Finding A Needle in a Haystack:
Automated Mining of Silent Vulnerability Fixes

Jiayuan Zhou*, Michael Pacheco*, Zhiyuan Wan', Xin Xiai”, David Lo%, Yuan Wang* and Ahmed E. Hassan¥
* Centre for Software Excellence, Huawei
T College of Computer Science and Technology, Zhejiang University, Hangzhou, China
1 Faculty of Information Technology, Monash University, Melbourne, Australia
§ School of Information Systems, Singapore Management University, Singapore
T Software Analysis and Intelligence Lab (SAIL), Queen’s University
{jiayuan.zhou1l,michael.pachecol,yuan.wang1} @huawei.com,wanzhiyuan @zju.edu.cn, Xin.Xia@monash.edu,

davidlo@smu.edu.sg, ahmed @cs.queensu.ca

Abstract—Following the coordinated vulnerability disclosure
model, a vulnerability in open source software (OSS) is sug-
gested to be fixed “silently’’, without disclosing the fix until
the vulnerability is disclosed. Yet, it is crucial for OSS users
to be aware of vulnerability fixes as early as possible, as once
a vulnerability fix is pushed to the source code repository, a
malicious party could probe for the corresponding vulnerability
to exploit it. In practice, OSS users often rely on the vulnerability
disclosure information from security advisories (e.g., National
Vulnerability Database) to sense vulnerability fixes. However,
the time between the availability of a vulnerability fix and
its disclosure can vary from days to months, and in some
cases, even years. Due to manpower constraints and the lack
of expert knowledge, it is infeasible for OSS users to manually
analyze all code changes for vulnerability fix detection. Therefore,
it is essential to identify vulnerability fixes automatically and
promptly. In a first-of-its-kind study, we propose VulFixMiner, a
Transformer-based approach, capable of automatically extracting
semantic meaning from commit-level code changes to identify
silent vulnerability fixes. We construct our model using sampled
commits from 204 projects, and evaluate using the full set of
commits from 52 additional projects. The evaluation results show
that VulFixMiner outperforms various state-of-the-art baselines
in terms of AUC (i.e., 0.81 and 0.73 on Java and Python dataset,
respectively) and two effort-aware performance metrics (i.e.,
EffortCost, P,,:). Especially, with an effort of inspecting 5% of
total LOC, VulFixMiner can identify 49% of total vulnerability
fixes. Additionally, with manual verification of sampled commits
that were identified as vulnerability fixes, but not marked as
such in our dataset, we observe that 35% (29 out of 82) of the
commits are for fixing vulnerabilities, indicating VulFixMiner is
also capable of identifying unreported vulnerability fixes.

Index Terms—Software Security, Vulnerability Fix, Open
Source Software, Deep Learning

I. INTRODUCTION

Coordinated vulnerability disclosure (also known as responsi-
ble disclosure) [1]], [2]] is a widely used vulnerability disclosure
model,!*23 in which the relevant information of a vulnera-
bility is only disclosed after a period of time that allows
for the vulnerability to be fixed. Following this process, a

I Corresponding author.
Uhttps://www.microsoft.com/en-us/msrc/cvd
Zhttps://github.com/google/oss-vulnerability- guide
3https://www.apache.org/security/committers.html

vulnerability in an open source software (OSS) is suggested to
be reported privately to the OSS maintainers, who “silently”
fix the vulnerability (i.e., push the commit(s) to the source
code repository, without explicit log messages indicating the
vulnerability). They then integrate the fix “publicly” into the
OSS (e.g., including the fix in a new release), and finally
disclose the vulnerability and its fix.

It is important for OSS users to be aware of vulnerability
fixes and apply fixes in time. In 2017, Equifax suffered from
a data breach, compromising the personal information of
over 143 million U.S. consumers, due to a missed security
update [3[], [4]. To be aware of vulnerability fixes, OSS users
usually monitor the vulnerability disclosure information from
public vulnerability advisories.

