronym, this sequence of words is regarded
as the full name of the acronym.

Closed and tossed-out bugs: In this work, we assume if
a bug is assigned to a component and closed there, this bug
assignment is correct. Otherwise, if the bug is tossed to another
component, the bug assignment is erroneous. As shown in
Fig. 3, components generally have both closed bugs and
tossed-out bugs. Some components (e.g., Toolkit::Password
Manager, Toolkit::Themes, Firefox::Security) have high ratios
between tossed-out bugs and closed bugs. By contrasting an
input bug with closed bugs and tossed-out bugs, the model
would learn not only how to make correct bug assignments
but also how to not make erroneous assignments.

B. Feature Design

In addition to bug report features, our bug tossing knowl-
edge graph allows us to extract a rich set of features about
components and bug-component relationships.

1) Text Preprocessing: Our approach takes as input the
summary of a bug report. We assume the minimal rep-
resentation of bug reports so that the approach can have
good generalizability. In addition, we also need to process
component names, component descriptions and the summaries
of historical bug reports attached to the components. We
process these texts as follows. First, we use camel case to
split words, and convert all words to lowercase. For example,

masterPassword is transformed into two lowercase words
“master” and “password”. Bug report summaries are short
sentences. But component descriptions may be a paragraph
of text. We split a paragraph into sentences by punctuations.
We perform tokenization and stemming using the NLTK tool.

We encode text in two types of word representations:
TF/IDF (Term Frequency/Inverse Document Frequency) and
word embedding. TF/IDF is a high-dimensional one-hot vec-
tor which can cover all words in a text corpus. For IDF
computation, we consider the summaries of all bugs attached
to a component as a document. Word embeddings are low-
dimensional dense vectors. It requires to define a fixed vocab-
ulary size. Bug reports often contain domain-specific terms
or acronyms, which are generally out of the word embedding
vocabulary. Rather than regarding these domain-specific terms
and acronyms as out-of-vocabulary tokens, which may affect
the embedding quality, we use FastText that computes word
embeddings at subword level. We multiply the learned word
embeddings with IDF as a weight factor.

2) Input Bug Feature: Exist techniques [2], [6] directly use
the words in bug report summary as input features. We do not
do so because the text often contains misleading keywords
that are hard to distinguish from key problem information by
looking at the text alone. In our approach, we take only a
simple feature of input bug, i.e., the number of tokens in the
bug report summary. This feature is indicative of the amount
of information in the bug report summary. We make full use of
the information in the bug report summary as bug-component
relation features detailed in Section III-B4.

3) Component Features: Exist techniques [2], [6] simply
treat components as class labels. In contrast, we make good
use of rich information that the components have, including
three types of nine features as listed in Table III.

Component community: the index of the bug tossing
community that a component belongs to. This feature informs
the model whether the two components compared during learn
to rank come from the same community. The same community
indicates that the two components have a track record of being
confusing. However, assigning a bug to bystander components
in the same community as the resolver component is still better
than assigning the bug to the components in other communi-
ties. Take Bug 1644112 as an example. If it cannot be assigned
to Firefox::about:logins, it would be better to assign it to
Toolkit::Password Manager, rather than Core::Graphics:Text,
as developers of components in the same community likely
know where to toss, but developers may not have expertise to
make the right tossing across the communities.

The number of closed and tossed-out bugs: These two
features help to judge the probability of a component being
the resolver or bystander of a bug and the probability of
making mistakes. In Fig 3, we see that Toolkit::Password
Manager has 594 closed bugs and 277 tossed-out bugs. Fire-
fox::about:logins has 304 closed bugs and only 10 tossed-
out bugs. Comparing these two components, Toolkit::Password
Manager is the resolver of much more bugs, but assigning a
bug to Toolkit::Password Manager has higher error probability

http://www.nltk.org/
https://fasttext.cc/
https://bugzilla.mozilla.org/show_bug.cgi?id=1644112


