
Automating Developer Chat Mining
Shengyi Pan∗†, Lingfeng Bao∗¶, Xiaoxue Ren∗, Xin Xia‡, David Lo§, Shanping Li∗

∗College of Computer Science and Technology, Zhejiang University, China
‡Faculty of Information Technology, Monash University, Australia

§School of Information Systems, Singapore Management University, Singapore
shengyipan@outlook.com, {lingfengbao,xxren,shan}@zju.edu.cn, Xin.Xia@monash.edu, davidlo@smu.edu.sg

Abstract—Online chatrooms are gaining popularity as a com-
munication channel between widely distributed developers of
Open Source Software (OSS) projects. Most discussion threads in
chatrooms follow a Q&A format, with some developers (askers)
raising an initial question and others (respondents) joining in
to provide answers. These discussion threads are embedded with
rich information that can satisfy the diverse needs of various OSS
stakeholders. However, retrieving information from threads is
challenging as it requires a thread-level analysis to understand the
context. Moreover, the chat data is transient and unstructured,
consisting of entangled informal conversations. In this paper, we
address this challenge by identifying the information types avail-
able in developer chats and further introducing an automated
mining technique. Through manual examination of chat data
from three chatrooms on Gitter, using card sorting, we build
a thread-level taxonomy with nine information categories and
create a labeled dataset with 2,959 threads. We propose a classi-
fication approach (named F2CHAT) to structure the vast amount
of threads based on the information type automatically, helping
stakeholders quickly acquire their desired information. F2CHAT
effectively combines handcrafted non-textual features with deep
textual features extracted by neural models. Specifically, it has
two stages with the first one leveraging the siamese architecture
to pretrain the textual feature encoder, and the second one
facilitating an in-depth fusion of two types of features. Evaluation
results suggest that our approach achieves an average F1-score
of 0.628, which improves the baseline by 57%. Experiments
also verify the effectiveness of our identified non-textual features
under both intra-project and cross-project validations.

Index Terms—Developer Chatrooms, Information Mining,
Deep Learning, Gitter

I. INTRODUCTION

Recent studies showed that online chatrooms are gaining
popularity as a channel for global collaboration among devel-
opers of Open Source Software (OSS) projects and replacing
the traditional communication platforms, including emails and
mailing lists [1]–[3]. Chatrooms like Gitter [4], Slack [5], and
Discord [6], are modern instant messaging systems integrated
with diverse external services (e.g., bots, issue linking), mak-
ing developers easier to communicate and collaborate with
others [7]. Developers use chatrooms to report problems, share
opinions, and discuss implementation details [8], [9].

Most discussion threads in developer chatrooms generally
follow a Q&A format [8], [9], with some developers (askers)
raising an initial question and others (respondents) later joining
in to provide answers. Previous studies [7]–[11] have revealed

†Also with PengCheng Laboratory.
¶Corresponding author.

A: I'm getting an error...
A: "o.d.o.s.VectorizedNonZeroStoppingConjugateGradient - main C
onjugateGradient: At iteration 1464, cost = NaN -100“
A: Surely NaN isn't the kind of result I should be looking for? What
does revert back to GA mean?
R: @A sorry just saw this, Didn't see the notification
R: Do me a favor and type: Nd4j.ENFORCE_NUMERICAL_STABILITY
= true; Put this above your training.
R: Your weights are diverging

Report an encountered problem

A: hello, If I saved network with ModelSerializer.writeModel() can I t
hen restore it and continue training? Is it done like this? MultiLayer
Network net =(MultiLayerNetwork) ModelSerializer.restoreMultiLay
erNetwork(file) net.fit(trainIter)
R: yes, don't forget restore updater
R: with boolean argument set to true
A: thank you

Ask for help about the use of an API

A: @R have you seen https://github.com/deeplearning4j/dl4j-exam
ples/issues/590 ? Weird behavior with SequenceRecordReaderData
setIterator. Probably shouldn’t have posted this issue under exampl
es though.
R: @A no, I missed that. mind moving it to DL4J issues?
A: @R how can I move issues? Or do I have to close and reopen?
R: close and reopen

Collaborate on solving an issue

这些例子来源于
deeplearning4j，id分
是417，39，367

1

2

3

Fig. 1: Example discussion threads with three different intents
from Deeplearning4j chatroom on Gitter. A and R represent
the asker and the respondent, respectively.

that these discussion threads are embedded with rich infor-
mation, which can be utilized to support various development
activities. Conversations in developer chatrooms are typically
informal, with rapid exchanges of messages between two or
more participants and fewer constraints on discussion topics.
Compared with other communication channels, e.g., mailing
lists and issue tracking systems (ITS), both types and amount
of valuable information in chatrooms are much richer [9], [12].

The needs to acquire information from discussions in chat-
rooms vary among different OSS stakeholders based on their
tasks and interests. For development teams, they may want to
be aware of the problems reported by end-users to deliver an
early fix to a bug. They may also want to monitor the progress
of tasks towards the resolutions of issues to facilitate better col-
laboration. For end-users, they may care more about solutions
and opinions in previous discussions related to their problems.
Similar questions are usually repeated many times by the
community as the chat conversations are generally short-lived
[9], quickly flooded away by the incoming messages. Figure 1
illustrates that information embedded in discussion threads is

capable of fulfilling the needs of various OSS stakeholders.
Hence, a comprehensive analysis of information categories
available in developer chats is of vital importance.

Retrieving information from massive chat data requires a
huge effort, as some discussions could be very lengthy and
hard to follow. Automated mining techniques are urgently
needed to collect various information embedded in massive
chat data and categorize it properly, helping OSS stakeholders
directly retrieve their desired information from the well struc-
tured data. However, there are several hurdles that may prevent
an effective mining. 1) Thread-level analysis. Different from
prior mining tasks [11], [13]–[15] focusing on sentence-
level classification, thread is a natural granularity for mining
information from developer chatrooms as the smallest unit
containing comprehensive context information. A sentence-
level analysis abandoning the context prevents an accurate
interpretation during classification, and faces lots of short and
incomplete sentences (see examples in Figure 1). 2) Noisy
data. Chatrooms have multiple participants who take part
in different discussions at the same time, thus disentangling
threads from the stream of messages is critical for enabling
a thread-level analysis. Additionally, informal conversations
contain many short and meaningless instant messages, as well
as typos and special tokens (e.g., code snippet, URL), which
greatly affect the performance of text classification techniques.
To the best of our knowledge, the approach proposed in [12]
(named FRMiner) is the only one targeted towards mining
information from developer chats at thread level. However,
FRMiner is only focused on detecting one specific type of
discussion threads, i.e., threads with hidden feature requests,
to support the release team, while ignoring other valuable
information and different interests of other OSS stakeholders.

The machine learning (ML) based mining techniques in
previous studies typically rely on shallow textual features (e.g.,
TF-IDF, bag-of-words) [16], [17], non-textual features (e.g.,
sentence length, time gap) [18], [19] or the combination of
both features [13], [20]. Specially, Arya et al. [13] and Wood et
al. [20] reported that non-textual features are more useful com-
pared with the textual counterpart under certain circumstances.
The deep learning (DL) based approaches in recent studies
[12], [21] leverage advanced neural models to extract deep
textual features, which are powerful representations with high-
level semantic information. However, we argue that the textual
features ignore other information of the discussion thread (e.g.,
structure, participant). Thus, the DL-based approaches may
still benefit from the handcrafted non-textual features in this
specific task.

In this work, we take the first step to analyze the infor-
mation types available in discussion threads from developer
chatrooms. We aim to reveal the characteristics of information
types, their primary intents, and possible applications, which
are essential for designing automated mining techniques to
fulfill the needs of various OSS stakeholders. Through manual
examination of historical chat data (2,959 threads) from three
chatrooms on Gitter, using card sorting, we build a thread-
level taxonomy with nine information categories. Further, we

propose a classification approach, namely F2CHAT, which
effectively combines handcrafted non-textual Features with
deep textual Features extracted by neural models. Specifically,
it has two stages with the first one leveraging the siamese
architecture to pretrain the textual feature encoder, and the
second one facilitating an in-depth fusion of two types of
features. We evaluate our approach on 2,959 threads labeled
using the defined taxonomy. The experimental results indicate
that our approach improves the performance of FRMiner by
57%, with an overall F1-score of 0.628. The experiments also
verify the effectiveness of our identified non-textual features
under both intra-project and cross-project validations.