Common Vulnerabilities and Exposures (CVE) and the
National Vulnerability Database (NVD) are two of the most
popular public vulnerability advisories. NVD is a robust and
widely used vulnerability advisory, fully synchronized with
CVEs, and provides additional information (e.g., the severity)
regarding vulnerabilities. Thus, it is a common practice for
OSS users to monitor NVD primarily, as a method of becom-
ing aware of vulnerabilities and their fixes. However, due to
the slow progress in disclosing reported vulnerabilities [J5], it
is challenging to promptly discover vulnerability fixes. Also,
the time interval between the availability of a vulnerability
fix and its disclosure can vary from days to years*, and the
median of this time interval was reported to be more than one
week in NVD [5]. As an example, CVE-2018-11776 [0] is a
remote code execution vulnerability in Apache Struts, which
is the same type as the critical vulnerability that led to the
data breach of Equifax. This vulnerability was “silently” fixed
in the public code repository in June 2018 [7], though the
patch was disclosed two months later. Given the public nature
of OSS development, once a vulnerability fix is pushed to
the source code repository, a malicious party could infer the
corresponding vulnerability and exploit it before the security
patch is publicly integrated or disclosed. As a result, the users

4https://www.fireeye.com/blog/threat-research/2020/04/time- between-
disclosure-patch-release-and- vulnerability-exploitation.html

https://www.microsoft.com/en-us/msrc/cvd
https://github.com/google/oss-vulnerability-guide
https://www.apache.org/security/committers.html
https://www.fireeye.com/blog/threat-research/2020/04/time-between-disclosure-patch-release-and-vulnerability-exploitation.html
https://www.fireeye.com/blog/threat-research/2020/04/time-between-disclosure-patch-release-and-vulnerability-exploitation.html

of Apache Struts were exposed to huge security risks during
the two months between patch availability and disclosure.

The disclosure latency will extend the vulnerability’s win-
dow of exposure and it makes OSS users, especially the
enterprise users who use OSS in their products, at a great
disadvantage in defending security attacks. Hence, it is crucial
to facilitate the awareness of vulnerability fixes for OSS users,
so that they can react to the vulnerabilities as early as possible.
For example, when enterprise users receive the notifications of
vulnerability fixes, they can infer the corresponding vulnerabil-
ity and evaluate the security impact on their product and take
actions (e.g., recompile the software to incorporate the critical
fixes that might cause huge loss) before the vulnerability is
publicly disclosed. Without the early awareness, OSS users
need to rush to address the vulnerability at the date of the
disclosure. Hence, early awareness helps OSS users reduce
the stress of keeping their system safe. In addition, being
aware of the fix earlier could help shorten the vulnerability
remediation time for OSS users. For example, with the help of
hot-patching frameworks [8]]—[11]], hot-patches can be derived
from the original vulnerability fixes to ease the deployment of
security updates.

Following coordinated vulnerability disclosure in OSS con-
texts [[1]], [2]l, a vulnerability is suggested to be fixed silently,
which means that any information indicating the nature of
the vulnerability should not be exposed. For example, the
vulnerability handling process of Apache’ suggests messages
associated with commits should not make any reference to
any security-related nature. Hence, for general OSS users, the
only way to be aware of silent vulnerability fixes promptly is
to monitor and analyze the commit code changes constantly,
which is infeasible due to manpower constraints. Therefore, it
is essential to propose approaches that automatically identify
silent vulnerability fixes in real-time.

Previous studies [12]-[15] leverage vulnerability-related
artefacts (e.g., commit messages and issue reports) to identify
vulnerability fixes. They extract features from textual data and
leverage machine learning techniques to predict whether a
commit is for fixing a vulnerability or not. Different from pre-
vious work, we incorporate a deep learning solution designed
for analyzing the code of commits.