than assigning it to Firefox::about:logins.
unweighted and weighted (in/out)-degree: These six fea-

tures represent how many toss-in and toss-out relationships
a component has with its direct neighbors. In-degree corre-
sponds to toss-in, out-degree corresponds toss-out, and degree
regards the edge as indirected. Unweighted metric counts the
number of edges. Weighted metric measures how strong the
relationship is, i.e., the sum of the frequencies on the edges. In
Fig 3, the in-degree of Toolkit::Password Manager is 8, and the
weighted in-degree is 30. The out-degree of Toolkit::Password
Manager is 6 and the weighted out-degree is 267. The degree
and weighted degree are 14 and 297 respectively.

4) Bug-Component Relation Features: Exist techniques [2],
[6] infer implicit bug-component relations through the classi-
fier. In contrast, we explicitly model bug-component relations
in terms of the similarities between the input bug summary
and the information (component description, closed bugs and
tossed-out bugs) of components, as three types of six features.
These text similarity features contrast the input bug summary
with component information, rather than directly using bug
summary text as features. The similarity is computed based
on TF/IDF vectors and word embeddings. TF/IDF reflects
whether the bug summary and the component information
have some keywords in common, while word embeddings
measure syntactic and semantic text similarity in a more fuzzy
manner. We compute the cosine similarity between the two
vectors, and use both TF/IDF-based and word-embedding-
based similarities to achieve complementary effects.

Similarity between input bug summary and component
name/description: These four features (two for TF/IDF and
two for word embedding) allow the model to take into ac-
count rich semantic in component names and descriptions and
semantic relations between bugs and components.

Top 30 similarities between the input bug and closed
bugs: This input-closed feature is a 60-dimensional vector
(30 for TF/IDF and 30 for word embedding). Each dimen-
sion is a similarity between the input bug summary and
the summary of one closed bug of the component. The
component may have more than 30 closed bugs. We rank
the similarities and take top 30. The input-closed feature
informs the model how the input bug is similar to up to
30 closed bugs of the components. Furthermore, they re-
flect the distribution of the similarities. Consider the Bug
1644807 initially assigned to Firefox::Preferences and then
tossed to Toolkit::Password Manager. The top 5 input-closed
similarities with Toolkit::Password Manager is {0.803, 0.798,
0.794, 0.789, 0.783}, while the top 5 input-closed similari-
ties with Firefox::Preferences is {0.791, 0.761, 0.739, 0.693,
0.678}. We see that the Bug 1644807 is consistently similar
to the closed bugs of Toolkit::Password Manager. In con-
trast, this bug is only very similar to two closed bugs of
Firefox::Preferences, but not the rest of closed bugs. This
distribution comparison during learning to rank would help
the model make the right choice.

Top 30 similarities between the input bug and tossed-out
bugs: This input-tossedout feature contains top 30 similarities

(TF/IDF and word embedding respectively) between the input
bug and the top-30 most similar tossed-out bugs of the
component. The input-tossedout feature, as opposed to the
input-closed feature, allows the model to see how the input
bug looks like past mistakes. For example, the top 5 input-
closed similarities for the Bug 1618597 and the component
Firefox::about:logins is {0.826, 0.819, 0.812, 0.808, 0.808},
which make us feel Firefox::about:logins could be the resolver.
However, when looking at the top 5 input-tossedout similari-
ties {0.773, 0.737, 0.633, 0.584, 0.584} for the Bug 1618597
and Firefox::about:logins, we may realize that this assignment
could be risky as the bug is very similar to some tossed-out
bugs of Firefox::about:logins.

Percentage of nonzero input-closed or input-tossedout
similarities: The nonzero-input-closed (or nonzero-input-
tossedout) feature computes the percentage of all closed (or
tossed-out) bugs of a component that have nonzero similarities
with the input bug. For the component with less than 30
closed (or tossed-out) bugs, many dimensions of input-closed
(or input-tossedout) will be zero, which makes this feature less
effective or even misleading. These two features would inform
the model these zero-value dimensions may be useless.