The contributions of our work are summarized as follows:
• We are the first to build a thread-level taxonomy of

information types for threads in developer chatrooms.
• We propose an automated mining approach (F2CHAT),

which combines handcrafted non-textual features with
deep textual features extracted by neural models.

• We conduct extensive experiments to evaluate F2CHAT
on three chatrooms from Gitter. The experimental results
indicate that our approach substantially outperforms FR-
Miner and the identified non-textual features are effective
in both intra-project and cross-project validations.

• We open source our replication package and a dataset
of 2,959 discussion threads [22], annotated with the
identified taxonomy of information categories.

II. RELATED WORK

A. Developer Online Chatrooms

Previous studies reported that online chatroom plays an
increasingly important role in various development activities,
and tried to understand the way of developers using chat-
rooms by analyzing their behaviors and interactions. Shihab
et al. [23], [24] reported that there is a shift from mailing
lists to developer Internet Relay Chat (IRC) meetings, and
further investigated the role of IRC meetings using two open
source projects. Lin et al. [1] conducted an exploratory study
to investigate the way of developers using Slack. Their findings
suggested that Slack is used for personal, team-wide, and
community-wide purposes, and is gradually replacing the
emails. Sahar et al. [7] assessed the impact of Gitter on project
and team dynamics. They focused on issue report discussions
and found that they are closely related to activities in the
GitHub issue tracker. Ehasan et al. [8] conducted a study to
understand the general Q&A behaviors of discussions in Gitter.
They are the first to propose an automatic approach for thread
identification in developer chatrooms and further explore the
nature of discussions (e.g., topics) by performing a thread-level
analysis. These two works suggested that Gitter chatrooms are
rich sources for information related to the software.

Other works focused on mining information from devel-
oper chats to support software development and maintenance.
Alkadhi et al. [10], [11] conducted exploratory studies to
examine the frequency and completeness of rationale hidden in
chat messages. They found that chat messages are a valuable

source for rationale and the machine-learning based algorithms
are capable of automatically extracting rationale from IRC
messages. Chatterjee et al. [9] pointed out that conversations
in developer chatrooms generally follow a Q&A format and
investigated the types, amount and possible mining hurdles
of information in Slack Q&A chats compared with Stack
Overflow Q&A posts. They also emphasized the importance
of a thread-level analysis, and later released a dataset of
software related conversations from Slack with a customized
disentanglement algorithm in [25]. Recently, Shi et al. [12]
designed a deep-learning model to detect threads with hidden
feature requests. Their experimental results on three OSS
chatrooms from Slack suggested that their method outperforms
the existing sentence-level methods by a large margin.

Most prior works are exploratory studies, aiming to under-
stand the role of chatrooms in supporting developers or inves-
tigate the validity of chatrooms as a mining source. Our work
differs from these studies. We take a step forward to perform
an in-depth thread-level analysis for identifying information
types available in developer chats on Gitter. Additionally, we
design a classification approach and evaluate its effectiveness
in detecting information types of discussion threads.

B. Classification of Software-related Artifacts

In recent years, an increasing number of studies have
focused on mining information from software-related artifacts
by classifying them into categories relevant to various soft-
ware activities. The automated mining techniques proposed
by prior works can be generally categorized into three groups
according to the leveraged features: 1) Textual features.
Bacchelli et al. [16] represented lines of development emails
as vectors of term frequencies (TF) and applied machine-
learning (ML) techniques to classify them into five categories
(nature language, source code, patch, stack trace, and junk)
based on the specific content. However, Di Sorbo et al. [14]
and Panichella et al. [15] argued that techniques based on
lexicon analysis, such as Vector Space Models [26] (e.g., TF-
IDF, bag-of-words) and topic models (e.g., LDA), would not
be sufficient as they failed to reveal the developers’ intents.
To bridge the gap, they applied heuristics to capture linguistic
patterns for the classification of sentences in emails [14] and
app reviews [15] based on developers’ purposes. Recently,
deep learning (DL) approaches have been introduced in this
task, which automatically learn linguistic patterns and are more
powerful in extracting high-level semantic information. Huang
et al. [21] applied textCNN [27] to classify sentences in both
emails and ITSs. Their method substantially outperformed
Di Sorbo et al.’s heuristics [14] and five ML based text
classification techniques using Vector Space Model. Shi et
al. [12] proposed a novel approach to enable a thread-level
analysis for detecting hidden feature requests from discussions
on Slack. Besides, They are the first to incorporate few-
shot learning techniques [28] to make the maximum use of
limited labeled data. 2) Non-textual features. Rastkar et
al. [18] identified 24 non-textual features from four aspects
(structure, participant, length and lexicon), and trained logistic

regression (LR) classifiers for automatic summarization of bug
reports. Similar non-textual features were also utilized in [19]
to generate summaries for developer-client conversations. 3)
Both textual and non-textual features. Wood et al. [20]
utilized bag-of-words as the textual feature together with three
non-textual features to train LR classifiers for detection of
26 speech act types in conversations during bug repair. They
reported that non-texture features are very useful for certain
speech act types. Arya et al. [13] leveraged several ML al-
gorithms for classifying sentences in issues. They applied TF-
IDF weights as the textual feature and identified 14 non-textual
features. They found that using non-textual features alone is
even better than both features under intra-project validation.
The shallow textual features used in these two works only
contain lexical information. Moreover, the fusion of features
is simple as inputting to the ML classifiers simultaneously.

Our work differs from the existing studies. To the best of
our knowledge, we are the first to combine handcrafted non-
textual features with deep textual features extracted by neural
models for classification of software-related artifacts. We also
propose an architecture to facilitate an in-depth fusion of two
types of features. Furthermore, while most of the prior works
performed classification at the granularity of sentences, we
focus on a thread-level analysis of developer discussions.

III. ANALYZING INFORMATION CATEGORIES OF
DISCUSSION THREADS

In this section, we try to identify potential information types
available in developer chats that may satisfy the diverse needs
of various OSS stakeholders. We first introduce the four steps
used to collect chat data from Gitter chatrooms. Then, we
describe the details of identifying information types.

A. Data Preparation

Step 1: Chatroom Selection. we select three chatrooms
on Gitter: Angular [29], Spring-boot [30] and Deeplearn-
ing4j [31]. We choose these chatrooms for the following rea-
sons: 1) These chatrooms belong to three different categories.
Gitter divides all its chatrooms into 24 categories [32], e.g.,
Frontend, Android, and Data science. Choosing chatrooms
of different categories strengthens the generalizability of our
work by allowing us to investigate chat data of diverse
development topics. 2) Large numbers of developers actively
communicate with each other in these chatrooms. We sort all
the chatrooms on Gitter based on the number of participants
since it is one of the attributes supported by Gitter API.
We further exclude chatrooms with limited chat data (less
than 50,000 messages) by crawling and counting all of its
historical messages. Finally, we select the top three chatrooms
under the premise of belonging to different categories. The
characteristics of these chatrooms are presented in Table I.
Step 2: Data Crawling. We crawl the historical chat data of
the selected chatrooms using the official API [33] provided by
Gitter. We crawled data on August 20, 2020.
Step 3: Thread Disentanglement. In chatrooms, multiple
developers participate in different threads at the same time.