In our work, we propose VulFixMiner, a Transformer-
based [16]] model, to automatically identify silent vulnerability
fixes in a practical setting (i.e., extremely imbalanced class
distribution of the fixes). Since we are interested in silent
vulnerability fixes, of which the commit message should not
leak information related to the vulnerability, we only con-
sider code change information. Given the outstanding ability
in learning effective contextual representation, we leverage
the Transformer-based [16] language model CodeBERT [17],
which is pre-trained on a large programming language corpus,
to learn the semantic meaning of code changes. We first fine-
tune CodeBERT to learn the semantic meaning of file-level
code changes, to generate contextual embedding vectors for

Shttps://www.apache.org/security/committers.html

changed files. The vectors are then aggregated to generate
a commit-level contextual embedding vector, which is used
for classification. VulFixMiner is capable of cross-project and
cross-language just-in-time vulnerability fix identification.

We construct our model using 63,331 commits from 204

projects and evaluate it using 143,989 commits from 52
projects that are unseen during the training phase. The evalua-
tion results show that VulFixMiner outperforms various state-
of-the-art baselines in terms of AUC (i.e., 0.81 and 0.73 on
Java and Python dataset, respectively), and two effort-aware
evaluation metrics (i.e., EffortCost, P,p;). Particularly, with
an effort of inspecting 5% of the total LOC, VulFixMiner
can identify 49% of total vulnerability fixes. Additionally,
by manually investigating a sample of commits identified as
vulnerability fixes that are not marked as vulnerability fixes in
our dataset, we observe 35% (29 out of 82) of them are for
fixing vulnerabilities, indicating VulFixMiner is also capable
of identifying unreported vulnerability fixes.

In summary, this paper makes the following contributions:

e« We propose the use of VulFixMiner to automatically
identify silent vulnerability fixes, supporting both cross-
project and cross-language scenarios.

o To the best of our knowledge, we are the first to use deep
learning techniques to identify silent vulnerability fixes in
a practical setting.

e VulFixMiner achieves higher discriminative power and
efficiency compared to state-of-the-art baselines in identi-
fying silent vulnerability fixes, when evaluated on a com-
plete set of commits from 52 Java and Python projects.

o We find that VulFixMiner is capable of identifying unre-
ported vulnerability fixes.

« To promote future work, we release the vulnerability fixes
in our study [18].6

Paper organization. This paper is organized as follows:
Section [l introduces background information. We elaborate
on our approach on Section Section presents the
experimental procedures and results. In Section [V] we discuss
the unreported vulnerability fixes, the ethical consideration,
the other application scenarios, the commit messages of silent
vulnerability fixes, and time efficiency. Sections and
cover the possible threats to validity, and highlight related
work, respectively. We conclude this paper and discuss future
work opportunities in Section [VIII]
II. PRELIMINARIES

In this section, we briefly introduce the vulnerability disclosure
models, Common Vulnerabilities and Exposures, National Vul-
nerability Database, and pre-trained NLP models for natural
language tasks.

A. Vulnerability disclosure models

Full Disclosure. In the Full Disclosure model [19], the vul-
nerability is fully disclosed onto public disclosure channels as
early as possible. The idea behind this model is that the early

%Note that we are undergoing the company’s internal process for model
publishing.

https://www.apache.org/security/committers.html

Pre-trained

Code change
preprocessor

Legend

L
Phase 1: - = 9% — S — o FoT T
Fine-tuning | ==| = ! °
Commit T File-level change
---------------- T G s e e e code input tokens
Code change Commit change Neural network P
preprocessor, _ Aggregator classifier
Phase 2: - l= - o File-level contextual
Training —(=|" - 52 EEEEE 9@ embedding vector
_________________ Commit I e | HEEEE
@ coé"sm" s: Z!f Commit-level contextual
Pha_se 3 r: 2| ct | o8 a0 embedding vector
Application 50| cs [oos | K omss
New commits VulFixMiner users

Fig. 1: The overall framework of VulFixMiner.

public awareness of the vulnerability will benefit users who
are vulnerable, more than malicious actors.