C. Learning to Rank Framework

Considering complex and confusing relations between bugs
and components, our approach does not learn from from
each bug-component assignment independently. Instead, our
approach adopts a learning-to-rank framework that learns from
more relevant assignments against less relevant assignments
pairwisely. In particular, we adopt LambdaMart [9] to rank
components for an input bug.

Learning to rank is a supervised machine learning algorithm.
Therefore, preparing meaningful training data is important.
Our learning goal is to assign an input bug to the resolver
component or at least to some bystander components having
tossing relationships with the resolver component. Based on
this goal, we construct the training data from bug triaging
and tossing history as follows. Let b be a bug and Cf be
its resolver. Without losing generality, let C1 → C2 → Cf

be a real tossing path. A correct initial assignment without
tossing can be regarded as a tossing path with length 0. We
build a data point for each component on the tossing path.
The bug-component relevance is computed as 1

2d(Cx,Cf ) where
d(Cx, Cf ) is the distance from Cx to cf along the path. In this
example, , d(C1, Cf )=2, d(C1, Cf )=1 and d(Cf , Cf )=0, and
thus the relevance labels for b-Cx (x=1,2,f) are 0.25, 0.5 and
1. For all other components Co not on the tossing path, we
create a data point for each of them with relevance label 0,
i.e., b-C0=0. We construct data points using real tossing paths
rather than goal-oriented tossing paths because real tossing
paths produce more data points and more fine-grained bug-
component relevance labels. For example, for another bug b′

with real tossing path C1 → Cf , the relevance label for b′-C1

is 0.5. By goal-oriented tossing path C1 → Cf , we will have
only one data point with relevance label 0.5 for the two bugs.

https://bugzilla.mozilla.org/show_bug.cgi?id=1644807
https://bugzilla.mozilla.org/show_bug.cgi?id=1644807
https://bugzilla.mozilla.org/show_bug.cgi?id=1644807
https://bugzilla.mozilla.org/show_bug.cgi?id=1618597
https://bugzilla.mozilla.org/show_bug.cgi?id=1618597


For each data point b-C, we associate it with the three
categories of features described in Section III-B. At training
time, LambdaMart optimizes the gradient of objective function
through gradient boosting [9] which can be modeled by
the sorted positions of the components for an input bug b
against the ground-truth relevance labels. At inference time,
give an unseen bug, the trained model is used to produce a
relevance label for each component to be predicted based on
the features between the bug and the component, and then
rank the components by the predicted relevance labels.

IV. EVALUATION

This section reports the evaluation of our LR-BKG to
answer the following research questions:

RQ1: Can LR-BKG improve resolver component recom-
mendation over traditional bug triaging methods?

RQ2: Can LR-BKG improve tossing-relevant component
(resolver and bystander) recommendation over tradi-
tional bug triaging methods?

RQ3: What features are the most important for the perfor-
mance of our approach?

A. Experimental Setup

1) Dataset: We crawl 124,477 bugs of six Mozilla products
and their 186 components. To ensure the validity of correct
bug-component assignments, we retain only bugs whose status
is resolved, verified or closed. According to Mozilla’s bug
status guide, bugs with these statuses are closed Bugs. We
assume that the component of a closed bug is the bug’s
resolver. For bugs with other statuses, it is still uncertain
which components would be their resolvers. After filtering by
closed bugs, we obtain 98,587 closed bugs covering 6 products
and 186 components. 29,100 out of these 98,587 closed bugs
are tossed bugs. We split the dataset into training data and
testing data. In order to simulate real-world context, we cut
dataset into 80% and 20% in chronological order. 78,870 bugs
(including 24,039 tossed bugs) with creation time before 25th
February, 2020 are “historical” training data. The rest 19,717
bugs (including 5,061 tossed bugs) are “future” testing data.