TABLE I: The characteristics of the selected chatrooms

Project Categories #Participants #Messages Time Duration

Angular Javascript 22,771 1,120,438 2015.03-2020.08
Spring-boot Java 9,665 70,590 2014.10-2020.08
Deeplearning4j Data Science 8,356 415,422 2015.03-2020.08

Two latest disentanglement algorithms targeted for technical
discussions in developer chatrooms are [8], [25]. Chatterjee
et al. [25] modified Elsner and Charniak’s algorithm [34] for
the customization of several Slack specific features. Ehsan et
al. [8] identified three categories of features (i.e., users, content
and back-and-forth communication) through manual analysis
of Gitter chats and futher designed a heuristic-based algorithm.
We apply Ehasan et al.’s algorithm to disentangle the distinct
threads from the stream of messages, since it was demonstrated
to achieve satisfactory results on Gitter chats with an F1-score
of 0.81 [8]. While Chatterjee et al.’s algorithm still requires to
be adapted to work well on chat platforms other than Slack,
including Gitter used in our study, as suggested in [25].
Step 4: Thread Sampling. We randomly sample 1,000 threads
from each chatroom and manually exclude low-quality threads
of the following characteristics: 1) Threads that contain too
much unformatted source code or stack traces. 2) Threads with
too many spelling and grammatical errors or written in non-
English languages. The number of available threads for each
chatroom is shown in column THD of Table IV.

B. Building Taxonomy of Information Types

The sentence-level information types have been widely stud-
ied in prior works regarding the classification of development
communication artifacts [13], [20], [21]. But they are not
applicable to threads with multiple messages, as they focus
on the content of an individual sentence while abandoning
the context. However, we manage to utilize the knowledge in
two latest sentence-level works: 1) Arya et al. [13] identified
16 information types (e.g., Bug Reproduction and Solution
Discussion) for discussions in ITSs based on the underlying
purposes of users. We build our thread-level taxonomy by
summarizing their sentence-level information types. 2) Wood
et al. [20] uncovered 26 speech act types (e.g., Documentation
Answer and API Question) in conversations during bug repair
based on the specific discussed development contents. Their
work inspires us to build a taxonomy from the aspect of dis-
cussion contents. Di Sorbo et al. [14] and Panichella et al. [15]
reported that taxonomies in related works are generally defined
from two aspects: text contents or developers’ purposes.

Besides, we follow the card sorting process [35] to identify
the information types of discussion threads, which has been
proven effective in previous works, e.g., identifying intentions
of sentences in ITS [21]. We created one card for each sampled
thread. The first two authors worked together to determine the
label of each card. The whole process has two iterations:

Iteration 1. We first used 20% of the cards. The two
authors coded each thread individually to identify possible
categories at thread level. They first read all messages in the
thread and identified information type for each one using the

taxonomy described in [13]. Then, they summarized potential
commonalities of the sentence-level information types and
inferred the underlying purpose of the discussion. After that,
they focused on the specific development contents discussed
in the thread. Finally, they worked together to discuss the
findings and disagreements. In this iteration, we built a two-
level taxonomy (Table II) along with a handbook to guide
classification based on the following findings:
Level 1: We summarize three intents of developer discussions
by leveraging the 16 sentence-level information types in [13].

• Problem Report. Askers (mostly the project end-users)
report bugs or describe unexpected behaviors by providing
source code, full stack traces, or specifying what they have
tried to do. Respondents try to help askers find the cause of
their problems, guide them in the right direction, or share
possible solutions. See 1© in Figure 1 for an example.

• Information Retrieval. Askers (mostly the project end-
users) attempt to obtain information or help from the com-
munity about API usage, library installation, documentation
resources, etc. Usually, askers describe what they want to
accomplish and try to get some help before they dive into
the specific development. Respondents share opinions about
the best practice or provide suggestions of implementation
details. See 2© in Figure 1 for an example.

• Project Management. Although most discussion threads
in developer chatrooms are initiated with end-users asking
questions about the use of the software, team members
and certain users (potential contributors) also collaborate
through online chatting to solve issues filed on GitHub. For
example, working together to identify causes and solutions,
discussing the testing procedure and results, and requesting
or reporting the progress of tasks. Besides, the team also
announce the release of a new version and answer questions
regarding the future roadmap of the software evolution in
online chatrooms. See 3© in Figure 1 for an example.

Level 2: The specific development contents discussed in online
chatrooms can be categorized into nine classes as shown in
column level 2 of Table II. We find the development contents
discussed in chatrooms are generally consistent with those
identified by [20] in chat conversations during bug repair.
However, we add a sub-class General Information under
information Retrieval, since there are some social discussions
that are not closely related to the project itself, e.g., the best
choice of IDE, job hunting experience, and the design of
deep learning models. Besides, we divide Project Management
into two sub-classes: 1) Task Progress. The development team
and end-users request or report task progresses, inquire or
inform release plans, and discuss future roadmap. 2) Technical
Discussion. Discussions of this class focus more on technical
parts, where participants collaborate to find the cause of issues,
analyze the testing results and seek possible solutions.

Iteration 2. Two authors independently labeled the remain-
ing cards into nine categories listed in Table II. We use
Cohen’s Kappa coefficient [36] to measure the agreement
between two authors. Their Kappa value for nine categories

TABLE II: The built taxonomy of information categories for developer discussion threads

Level 1 Description Level 2 Description

Problem
Report Asker: report bugs or describe unexpected

behaviors.
Respondent: help the asker find the cause of the
problem and provide possible solutions.

Programming
Problem (PP) problems related to programming, e.g., syntax,

parameter, API and implementation
Library

Problem (LP) problems related to library installation, deployment
and configuration

Documentation
Problem (DP) problems related to documentation resources, e.g.,

examples, guidance and docs

Information
Retrieval

Asker: try to obtain information or help from the
community regarding some development issues.
Respondent: share opinions about the best practice
or suggestions of implementation details.

Programming
Information (PI) information related to programming, e.g., syntax,

parameter, API and implementation
Library

Information (LI) information related to library installation,
deployment and configuration

Documentation
Information (DI) information related to documentation resources,

e.g., examples, guidance and docs
General

Information (GI) information related to general knowledge, e.g., job
hunting experience and choices of IDEs

Project
Management

End-user: request the progress of certain issues or
the release schedule of the project.
Team: collaborate on solving issues and inform
community about future plans.

Technical
Discussion (TD) technical discussions during collaboration on

solving issues, e.g., finding causes and solutions
Task

Progress (TP) communications on task progresses, release
schedules and future plans

Fig. 2: Distribution of the percentage of each information type
in the sampled discussion threads

of level 2 is 0.76, which is lower than the one (0.83) for three
categories of level 1. Both Kappa values indicate a substantial
agreement between the two authors. For cards with disagree-
ments, two authors discussed to reach a common decision and
further refined the guidance handbook for classification.

After two iterations of card sorting, we labeled 2,959 discus-
sion threads from three chatrooms on Gitter. The annotation is
extremely expensive, with a cost of 480 person-hours. The dis-
tribution of each information type is shown in Figure 2. Over
80% of the discussion threads in all three chatrooms belong
to the category Problem Report or Information Retrieval, and
majority of them are related to programming (e.g., API, syntax
and parameter). It indicates that developers mainly use online
chatrooms to seek solutions or answers for their problems.

IV. AUTOMATED CLASSIFICATION OF INFORMATION
CATEGORIES

In this section, we first describe the detailed process for
preprocessing the chat messages. Then, we build a two-stage
model (Figure 3), namely F2CHAT, for automated classifica-
tion of information categories.

A. Preprocessing of Chat Messages

Messages in developer chatrooms are noisy for text classi-
fication algorithms (as described in Section I). A throughout
data preprocessing is critical for automated techniques to
achieve satisfactory performances. In this work, we take the
following steps to preprocess the raw chat messages:

1) Fine-grained special tokens replacement. The develop-
ment chat messages contain lots of special tokens such as
source code, URL, and issue ID. To clean the sentences,
we replace these tokens with specific tags (e.g., CODETAG,
URLTAG and ISSUETAG) using regular expressions. This
step is widely adopted in the related works [12], [13].
However, we argue that the replacements in previous
studies are not precise enough. Specifically, special tokens
should be replaced based on the specific artifacts contained
rather than their forms. For example, a URL can link
to an issue on Github, a page of the official docs, etc.
These differences should not be ignored, i.e., we should
not replace all URLs with a single tag. Moreover, the same
artifact is referred to using different forms (e.g., an issue
can be referred to using its ID or a direct URL link).
This diversity (e.g., replacing issues with different tags)
can confuse the model. We perform a fine-grained special
tokens replacement leveraging the knowledge from manual
examination of chat data.