Coordinated Vulnerability Disclosure. In the Coordinated
Vulnerability Disclosure model [[1]], [2], a vulnerability remains
undisclosed, or silent, as long as possible to provide developers
of the software enough time to fix it. After a new release
including the fix is published, the vulnerability is disclosed.
This model is commonly and widely applied in many OSS
0rganizati0ns7'8’9. In this disclosure model, users remain at
risk as long as they are unaware that they are vulnerable.
Also, a fix for the vulnerability might be committed to an OSS
repository before the vulnerability is disclosed, which we refer
to as a “silent fix”. Due to the lack of public exposure of the
vulnerability, it is expected that exploitation from malicious
users will be less likely. However, given the public nature of
OSS development, if a vulnerability is silently fixed before
the fix is integrated, a malicious party can discover these fixes
from the public code repository, and exploit the vulnerability
in the vulnerable systems.

Non-disclosure. In the non-disclosure model [19], no details
of a vulnerability, nor its fix, are disclosed. The software
developers, users, and malicious attackers do not have access
to any public information regarding these vulnerabilities. The
risk involved with this model appears as users are never noti-
fied of vulnerabilities within the software. Although the non-
disclosure model prevents attackers from analyzing security
fixes and stops them from further finding similar vulnerabil-
ities,! OSS users might not be aware of the urgency of a
security fix and do not apply the fix. In this case, OSS users
are always exposed to security risks. In our paper, we refer
to these fixes as “unreported vulnerability fixes”. We discuss
the capability of VulFixMiner in identifying such fixes in
Section [V=Al

Thttps://www.microsoft.com/en-us/msrc/cvd
8https://googleprojectzero.blogspot.com/
9https://www.apache.org/security/committers.html
10https://redmondmag.com/articles/201 1/02/16/microsoft-silent- fix-due-
diligence.aspx

B. Common Vulnerabilities and Exposure (CVE), and the
National Vulnerability Database (NVD)

CVE, developed by The Mitre Corporation (MITRE), provides
a standardized method for software developers to disclose,
identify, and manage software vulnerabilities. Once a vulner-
ability is identified, the OSS developers can request a unique
CVE ID from a CVE Numbering Authority (CNA), such as
MITRE, for the vulnerability. Once this ID is assigned, the
CVE will be included in a vulnerability database for public
disclosure. CVE is one of the most popular vulnerability
advisories; OSS users monitor them to discover vulnerabilities
that might impact them, and the fixes to defend against
exploitation.

NVD!! is a popular CVE database, maintained by the Na-
tional Institute for Science and Technology (NIST). NVD
is automatically synchronized with the MITRE database and
includes all CVE information included in MITRE, as well as
additional information. More specifically, NVD assigns labels
to each URL in the list of references of a CVE, including the
vulnerability fix. This labeling can only be performed if the
vulnerability fix is already disclosed, MITRE or NVD become
aware of it, and MITRE or NVD have included it in their
databases.

C. Pre-Trained NLP models for natural language tasks.

Transformer. The Transformer [16] is a model originally
designed for tasks related to natural language processing
(NLP). The canonical architecture of the model consists of
an encoder-decoder and includes several layers with attention
mechanisms. This architecture allows for the use of pre-trained
models, which have already been trained on related domain-
specific data by others, and can be reused for multiple related
tasks through fine-tuning.

CodeBERT. CodeBERT [17|], a variant of RoBERTa [20],
is a multi-layer bidirectional Transformer, and one of the
first models to incorporate both natural language (NL) and
programming language (PL) information. As there is a natural
difference between NL and PL, CodeBERT is further pre-
trained on RoBERTa with 2.1 million function-level source

Whttps://mvd.nist.gov/

https://www.microsoft.com/en-us/msrc/cvd
https://googleprojectzero.blogspot.com/
https://www.apache.org/security/committers.html
https://redmondmag.com/articles/2011/02/16/microsoft-silent-fix-due-diligence.aspx
https://redmondmag.com/articles/2011/02/16/microsoft-silent-fix-due-diligence.aspx
https://nvd.nist.gov/

code data, together with the corresponding function documen-
tation. This allows CodeBERT to handle NL to PL-related
tasks, including NL code search, NL-PL probing, and code
documentation generation.