2) Baseline: We compare our approach with two baselines.
This first baseline is the BugBug tool (in particular its compo-
nent classifier for assigning bugs to product::component) [6].
The BugBug tool has been actively used in the Mozilla’s
product development. It formulates bug triaging as a multi-
class classification task, and uses the logistic regression model
built in XGBoost. XGBoost is an optimized distributed gra-
dient boosting library, which implements machine learning
algorithms under gradient boosting framework [10]. BugBug
takes the one-hot representation of bug summary, description
and keywords/flags as features. We train BugBug using our
historical bug dataset.

The second baseline is BugBug with tossing graph
(BugBug-TG). This baseline is inspired by Jeong et al. [7]
which uses bug tossing graph to improve the initial recommen-
dation lists by any bug triaging classifiers. Let {C1, C2, ...Cn}
be the initial recommendation list. BugBug-TG starts from

TABLE IV: Top-k Accuracy

Tool Category Top-1 Top-3 Top-5 Top-10

Our Tossed 0.469 0.701 0.772 0.848
Approach Non-Tossed 0.593 0.779 0.836 0.892

Overall 0.562 0.759 0.820 0.881
BugBug Tossed 0.378 0.608 0.680 0.760

Non-Tossed 0.468 0.642 0.697 0.764
Overall 0.445 0.633 0.692 0.763

BugBug Tossed 0.378 0.610 0.680 0.760
with TG Non-Tossed 0.468 0.644 0.698 0.765

Overall 0.445 0.635 0.694 0.764

TABLE V: Component-Level Top-k Accuracy Comparison
Top-1 Top-3 Top-5 Top-10

#P::C (our<BugBug) 22 13 7 5 28 (any <)
#P::C (our=BugBug) 28 22 24 22
#P::C (our>BugBug) 136 151 155 159 120 (all >)

the top, and inserts the most possible tossing target Cxt of
each component Cx based on the historical tossing prob-
ability in the bug tossing graph. The resulting list looks
like {C1, C1t, C2, C2t, ...Cn, Cnt}. Finally, BugBug-TG re-
turns the top N elements in the resulting list.

3) Evaluation Metrics: For RQ1, we evaluate if a method
can recommend the resolver component for a bug. As there is
only one resolver component for a bug, we use Top-k accuracy
(also known as Hit@k accuracy) to evaluate the performance
of resolver component recommendation. Top-k accuracy is∑

bi∈B isCorrect(bi,Top-k)/|B| where B represents the set
of all test bugs and the isCorrect(bi,Top-k) returns 1 if Top-k
components contain the resolver component of the input bug
bi, and returns 0 otherwise.

For RQ2, we want to recommend not only the resolver
component but also bystander components. We consider two
types of bystanders: the components in the same tossing com-
munity as the resolver component, and the components having
direct edges to the resolver component in the goal-oriented
bug tossing graph. In addition to Top-k accuracy, we compute
NDCG@k in RQ2. NDCG@k is DCG@k/IDCG@k, and
DCG@k is

∑k
i=1 ri/ log2(i + 1) where ri = 1 if the i-th

component in the recommendation list is related (resolver or
bystander) to the input bug, and ri = 0 otherwise. IDCG is
the ideal result of DCG, which means all related components
are ranked higher than unrelated ones.

For RQ3, we use feature importance analysis provided in
XGBoost [10] to validate the effectiveness of our feature
design. Feature importance analysis plots importance based on
fitted trees. The importance is calculated by importance types,
either “weight”, “gain”, or “cover”.“weight” is the number of
times a feature appears in a tree. “gain” is the average gain of
splits which use the feature. “cover” is the average coverage
of splits which use the feature and the coverage is defined as
the number of samples affected by the split. The importance
type we use in this study is “weight”.