2) Merge consecutive messages from the same devel-
oper. Unlike the well-structured discussion threads in issue
tracking systems, developer chats are generally informal
conversations with lots of quick and incomplete messages.
While some developers prefer to comprehensively describe
his problems and thoughts within a single long message
(2©, 3© in Figure 1), others may prefer a series of short mes-
sages instead (1© in Figure 1). This inconsistency caused
by the personal habits of different developers will bring

troubles when we calculate certain non-textual features
(e.g., number of messages within a thread) or model the
message sequence. We merge consecutive messages from
the same developer to eliminate this inconsistency.

B. Pretraining of Textual Feature Encoder

We separate the training of encoders for two types of
features (Figure 3) due to the following concerns: 1) Textual
features and non-textual features have different data types, i.e.,
high-dimensional sparse vectors vs. numerical values (Table
III), training two encoders (one for each type of features)
simultaneously (let alone a unified encoder) is not the best
practice. 2) Textual features are encoded by deep neural mod-
els with large amounts of parameters, thus few-shot learning
techniques are needed to overcome the overfitting problem.
It is not the case for non-textual features since they are
encoded using a two-layer feed-forward module. 3) Recasting
a classification task into similarity measurement will cause
information loss [37].

Stage 1

1

2

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑎𝑎 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑏𝑏

share

weights

Distance
Measure

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Feed Forward

p 1-pSoftMax

(a) Siamese architecture for pretraining the
textual encoder

Message
Sequence

Non-textual
Features

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
(frozen)

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
(trainable)

Textual
Embedding

Non-textual
Embedding

Feed Forward (trainable)

SoftMax𝑝𝑝0 𝑝𝑝𝑐𝑐𝑝𝑝1 …

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
(b) Architecture for combining two types
of features

Fig. 3: Two-stage model architecture of F2CHAT

The first stage of our proposed two-stage classification
approach focuses on pretraining the textual feature encoder.
We refer to the model at this stage as F2CHAT-t, since it only
leverages textual features. Given the fact that the annotation
is extremely expensive (Section III-B), we follow the methods
proposed by Shi et al. [12] to alleviate the overfitting problem
caused by the insufficient data. By incorporating Siamese
Network [38], a metric-based few-shot learning technique [28],
they recast the traditional text classification task of classifying
a single thread to the correct class into the task of determining
whether a pair of threads belong to the same class or not.
The siamese architecture for pretraining the textual encoder is
shown in Figure 3(a). A pair of threads (either from the same
class or different classes) are sent into two identical encoders
(same structure and parameters) separately to get the textual
feature embeddings e = Encodertext(t). The embeddings
ea and eb are then used to measure the distance between
two threads in the latent space. Specifically, we follow the
metric in [12] to use a two-layer fully connected feed-forward
network for distance measurement with the concatenation of
two embeddings eab = ea

⊕
eb as the input. Finally, the

distance embeddings are sent to a two-unit softmax layer to

𝑚𝑚 1 𝑚𝑚 2 𝑚𝑚 𝑛𝑛…

LSTM
Cell

…

…

…

… … …

Max Pooling

⨁ ⨁ ⨁

…

1

2

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

BERT BERTBERT

Fig. 4: The detailed structure of textual feature encoder

get the normalized score [scoresame, scorediff], indicating
whether the two threads belong to the same class or not.

The detailed architecture of Encodertext is presented in
Figure 4, which contains following two modules:
Message encoding module. We first encode each message in
the thread (1© in Figure 4). We utilize BERT [39], one of
the state-of-the-art pretrained models (PTMs), to extract the
textual representation for each message. Compared with the
traditional context-free word embeddings (e.g., GloVe [40]),
BERT aims to learn contextual word embeddings (i.e., the
embedding of a word changes dynamically based on the
context where it appears) from large unlabeled corpora, thus
substantially boosting the performance of multiple natural lan-
guage processing (NLP) tasks [41]. Besides, applying BERT in
downstream tasks follows a simple fine-tuning process, which
prevents us from diving into the design of sophisticated model
architectures and introduces minimal task-specific parameters,
which is important considering only a small dataset is available
in our task. According to [39], we use the embedding of
[CLS] (a special token in BERT which is added in front of
every input sample) as the representation of the whole message
for our classification task. BERT uses a subword tokenizer that
avoids the out-of-vocabulary (OOV) problem by decomposing
OOV words into known subwords. However, it does not
apply to the technical terms in developer communications.
Hence, we add several domain-specific terms (e.g., maven,
npm, and stackblitz) to the original BERT vocabulary based on
frequency. The embeddings for these terms will be optimized
during fine-tuning.
Thread encoding module. We then model the contextual
information of the entire thread from a sequence of message
embeddings (2© in Figure 4), as the semantic logic is a crucial
pattern for thread-level classification. Bidirectional Long Short
Term Memory Network (Bi-LSTM) [42] is utilized to capture
the bidirectional contextual information for this sequence
learning task, which stacks two standard LSTM layers with
each one responsible for learning one-direction representation.
We concatenate the outputs of Bi-LSTM h = [

−→
h
⊕←−

h] in
each time step and further utilize a max-pooling layer to get
the final embedding of the thread.

TABLE III: List of non-textual features
Type Feature1 Description Aspect2

Length

tokena length of thread / first message / messages from the asker (number of tokens) T,F,A
tokenr length of first message / messages from the asker divided by thread length (number of tokens) F,A

charactera length of thread / first message / messages from the asker (number of characters) T,F,A
characterr length of first message / messages from the asker divided by thread length (number of characters) F,A

Structural

timegapa thread duration / gap between the first and second message (time) T,F
timegapMeana mean of all gaps in the thread (time) T
timegapStda standard deviation of all gaps in the thread (time) T
timegapr gap between the first and second message divided by thread duration (time) F
messgapa thread duration / gap between the first and second message (number of messages) T,F

messgapMeana mean of all gaps in the thread (number of messages) T
messgapStda standard deviation of all gaps in the thread (number of messages) T
messgapr gap between the first and second message divided by thread duration (number of messages) F
messa number of messages within the thread / from the asker T,A
messr number of messages from the asker divided by total number of messages in the thread A

Participant participanta number of participants involved in the thread T

Special-token

questionmarka number of question marks in the first message F
greetinga number of greeting words (e.g., hello, hey and hi) in the first message F
codea number of code snippts in thread / first message / messages from the asker T,F,A
errora number of stack traces in thread / first message / messages from the asker T,F,A
doca number of documentations mentioned in thread / first message / messages from the asker T,F,A
issuea number of issues mentioned in thread / first message / messages from the asker T,F,A

1 Footnote a and r denote the features with absolute value ranged in (0,+∞) and the features with relative value ranged in (0, 1], respectively.
2 T, F and A denote the aspects of whole thread, first message and the asker, respectively.

C. Incorporating Non-textual Features

The second stage of F2CHAT focuses on the training of non-
textual feature encoder and the combination of both textual
and non-textual features. We first introduce the identified
non-textual features and then describe the details of model
architecture for stage two.
Handcrafted non-textual features. The non-textual features
used in [13], [19], [20], [43] are generally based on the features
first proposed by Murray and Carenini [44]. However, these
features are targeted for classification at the granularity of
sentence, thus they need to be adapted and further enriched
for our thread-level algorithm. Inspired by the sentence-level
features, we identify 21 features (Table III) which can be
categorized into four groups:

1) Length Features refer to the features measured by absolute
or relative (w.r.t. the entire thread) length in either token-
level or character-level. Rationale: Threads of Problem
Report are generally longer as the askers need to elaborate
the details of the encountered problems, while expressing
the needs of certain information in threads of Information
Retrieval is relatively straightforward.

2) Structural Features refer to the features that are related
to the structure of a thread, e.g., the time interval between
first and last message of the thread (i.e., the duration of
the discussion). We also measure through the number of
intermediate messages since the time interval can be easily
affected by external factors, e.g., the activeness of the
chatroom which is different with respect to the specific
time period [8]. Rationale: Threads of Problem Report
usually have more messages and longer lasting time, since
solving a problem usually requires an in-depth discussion
to figure out the causes and takes time to verify the validity
of potential solutions.