B. Resolver Component Recommendation (RQ1)

Table IV shows the results. We can see that BugBug and
BugBug-TG have almost the same accuracies at all Top-ks.

https://wiki.mozilla.org/BMO/UserGuide/BugStatuses
https://wiki.mozilla.org/BMO/UserGuide/BugStatuses
https://xgboost.readthedocs.io/en/latest/index.html


This means that BugBug-TG’s simple heuristic use of com-
ponent tossing relationships is not effective. In contrast, our
LR-BKG achieves significant higher accuracies than BugBug
and BugBug-TG at all Top-ks. At Top-1, LR-BKG achieves
overall 0.562 accuracy, 0.469 for tossed bugs and 0.593 for
non-tossed bugs, while BugBug achieves only 0.445 overall,
0.378 for tossed bugs and 0.468 for non-tossed bugs. At Top-
10, LR-BKG achieves overall 0.88 accuracy, while BugBug is
only 0.76. Although our initial goal focuses on tossed bugs,
our LR-BKG actually achieves the same-level improvement
for both tossed and non-tossed bugs.

Consider a tossed bug Bug 1644807 which was initially as-
signed to Firefox::Preferences and tossed to Toolkit::Password
Manager. BugBug recommends Firefox::Preferences at the top
1 position. The summary of Bug 1644807 states “Replace
all user-facing instances that refer to master password”. The
keywords such as user, replace, master password are highly
related to Firefox::Preferences and its historical bugs. These
keywords taken directly as features in BugBug confuse the
classifier. In contrast, our LR-BKG correctly recommends the
resolver component Toolkit::Password Manager at top 1.

Consider a non-tossed bug Bug 1618597 whose re-
solver component is Toolkit::Password Manager. However,
BugBug recommends Firefox::about:logins at top 1 which
could mislead the developers. Our LR-BKG recommends
Toolkit::Password Manager at top 1. As seen in Fig. 3,
Toolkit::Password Manager and Firefox::about:logins are very
confusing components which have many erroneous assign-
ments and tossing in between. The summary of Bug 1618597
is “Saved logins and Master Password are cleared when up-
grading from Firefox56 to Firefox74.0beta via Firefox73.0.1”
which includes many confusing keywords such as saved, lo-
gins and master password. These keywords are rather common
in the closed bugs of both Toolkit::Password Manager and
Firefox::about:logins. However, our approach can effectively
distinguish key problem information (e.g., cleared, upgrade)
from these common confusing information, and consequently
make the right recommendation.

We compute the Top-k accuracy for each component by LR-
BKG and BugBug. We count for how many components LR-
BKG achieves higher, equal or lower accuracies than BugBug.
We consider the accuracy difference below 0.03 as equal.
Table V presents the results. The last column means if LR-
BKG is lower than BugBug at any Top-k, we count it as LR-
BKG<BugBug. Only if LR-BKG is higher than BugBug at
all Top-k, we count it as LR-BKG>BugBug.

At different Top-ks, LR-BKG achieves higher accuracies
than BugBug for 73%-85% of 186 components, and achieves
the same accuracies as BugBug for 12%-15% of compo-
nents, and achieves lower accuracies for only 3%-12% of
components. With the strictest comparison, LR-BKG is bet-
ter than BugBug for 120 (65%) components (all>), and is
worse than BugBug for only 28 (15%) components (any<).
Consider Core::Networking:Cookies that has 30 tossed bugs.
BugBug makes 13 correct recommendation at top 1 and
18 in top 10. The erroneous recommendations includes

not only confusing components (e.g, Core::Security:PSM,
Core::Networking:HTTP) but also some non-sense compo-
nents (e.g., DevTools::Console). LR-BKG recommends correct
resolver components for 18 tossed bugs at top 1 and for 24
tossed bugs in top 10.

We find that LR-BKG sometimes makes mistakes for re-
solver components in bug tossing communities. For example,
Firefox::Sync belongs to the community that includes 48
components (the red community in Fig. 3). Firefox::Sync
has 140 bugs, among which LR-BKG assigns 52 bugs to
other components in the community, such as Firefox::Tabbed
Browser, Firefox::Preferences. This results in its low Top-1
accuracy 0.443 which is lower than BugBug (0.543). However,
LR-BKG does not rank resolver components totally off the
track. For the Top-3, Top-5 and Top-10 accuracies, LR-BKG
is 0.764, 0.836 and 0.900 respectively, while BugBug is only
0.707, 0.743 and 0.771. That is, LR-BKG still identifies the
resolver component, but it has some difficulties in distinguish-
ing the resolver components from some bystander components
in the large community at the top-1 position.

Our LR-BKG significantly improves the accuracy of resolver
component recommendation. The improvement comes from
both tossed and non-tossed bugs equally, and is contributed
by the improvement on the majority of components.

C. Tossing-Relevant Component Recommendation (RQ2)

Table VIa to Table VId show the results. Comparing the
results in Table IV, Table VIa and Table VIc, we see that all
approaches can recommend some bystander components. For
example, the overall Top-1 accuracy for resolver component
by LR-BKG is 0.562 (Table IV). If we consider the bystander
components from the same bug tossing community as correct
recommendation, the overall Top-1 accuracy by LR-BKG
becomes 0.799 (Table VIa). Furthermore, many bystander
components can be ranked in top 10 which gives > 0.9 Top-10
accuracies for all three methods.

As Top-k increases, the accuracy gap between our ap-
proach and BugBug narrows. However, the accuracy at Top-
1 by our approach is much higher than that of BugBug
for both bug tossing community and direct edge settings.
For example, Bug 1644112 happens to be in our “future”
testing data. BugBug recommends Core::Graphics:Text at top
1 for this bug. Although our approach does not recom-
mend Firefox::about:logins at top 1 either, it recommends
Toolkit::Password Manager from the same bug tossing com-
munity at top 1. The developers of Toolkit::Password Manager
more likely know where to toss Bug 1644112 than the devel-
opers of Core::Graphics:Text.

Comparing NDCG@k of different approaches, we see that
our approach can better rank tossing-relevant components
at the top of the list. Consider the bug tossing community
setting. Our approach and BugBug have very close Top-
10 accuracy (less than 0.02 difference), but our approach
achieves NDCG@10=0.590 while BugBug’s NDCG@10 is
only 0.432. Similar to resolver component recommendation,

https://bugzilla.mozilla.org/show_bug.cgi?id=1644807
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(a) Top-k Accuracy (Bug Tossing Community)

Tool Category Top-1 Top-3 Top-5 Top-10

Our Tossed 0.798 0.917 0.954 0.981
Approach Non-Tossed 0.799 0.919 0.951 0.976

Overall 0.799 0.919 0.952 0.977
BugBug Tossed 0.600 0.865 0.920 0.966

Non-Tossed 0.615 0.782 0.863 0.931
Overall 0.612 0.803 0.878 0.940

BugBug Tossed 0.600 0.860 0.917 0.965
with TG Non-Tossed 0.615 0.780 0.861 0.930

Overall 0.612 0.801 0.876 0.939

(b) NDCG@k (Bug Tossing Community)
Tool Category ndcg@1 ndcg@3 ndcg@5 ndcg@10

Our Tossed 0.798 0.712 0.665 0.590
Approach Non-Tossed 0.799 0.684 0.630 0.563

Overall 0.799 0.691 0.639 0.570
BugBug Tossed 0.600 0.534 0.491 0.432

Non-Tossed 0.615 0.485 0.438 0.385
Overall 0.612 0.497 0.451 0.397

BugBug Tossed 0.600 0.537 0.491 0.431
with TG Non-Tossed 0.615 0.494 0.445 0.390

Overall 0.612 0.505 0.457 0.401

(c) Top-k Accuracy (Direct Edge)