3) Participant Feature is the number of participants involved
in the thread. Rationale: Although most of the discussions

are between two participants, i.e., the asker and one respon-
dent, more respondents will participate when the reported
bugs are tricky (Problem Report) or a team collaboration
is required (Project Management).

4) Special-token Features refer to the features measured by
the number of special tokens (e.g., code snippets, stack
traces and URLs). Rationale: Some special tokens are
strong indicators of certain information categories, e.g.,
stack traces for Programming Problem and URLs (linking
to official docs) for Documentation Information.

Furthermore, these 21 features are measured from three
different aspects (column Aspect in Table III): 1) Features
related to the whole thread. These features characterize the
thread as a whole. 2) Features related to the first message.
The first message is important as it usually indicates the
purposes and requirements of the thread initiator (asker). For
example, a large relative length of the first message w.r.t. the
entire thread suggests that the thread is most likely to belong
to Problem Report, since the asker needs to fully elaborate
the encountered problems. 3) Features related to the asker.
These features characterize the behaviour of the asker in the
discussion thread. By extracting features from this aspect,
we want to emphasize the differences between the two roles
(asker and respondent) of the participants. For example, if a
large portion of code snippets in the discussion thread are
provided by the asker, then it is a strong indicator of Problem
Report. However, this may not be the case if provided by the
respondents, since respondents in the threads of Information
Retrieval sometimes need to share the implementation details
while the askers just simply express their needs.
Combining both textual and non-textual features. Figure
3(b) presents the model architecture for combining the two
types of features in stage two. Unlike the textual counterpart,
non-textual features are numerical values (Table III) that can
be directly computed. There is no need for a complex en-

coder with a large number of parameters or few-shot learning
techniques. We use a fully connected feed-forward network
with one hidden layer to encode the non-textual features
enontext = Encodernontext(t), while the embedding of the
textual features is extracted using the pretrained encoder from
stage one (Figure 3) etext = Encodertext(t). We set an
extremely small learning rate (1e-5) for parameters in the
pretrained textual feature encoder, since we want to avoid
collapsing the well-trained encoder while slightly fine-tune
it to accommodate the newly added non-textual features.
Considering that some patterns require an in-depth integration
of both textual and non-textual features, we perform an early
fusion at the feature level instead of a late fusion at the
decision level. We concatenate the embeddings of textual and
non-textual features as the final representation of the thread
e = [etext

⊕
enontext] and then use it for decision making,

instead of making two decisions using textual and non-textual
features respectively and then fuse them to get the final
decision. We use a feed-forward network for decision making.
Finally, a softmax layer is utilized to get the normalized score
of each information type for this multi-class classification task.

V. EXPERIMENT DESIGN & RESULTS

A. Experiment Settings

We use the dataset built in Section III for evaluation. The
detailed statistics presented in Table IV include the number
of sampled threads (THD), the median of the thread lasting
time (DUR), the average number of participants per thread
(PCP), the average number of messages per thread (MSG),
and the average number of tokens per message (MSGLEN).
The experimental environment is a server equipped with an
NVIDIA V100 GPU, Intel Xeon Platinum 8163 CPU, 16GB
RAM, running Ubuntu OS.

TABLE IV: The detailed statistics of the dataset

PROJ THD DUR(min) PCP MSG(∗) MSGLEN(∗)

Angular 989 34 2.8 19.7(11.4) 12.2(20.9)
Spring-boot 985 145 2.3 9.3(6.0) 19.5(30.2)
Deeplearning4j 985 28 2.4 16.4(8.8) 12.0(22.4)
(∗) denotes the statistics after merging consecutive messages from the same

developer.

Testing Scenarios. The evaluations are performed under the
following two scenarios:
1) Five-fold-cross-validation for intra-project scenario. In this

scenario, annotated threads from chatrooms of the test-
ing projects are partially available in the training set,
meaning the model can gain knowledge of the testing
project during the training. We conduct a stratified five-
fold-cross-validation for each chatroom in this testing sce-
nario. Specifically, threads are divided into five folds using
stratified random sampling, with each fold preserving the
original distribution of information types. Every time, we
use four folds to train the model and the remaining one for
testing. The process is repeated five times to alleviate the
randomness, and we report the average evaluation results.

2) Leave-one-project-out-cross-validation for cross-project
scenario. This scenario simulates the situation when users
want to apply the trained algorithm to a new chatroom,
which requires the learned knowledge of the model to be
generalizable as the testing project is previously unseen
during the training. We use a leave-one-project-out strategy,
i.e., two projects are used as the source projects to train
the model and the remaining one as the target project for
testing. We iterate the process three times and report the
average evaluation results.

Implementation Details. We use the pretrained BERT-Small
model [45] from HuggingFace Transformer library [46] due
to the limited computation resources. It produces a 512-
dimensional embedding to represent each input message. The
output dimension of Bi-LSTM is 512 (256 for each). Fur-
ther, through a non-linear projection header, we get a 256-
dimensional embedding for the textual features of the thread.
Non-textual features are normalized before encoding. The
dimension of the non-textual feature embedding is the same as
the textual counterpart. The final representation of the thread
in stage two, i.e., the concatenation of embeddings of two
types of features, is a 512-dimensional embedding. We use
cross-entropy as the loss function in the two stages.

To avoid the over-fitting problem, we apply dropout [47] to
the outputs of every fully connected layer with the drop rate
set to 0.1. We use AdamW [48] as the optimizer for model
training in both two stages. In stage one, we set the learning
rate (lr) to 1e-3 except for the pretrained BERT module, whose
lr is set to 2e-5 as suggested in [39]. Specially, the pairs
of threads used for training are sampled from the dataset
in a 3:1 ratio of negative pairs (two threads with different
classes) to the positive ones (two threads with the same class),
which is considered as an optimal ratio for training siamese
networks [49]. In stage two, we set lr to 1e-5 for fine-tuning the
pretrained textual feature encoder and 1e-3 for other modules.
Besides, we adjust class weights in the loss function to tackle
the unbalanced dataset problem (Figure 2).
Evaluation Metrics. We use the following metrics to evaluate
the performance of F2CHAT: 1) Precision. Precision for class
Ci is the ratio of the number of threads that are correctly
classified as Ci to the total number of predictions made for Ci.
2) Recall. Recall for class Ci is the ratio of number of threads
that are correctly classified as Ci to the total number of threads
that belong to Ci in the ground truth. 3) F1-score. F1-score for
class Ci is the harmonic mean of its precision and recall. The
above three metrics evaluate the performance for a specific
category. For the evaluation of the overall performance, we
calculate the average F1-score of all classes weighted by
Support, i.e., the number of threads of each class in the test
set. These metrics are widely adopted in the previous studies
that involve classification of software artifacts [13], [20], [21].

B. Research Questions

Our evaluation explores the following research questions:
RQ1: Does our approach work well in the intra-project
scenario? We follow the five-fold-cross-validation described

in Section V-A to evaluate the performance of our approach
in the intra-project scenario. We use FRMiner, proposed by
Shi et al. [12], as our baseline. To the best of our knowledge,
FRMiner is the only one targeted for thread-level classification
of developer communication artifacts. The experimental results
suggest that FRMiner substantially outperforms two advanced
sentence-level approaches [21], [50] and four general text
classification approaches [51]–[54]. Furthermore, F2CHAT-t
(stage one of our approach) uses the same siamese architecture
as in their work to pretrain the textual feature encoder. Hence,
we only consider FRMiner for performance comparisons with
our approach in the experiments. However, FRMiner is de-
signed to identify one certain type of discussion threads in
developer chatrooms, i.e., threads with hidden feature requests.
To enable a comparison, we adapt it to our task by modifying
the number of output units in the last classification layers and
retraining on our dataset using the same settings in [12].
RQ2: Does our approach work well in the cross-project
scenario? To evaluate the performance of our approach in
the cross-project scenario, we follow the leave-one-project-
out-cross-validation described in Section V-A. We also use
FRMiner as our baseline for this RQ.
RQ3: How does our approach benefit from the hand-
crafted non-textual features? We investigate whether our
identified non-textual features help. To do so, we compare the
performance of F2CHAT-t and F2CHAT (leverages two types
of features) in both intra-project and cross-project scenarios.