Tool Category Top-1 Top-3 Top-5 Top-10

Our Tossed 0.699 0.887 0.935 0.974
Approach Non-Tossed 0.761 0.902 0.939 0.969

Overall 0.745 0.898 0.938 0.970
BugBug Tossed 0.549 0.818 0.891 0.952

Non-Tossed 0.592 0.765 0.845 0.920
Overall 0.581 0.778 0.856 0.928

BugBug Tossed 0.549 0.816 0.886 0.950
with TG Non-Tossed 0.592 0.764 0.843 0.919

Overall 0.581 0.777 0.854 0.927

(d) NDCG@k (Direct Edge)
Tool Category ndcg@1 ndcg@3 ndcg@5 ndcg@10

Our Tossed 0.699 0.599 0.547 0.497
Approach Non-Tossed 0.761 0.630 0.574 0.521

Overall 0.745 0.622 0.567 0.515
BugBug Tossed 0.549 0.466 0.430 0.400

Non-Tossed 0.592 0.455 0.409 0.385
Overall 0.581 0.458 0.414 0.389

BugBug Tossed 0.549 0.470 0.431 0.400
with TG Non-Tossed 0.592 0.464 0.416 0.390

Overall 0.581 0.465 0.420 0.393

TABLE VI: Results of RQ2

BugBug and BugBug-TG have almost the same accuracies
and NDCG metrics, which means simple heuristic use of
component tossing relationships is not effective for improving
bystander component recommendation.

Our LR-BKG can significantly improve the ranking of by-
stander components that have historical tossing relationships
with the resolver component.

D. Feature Importance (RQ3)

We estimate the importance of 138 features (see Table VII)
by feature importance analysis [10], which assigns important
scores to input features based on how useful they are at
predicting a target variable. Table VII presents the top 30 im-

TABLE VII: Top-30 Important Features
Feature Ranking

Bug Feature
a. number of bug summary tokens 7

Component Features
a. number of closed bugs 8
b. weighted in-degree 9
c. bug tossing community index 18
d. unweighted in-degree 23
e. unweighted degree 27
f. unweighted out-degree 30

Bug-Component Relation Features
a. TFIDF sim(bug summary, component name) 21
b. TFIDF sim(bug summary, component description) 14
c. FASTTEXT sim(bug summary, component name) 12
d. FASTTEXT sim(bug summary, 16

component description)
e. TFIDF Top 1-7, 10, 8 sim(bug summary, 1, 5, 10, 11, 13,

closed bug summary) 17, 19, 22, 26
f. TFIDF Percentage(nonzero(sim(bug summary, 2

closed bug summary)))
g. TFIDF Top 1-4 sim(bug summary, 4, 15, 20, 28

tossed-out bug summary)))
h. TFIDF Percentage(nonzero(sim(bug summary, 24

tossed-out bug summary)))
i. FASTTEXT Top 1 sim(bug summary, 6

closed bug summary)
j. FASTTEXT Top 1, 2, 4 sim(bug summary, 3, 25, 29

tossed-out bug summary)))

portant features, which include one bug feature, six component
features and 23 bug-component relation features.

The number of bug summary tokens is the only bug feature
we use. This simple feature is ranked at the 7th importance.
Six out of nine component features are important. The number
of closed bugs is ranked at the 8th position. Bug tossing
community index is ranked at 18th. Weighted in-degree and
three unweighted degree features are important, ranked at
the 9th, 23rd, 27th and 30th positions. For bug-component
relation features, both TF/IDF-based and word-embedding-
based similarities between input bug summary and component
name/description are important. TF/IDF similarities are more
important than word-embedding similarities for measuring the
relevance of the input bug to the closed bugs of the com-
ponents. TF/IDF and word-embedding similarities are equally
important for measuring the relevance of the input bug to the
tossed-out bugs of the components. We see that the model
mainly focused on the top-ranked similarities. It considers
more top-ranked input-closed similarities (up to top 10) than
input-tossedout similarities (up to top 4). Non-zero similarity
percentage features are important to inform the model the
usefulness of input-closed and input-tossed-out feature vectors.