TABLE V: The performance comparisons between our ap-
proach and FRMiner for each chatroom in intra-project setting

Metric Approach
Chatroom

Avg.Angular Spring-boot Deeplearning4j

Precision
FRMiner 0.384 0.425 0.404 0.404
F2CHAT-t 0.659 0.576 0.543 0.593
F2CHAT 0.686 0.647 0.588 0.640

Recall
FRMiner 0.444 0.460 0.407 0.437
F2CHAT-t 0.663 0.610 0.555 0.609
F2CHAT 0.689 0.650 0.593 0.644

F1-score
FRMiner 0.398 0.403 0.399 0.400
F2CHAT-t 0.656 0.581 0.519 0.585
F2CHAT 0.681 0.632 0.572 0.628

C. Experiment Results

RQ1: Performance in Intra-project Validation. The per-
formance comparisons for each chatroom under the intra-
project setting are shown in Table V. Here, the precision,
recall, and F1-score are averages of all information categories
weighted by support. The best results are highlighted in bold.
F2CHAT-t improves the performance of FRMiner (w.r.t. F1-
score) by 64.8%, 44.2%, and 30.1% for each of the three
chatrooms, respectively. Considering both approaches using
only textual features and sharing the same siamese architec-
ture, the performance improvement verifies the effectiveness of
1) Better preprocessing of chat messages (Section IV-A) and
2) Introducing BERT for sentence modeling (Section IV-B).
Although F2CHAT-t has already achieved satisfactory results
by leveraging deep textual features, F2CHAT further boosts

TABLE VI: The average performance of F2CHAT across three
chatrooms for each information type in intra-project setting

Information Category Precision Recall F1-score Support

Programming Problem (PP) 0.638 0.690 0.663 718
Library Problem (LP) 0.620 0.577 0.581 303
Documentation Problem (DP) 0.333 0.183 0.236 75
Programming Information (PI) 0.749 0.834 0.787 1,145
Library Information (LI) 0.453 0.541 0.474 181
Documentation Information (DI) 0.472 0.446 0.455 176
General Information (GI) 0.250 0.107 0.150 161
Technical Discussion (TD) 0.815 0.222 0.318 117
Task Progress (TP) 0.467 0.241 0.318 83

Weighted Avg. 0.640 0.644 0.628 —

the performances in all three chatrooms, with an average of
0.640, 0.644, and 0.628 in precision, recall, and F1-score.

The average performance achieved by F2CHAT across all
three chatrooms for each information category is shown in
Table VI. Generally, F2CHAT achieves better performance on
information categories with larger support. The best perfor-
mance is on Programming Information with an average F1-
score of 0.787. For categories where F2CHAT performs poorly,
it is mainly due to the limited data samples, thus failing
to capture effective patterns. The performance comparisons
for each information category are shown in Table VII. Here,
the results are averaged across all three chatrooms. The best
results are highlighted in bold. Through manual checking of
specific testing samples, we find that compared with FR-
Miner, F2CHAT-t can better distinguish between Programming
Problem and Programming Information, as well as Library
Problem and Library Information. It benefits from fine-grained
special tokens replacement (Section IV-A). Since source code
and stack trace embedded in the message text share the
same format (both of them are considered as code snippets),
replacing them with the same tag will confuse the learning-
based model. Besides, by incorporating non-textual features,
F2CHAT further improves the performance on almost every
information category.

TABLE VII: The performance comparisons for each informa-
tion type in intra-project setting

Metric Approach Information Category

PP LP DP PI LI DI GI TD TP

Pre-
cision

FRMiner 0.339 0.429 0.051 0.574 0.236 0.240 0.215 0.111 0.167
F2CHAT-t 0.622 0.561 0.111 0.720 0.377 0.229 0.210 0.622 0.500
F2CHAT 0.638 0.620 0.333 0.749 0.453 0.472 0.250 0.815 0.467

Re-
call

FRMiner 0.235 0.376 0.067 0.718 0.359 0.304 0.126 0.139 0.056
F2CHAT-t 0.592 0.453 0.100 0.870 0.489 0.325 0.137 0.278 0.130
F2CHAT 0.690 0.577 0.183 0.834 0.541 0.446 0.107 0.222 0.241

F1-
score

FRMiner 0.254 0.377 0.058 0.634 0.282 0.256 0.149 0.123 0.083
F2CHAT-t 0.603 0.501 0.105 0.784 0.426 0.258 0.145 0.346 0.198
F2CHAT 0.663 0.581 0.236 0.787 0.474 0.455 0.150 0.318 0.318

RQ2: Performance in Cross-project Validation. The perfor-
mance comparisons for each chatroom under the cross-project
setting are listed in Table VIII. Here, the chatroom refers to the
one selected as the target project (Section V-A). In general,
the findings are similar to those in the intra-project setting.
F2CHAT-t surpasses the FRMiner, and F2CHAT further boosts
the performance. Compared with the results in the intra-project

TABLE VIII: The performance comparisons for each chatroom
in cross-project setting

Metric Approach
Chatroom

Avg.Angular Spring-boot Deeplearning4j

Precision
FRMiner 0.435 0.485 0.393 0.438
F2CHAT-t 0.601 0.539 0.482 0.541
F2CHAT 0.646 0.604 0.530 0.593

Recall
FRMiner 0.438 0.468 0.395 0.434
F2CHAT-t 0.573 0.530 0.515 0.539
F2CHAT 0.631 0.577 0.542 0.583

F1-score
FRMiner 0.419 0.464 0.328 0.404
F2CHAT-t 0.572 0.522 0.465 0.520
F2CHAT 0.616 0.584 0.517 0.572

validation (Table V), the performance of F2CHAT declines
on all three chatrooms by 8.9% over the average F1-score.
However, the performance changes of FRMiner vary across
different chatrooms. We observe an improvement on Angular
and Spring-Boot, while a decline for Deeplearning4j. The
improvement is mainly due to a larger training set. In the cross-
project setting, all threads from two chatrooms (leave-one-
project-out-cross-validation) are available for training, while
in the intra-project setting, only 80% of threads from a
single chatroom (five-fold-cross-validation) are available. The
huge decline on Deeplearning4j is because it is a library for
supporting deep learning algorithms, but the other two projects
(Angular & Spring-Boot) are related to web development, thus
making the linguistic patterns learned during the training hard
to generalize on the testing set.

TABLE IX: The performance comparisons for each informa-
tion type in cross-project setting

Metric Approach Information Category

PP LP DP PI LI DI GI TD TP

Pre-
cision

FRMiner 0.487 0.352 0.000 0.596 0.238 0.224 0.143 0.056 0.367
F2CHAT-t 0.656 0.480 0.333 0.685 0.321 0.194 0.195 0.172 0.194
F2CHAT 0.613 0.593 0.204 0.729 0.464 0.451 0.204 0.238 0.688

Re-
call

FRMiner 0.449 0.420 0.000 0.610 0.251 0.259 0.178 0.095 0.058
F2CHAT-t 0.575 0.517 0.033 0.772 0.466 0.120 0.132 0.228 0.057
F2CHAT 0.695 0.459 0.070 0.751 0.330 0.409 0.154 0.302 0.315

F1-
score

FRMiner 0.393 0.383 0.000 0.582 0.221 0.239 0.116 0.070 0.099
F2CHAT-t 0.610 0.495 0.061 0.723 0.331 0.148 0.054 0.153 0.088
F2CHAT 0.651 0.508 0.093 0.738 0.372 0.337 0.146 0.261 0.419

The average performance achieved by FRMiner and our
approach across the three chatrooms for each information
category is shown in Table IX. The results further verify the
effectiveness of F2CHAT under the cross-project setting as
it outperforms the FRMiner on every information category.
Compared with the results under the intra-project setting
(Table VI), larger declines are observed on information types
with smaller support. Besides, we find the performance of
both FRMiner and F2CHAT-t on Programming Problem and
Library Problem are close to or even better than the results
in intra-project validation. This suggests that threads of these
two categories share the most similar linguistic patterns that
are irrelevant to project-specific concepts.
RQ3: Effectiveness of Handcrafted Non-textual Features.
To evaluate the effectiveness of our identified non-textual fea-

tures, we focus on the comparison of F2CHAT with F2CHAT-t
in this RQ. First, we discuss the effectiveness of handcrafted
non-textual features under the intra-project setting. As shown
in Table V, by incorporating non-textual features, F2CHAT
outperforms F2CHAT-t in all three chatrooms, indicating our
identified features (Table III) can supplement the textual
counterpart with effective information (e.g., thread structure,
discussion participants). Besides, we observe that non-textual
features are more powerful when the performances are poorer
using only textual features. F2CHAT improves the F1-score
of F2CHAT-t by 10.2% for Deeplearning4j, while only 3.8%
for Angular. Regarding specific information categories, non-
textual features are more effective on certain types (Table VII).
This indicates that non-textual features, such as the duration
of the thread, number of participants, and number of special
tokens (e.g., URL, issue), are strong indicators of information
categories, including Library Problem, Documentation Infor-
mation and Task Progress. While for General Information and
Technical Discussion, adding non-textual features does not
help or even decreases the performance. This suggests that
threads of these categories vary a lot in lengths, structures,
and discussion contents.

Second, we discuss the effectiveness of handcrafted non-
textual features under the cross-project setting. The results
presented in Table VIII suggest that our identified non-textual
features are generalizable across different projects, improv-
ing the average F1-score by 10.0% in cross-project setting
compared with 7.4% under intra-project setting (Table V).
When investigating the generalizability of non-textual features
on specific information categories, we observe that they are
more generalizable on Documentation Information and Task
Progress (Table IX). Although the performance on these
categories using only textual features is relatively poorer, as
we discussed in the last paragraph that this could be the cause
for larger improvements, it reveals that discussions of these
categories share the most similar structures and formats even
in different projects and communities.

VI. DISCUSSION

Effectiveness of Two-stage Model Design. We discuss the
motivations for separating the training process of textual
and non-textual feature encoders in Section IV-B. Here, we
conduct an ablation study to further verify the effectiveness
of our two-stage model design. We replace the Encodertext
in Figure 3(a) into the architecture in Figure 3(b) without
the last classification layers (the feed-forward module and the
softmax layer), and refer this model as F2CHAT-s. F2CHAT-s
simultaneously train both encoders for textual and non-textual
features using the siamese architecture. We compare its per-
formance against F2CHAT-t and F2CHAT under intra-project
scenario. F2CHAT-t shares the same siamese architecture, but
it only leverages textual features. F2CHAT utilizes two types
of features, but it separates the training processes. The average
performances of each model across three chatrooms are shown
in Table X. The performances of F2CHAT-s and F2CHAT-t are
close, while F2CHAT significantly surpasses both two models.

TABLE X: The performance comparisons in ablation study

Precision Recall F1-score

F2CHAT-s 0.592 0.604 0.582
F2CHAT-t 0.593 0.609 0.585
F2CHAT 0.640 0.644 0.628

Effectiveness of Incorporating Hand-crafted Non-textual
Features. Although the deep textual features are powerful
in presenting the semantic information, we argue that they
only focus on the linguistic aspect, while neglecting other
information of the discussion thread (e.g., structure, partic-
ipant). Moreover, the textual features do not consider the
differences brought by the speaker’s identity (i.e., the asker and
respondents). Based on the observations from manual analysis
of the data, we discuss that these kinds of information can
contribute to the prediction of information categories (Section
IV-C). Hence, we supply F2CHAT with handcrafted non-
textual features to bridge the information gap. Figure 5 shows
examples to illustrate the effectiveness of non-textual features.

(a) Number of tokens (Length)

(c) Number of participants (Participant) (d) Number of code snippets (Special-token)

(b) Time duration (Structural)

Fig. 5: Distributions of four non-textual features (one from
each type) of different information types in Angular chatroom

VII. THREATS TO VALIDITY

There are two major threats to the validity of this work. 1)
The generalizability of the identified information categories
and the proposed mining technique. We only sample 2,959
threads from three active chatrooms on Gitter due to the huge
cost of manual analysis of developer discussion threads. To
ensure the diversity of the sampled data, we select chatrooms
with several principals (Section III-A), e.g., most actively used
and belonging to different categories. However, the project-
specific characteristics of the selected chatrooms might affect
the generalizability of our identified information categories
and the performance of the proposed automated mining tech-
nique. Specifically, in the preprocessing of chat messages
(Section IV-A), we argue that the special tokens should be re-
placed based on the specific artifacts contained instead of their

forms. We notice that developer communications, including
instant chats, discussions in ITS, etc., typically involve various
software artifacts (e.g., code snippets, issue reports and stack
traces). These artifacts are closely related to the discussion top-
ics, and are embedded in the text using diverse forms. Hence,
we argue that the core idea of fine-grained special tokens
replacement is applicable to other mining sources of developer
communications. However, the detailed implementations and
effectiveness may vary across different sources. 2) The quality
of the dataset used for evaluation. We build a larger dataset
(2,959 threads) than the prior work [12], which has only
1,035 threads and focuses on one specific information type.
We leverage the state-of-the-art method proposed by Ehsan
et al. [8] to disentangle the stream of messages to threads.
However, the disentangled threads may contain more or fewer
messages, confusing the thread-level classification techniques.
Moreover, the ground-truth labels of the threads are manually
annotated, which may subject to the personal experience of
the annotators. Two annotators work collaboratively following
a card-sorting process to eliminate this inconsistency.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we conduct an in-depth analysis to identify
the information categories available in discussion threads that
may satisfy the diverse needs of various OSS stakeholders.
First, we build a thread-level taxonomy with nine information
categories through manual examination of 2,959 threads from
three chatrooms on Gitter. Second, we propose an automated
classification technique, namely F2CHAT, which combines
handcrafted non-textual features with deep textual features
extracted by neural models. Evaluation results suggest that
F2CHAT outperforms FRMiner by 57% with an average F1-
score of 0.628. Our approach also achieves considerable per-
formance in cross-project validation, which indicates F2CHAT
can extract patterns that are generalizable across various
projects. The experiment results also verify the effectiveness
of our indentified non-textual features under both intra-project
and cross-project validation. In future work, we plan to refine
our taxonomy by exploring discussions from more chatrooms.
We also plan to develop a tool for Gitter chatrooms to support
the daily development tasks of OSS stakeholders by providing
well structured and categorized historical chat data.

IX. ACKNOWLEDGMENTS

This research/project is supported by the National Science
Foundation of China (No. U20A20173 and No. 6190234),
Key Research and Development Program of Zhejiang Province
(No.2021C01014), and National Research Foundation, Sin-
gapore under its Industry Alignment Fund – Pre-positioning
(IAF-PP) Funding Initiative. Any opinions, findings and con-
clusions or recommendations expressed in this material are
those of the author(s) and do not reflect the views of National
Research Foundation, Singapore.

REFERENCES

[1] B. Lin, A. Zagalsky, M.-A. Storey, and A. Serebrenik, “Why developers
are slacking off: Understanding how software teams use slack,” in
Proceedings of the 19th ACM Conference on Computer Supported
Cooperative Work and Social Computing Companion, 2016, pp. 333–
336.

[2] M.-A. Storey, L. Singer, B. Cleary, F. Figueira Filho, and A. Zagalsky,
“The (r) evolution of social media in software engineering,” in Future
of Software Engineering Proceedings, 2014, pp. 100–116.

[3] V. Käfer, D. Graziotin, I. Bogicevic, S. Wagner, and J. Ramadani,
“Communication in open-source projects-end of the e-mail era?” in Pro-
ceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings, 2018, pp. 242–243.