All categories of features play important role, which demon-
strates the effectiveness of our feature design. Input-closed
and input-tossedout features could be simplified.

V. RELATED WORK

Machine learning techniques have been widely adopted
to support bug report management [3], including bug field
prediction, bug field reassignment, bug localization, duplicate
bug detection, bug-commit linking, etc. The closed work to
ours is bug field prediction. Anvik et al. [5] propose to use the



classifier (e.g., Support Vector Machine) to assist bug fixer as-
signment. Other studies focus on predicting bug severity [11]–
[14] and bug priority [15], [16]. Several studies [1], [2] inves-
tigate component assignments. Somasundaram et al. [1] mine
the topic model from the component’s historical bugs for mea-
suring bug component relevance. Sureka [2] uses the Navie
Bayes classifier with TF/IDF and dynamic language model
to predict the component of a bug report. The classification-
based method has been adopted in practice, e.g., the Mozilla’s
BugBug tool. Recently, deep-learning based classification has
also been used for supporting incident triage for online service
systems [17]. Different from these classification-based meth-
ods, our approach is based on learning-to-rank, which learns
not only from correct bug-component assignments but also
erroneous and irrelevant assignments.

Jeong et al. [7] models developer tossing relationships in
a probability graph which helps to uncover team structures
and recommend bug fixers. Our work is different in that we
construct a bug tossing graph among components and learn
from historical component tossing relationships to reduce bug-
component assignment confusion. Our baseline BugBug-TG
is inspired by the way that Jeong et al. [7] use the developer
tossing graph for improving developer recommendation, but
BugBug-TG is based on our component tossing graph. Our
results show that the simple heuristic use of component tossing
relationships is not effective for improving bug component as-
signment. Bhattacharya et al. [18], [19] extend Jeong et al. [7]
by incremental learning for effective use of each training data
point. Hu et al. [20] analyzes historical bug-component and
bug-fixer relations to assist fixer recommendation. However,
none of these works effectively use erroneous and irrelevant
assignments during learning.

Xia et al. [4] report an empirical study on bug field reas-
signment and they find that fixer and component reassignments
occur most frequently. Their follow-up work [21] trains multi-
label classifiers to predict the possibility of field reassignment.
Similar approaches have been adopted in [22]–[24]. However,
these works do not predict which specific components should
be reassigned to. Tian et al. [25] and Han et al. [26] address the
problem of developer reassignment. They also use learning-to-
rank, but their feature design is developer-centric. In contrast,
our feature design is component-centric, with several explicit
features for component tossing community and tossed-out
bugs. We also explicitly model and contrast the similarity
distributions between the input bug and the closed/tossed-out
bugs of the components. These features are inspired by our em-
pirical observation on additional information and mechanisms
developers often resort to for justifying bug tossing decisions.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents an empirical study on bug tossing
phenomena and root cause, and a learning to rank framework
to address the limitations of classification-based bug com-
ponent assignment revealed in our empirical study. Different
from classification-based methods that learn from each bug-
component assignment independently, learning-to-rank learns

by contrasting correct, erroneous and irrelevant assignments.
Inspired by additional information developers often resort to
for correcting erroneous bug assignments, we construct a bug
tossing knowledge graph from which rich bug, component and
bug-component relation features can be derived and used to
inform the learning-to-rank model. Our large-scale evaluation
confirms the effectiveness of our learning-to-rank approach
and feature design. In the future, we will enrich our bug
tossing knowledge graph (e.g., with bug topics), improve
our feature design (e.g., on component community and bug
similarity distribution), and experiment deep-learning based
feature extraction in the learning-to-rank framework.
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