[4] “Gitter.” [Online]. Available: https://gitter.im/
[5] “Slack.” [Online]. Available: https://slack.com/
[6] “Discord.” [Online]. Available: https://discord.com/
[7] H. Sahar, A. Hindle, and C.-P. Bezemer, “How are issue reports

discussed in gitter chat rooms?” Journal of Systems and Software, vol.
172, p. 110852, 2019.

[8] O. Ehsan, S. Hassan, M. E. Mezouar, and Y. Zou, “An empirical study
of developer discussions in the gitter platform,” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 30, no. 1, pp.
1–39, 2020.

[9] P. Chatterjee, K. Damevski, L. Pollock, V. Augustine, and N. A. Kraft,
“Exploratory study of slack q&a chats as a mining source for software
engineering tools,” in 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR). IEEE, 2019, pp. 490–501.

[10] R. Alkadhi, T. Lata, E. Guzmany, and B. Bruegge, “Rationale in
development chat messages: an exploratory study,” in 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR).
IEEE, 2017, pp. 436–446.

[11] R. Alkadhi, M. Nonnenmacher, E. Guzman, and B. Bruegge, “How do
developers discuss rationale?” in 2018 IEEE 25th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2018, pp. 357–369.

[12] L. Shi, M. Xing, M. Li, Y. Wang, S. Li, and Q. Wang, “Detection of
hidden feature requests from massive chat messages via deep siamese
network,” in 2020 IEEE/ACM 42nd International Conference on Soft-
ware Engineering (ICSE). IEEE, 2020, pp. 641–653.

[13] D. Arya, W. Wang, J. L. Guo, and J. Cheng, “Analysis and detection
of information types of open source software issue discussions,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 454–464.

[14] A. Di Sorbo, S. Panichella, C. A. Visaggio, M. Di Penta, G. Canfora,
and H. C. Gall, “Development emails content analyzer: Intention mining
in developer discussions (t),” in 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2015,
pp. 12–23.

[15] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora,
and H. C. Gall, “How can i improve my app? classifying user reviews
for software maintenance and evolution,” in 2015 IEEE international
conference on software maintenance and evolution (ICSME). IEEE,
2015, pp. 281–290.

[16] A. Bacchelli, T. Dal Sasso, M. D’Ambros, and M. Lanza, “Content clas-
sification of development emails,” in 2012 34th International Conference
on Software Engineering (ICSE). IEEE, 2012, pp. 375–385.

[17] N. Chen, J. Lin, S. C. Hoi, X. Xiao, and B. Zhang, “Ar-miner: mining
informative reviews for developers from mobile app marketplace,” in
Proceedings of the 36th international conference on software engineer-
ing, 2014, pp. 767–778.

[18] S. Rastkar, G. C. Murphy, and G. Murray, “Summarizing software
artifacts: a case study of bug reports,” in 2010 ACM/IEEE 32nd
International conference on Software Engineering, vol. 1. IEEE, 2010,
pp. 505–514.

[19] P. Rodeghero, S. Jiang, A. Armaly, and C. McMillan, “Detecting user
story information in developer-client conversations to generate extractive
summaries,” in 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE). IEEE, 2017, pp. 49–59.

[20] A. Wood, P. Rodeghero, A. Armaly, and C. McMillan, “Detecting speech
act types in developer question/answer conversations during bug repair,”
in Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2018, pp. 491–502.

[21] Q. Huang, X. Xia, D. Lo, and G. C. Murphy, “Automating intention
mining,” IEEE Transactions on Software Engineering, 2018.

[22] “Our replication package.” [Online]. Available: https://github.com/
panshengyi/F2Chat

[23] E. Shihab, Z. M. Jiang, and A. E. Hassan, “Studying the use of developer
irc meetings in open source projects,” in 2009 IEEE International
Conference on Software Maintenance. IEEE, 2009, pp. 147–156.

[24] ——, “On the use of internet relay chat (irc) meetings by developers
of the gnome gtk+ project,” in 2009 6th IEEE International Working
Conference on Mining Software Repositories. IEEE, 2009, pp. 107–
110.

[25] P. Chatterjee, K. Damevski, N. A. Kraft, and L. Pollock, “Software-
related slack chats with disentangled conversations,” in Proceedings
of the 17th International Conference on Mining Software Repositories,
2020, pp. 588–592.

[26] R. Baeza-Yates, B. Ribeiro-Neto et al., Modern information retrieval.
ACM press New York, 1999, vol. 463.

[27] Y. Kim, “Convolutional neural networks for sentence classification,”
in Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Doha, Qatar: Association
for Computational Linguistics, Oct. 2014, pp. 1746–1751. [Online].
Available: https://www.aclweb.org/anthology/D14-1181

[28] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few
examples: A survey on few-shot learning,” ACM Computing Surveys
(CSUR), vol. 53, no. 3, pp. 1–34, 2020.

[29] “Angular chatroom on gitter.” [Online]. Available: https://gitter.im/
angular/angular

[30] “Spring-boot chatroom on gitter.” [Online]. Available: https://gitter.im/
spring-projects/spring-boot

[31] “Deeplearning4j chatroom on gitter.” [Online]. Available: https:
//gitter.im/eclipse/deeplearning4j

[32] “Gitter explore page.” [Online]. Available: https://gitter.im/home/explore
[33] “Gitter developer page.” [Online]. Available: https://developer.gitter.im/
[34] M. Elsner and E. Charniak, “You talking to me? a corpus and algorithm

for conversation disentanglement,” in Proceedings of ACL-08: HLT,
2008, pp. 834–842.

[35] D. Spencer, Card sorting: Designing usable categories. Rosenfeld
Media, 2009.

[36] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

[37] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in International
conference on machine learning. PMLR, 2020, pp. 1597–1607.

[38] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature
verification using a” siamese” time delay neural network,” Advances in
neural information processing systems, pp. 737–737, 1994.

[39] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[40] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[41] X. Qiu, T. Sun, Y. Xu, Y. Shao, N. Dai, and X. Huang, “Pre-trained
models for natural language processing: A survey,” Science China
Technological Sciences, pp. 1–26, 2020.

[42] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in 2013 IEEE international conference
on acoustics, speech and signal processing. Ieee, 2013, pp. 6645–6649.

[43] S. Rastkar, G. C. Murphy, and G. Murray, “Automatic summarization
of bug reports,” IEEE Transactions on Software Engineering, vol. 40,
no. 4, pp. 366–380, 2014.

[44] G. Murray and G. Carenini, “Summarizing spoken and written conver-
sations,” in Proceedings of the 2008 Conference on Empirical Methods
in Natural Language Processing, 2008, pp. 773–782.

[45] I. Turc, M.-W. Chang, K. Lee, and K. Toutanova, “Well-read students
learn better: On the importance of pre-training compact models,” arXiv
preprint arXiv:1908.08962v2, 2019.

[46] “Bert-small on huggingface.” [Online]. Available: https://huggingface.
co/google/bert uncased L-4 H-256 A-4

[47] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The journal of machine learning research, vol. 15, no. 1, pp.
1929–1958, 2014.

[48] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
arXiv preprint arXiv:1711.05101, 2017.

[49] P. Neculoiu, M. Versteegh, and M. Rotaru, “Learning text similarity
with siamese recurrent networks,” in Proceedings of the 1st Workshop
on Representation Learning for NLP, 2016, pp. 148–157.

[50] L. Shi, C. Chen, Q. Wang, S. Li, and B. Boehm, “Understanding
feature requests by leveraging fuzzy method and linguistic analysis,” in
2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2017, pp. 440–450.

[51] A. McCallum, K. Nigam et al., “A comparison of event models for
naive bayes text classification,” in AAAI-98 workshop on learning for

text categorization, vol. 752, no. 1. Citeseer, 1998, pp. 41–48.
[52] A. Liaw, M. Wiener et al., “Classification and regression by randomfor-

est,” R news, vol. 2, no. 3, pp. 18–22, 2002.
[53] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-

Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,”
Advances in neural information processing systems, vol. 30, pp. 3146–
3154, 2017.

[54] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and T. Mikolov,
“Fasttext. zip: Compressing text classification models,” arXiv preprint
arXiv:1612.03651, 2016.