III. PROPOSED APPROACH

In this section, we first introduce the overall framework of
VulFixMiner, then we describe the details of each module in
VulFixMiner.

A. Overall Framework

The goal of VulFixMiner is to effectively identify vulnerability
fixes using code change information. Figure [I] shows the over-
all framework of VulFixMiner, which consists of three phases
(i.e., Fine-tuning, Training, and Application). We first fine-
tune a pre-trained language model to learn the representation
of file-level code change in the Fine-tuning Phase. In the
Training Phase, we consider the fine-tuned model as the file
change transformer, and we use the commit change aggregator
to aggregate the file-level code change representations into
commit-level code change representations, and then train a
neural network classifier to identify commits. In the Applica-
tion Phase, the trained VulFixMiner consumes new commits
from OSS repositories and computes scores, which indicate
the likelihood that a commit is for fixing vulnerabilities. We
elaborate on the details of each phase as follows:

1 From 6efaf900d4ffb7be8a74065af5553bad2389f729 Mon Sep 17 00:00:00 2001

2 From: Lukasz Lenart <lukaszlenart@apache.org>

3 Date: Wed, 2 May 2018 08:25:06 +0200

4 Subject: [PATCH] Increases scope when location parsing is avoided

[—

6 .../main/java/org/apache/struts2/result/PostbackResult.java | 2 + Three

7 .../org/apache/struts2/result/ServletActionRedirectResult.java | 2 +- files

8 .../struts2/portlet/result/PortletActionRedirectResult.java | 3 ++=

9 3 files changed, 4 insertions(+), 3 deletions(-)

10

11

12 index 4cle52af@..1a275d52e 100644

13 --— a/core/src/main/java/org/apache/struts2/result/PostbackResult.java

14 +++ b/core/src/main/java/org/apache/struts2/result/PostbackResult.java

15 protected String makePostbackUri(ActionInvocation
invocation) { Code

16 if (actionName != null) { changes

17 actionName = conditionalParse(actionName, invocation); of the

18 T prséloeation = false; - r----»Added code 1st file

19 if (namespace == null) {

20 namespace = invocation.getProxy().getNamespace();

21 FIIIIIIITIIparsélocation 2 falié; ----- > Removed code

Fig. 2: A sample commit which is for fixing CVE-2018-11776
vulnerability [6].

B. Phase 1: Fine-tuning

We choose CodeBERT [17] as our pre-trained language model.
We first consider code changes as a sequence of tokens
in a BoW. The code change preprocessor (See Figure [I)
extracts code changes from commits and constructs a file-level
sequence of input tokens, which are then fed into CodeBERT
for fine-tuning. We introduce the code change preprocessing
and CodeBERT fine-tuning as below:

Rem-code segment Add-code segment

: (lcLsi) CLS T1 (Tn)(1sEP1] T1 E0s]]

i n+1 n+2 n+3 255 256
E n+1 n+2 n+3
CE ET ETn CE[SEP] ET CETm CE[EOS]

Input
tokens

E CodeBERT

CodeBERT Fine-tuned
Contextual
} embedding

vectors

[Fully connected layer |

Fine-tuning CodeBERT

Fig. 3: The architecture of fine-tuning CodeBERT. C'E is the
embedding vector of the classification token [CLS] and the
vector works as the contextual embedding of the input tokens.

1) Code change preprocessing: As shown in Figure [2] a
commit may contain code changes across multiple files. We
preprocess code changes in the following three steps:

1. Extract file-level code changes. We first extract the
information of file-level changes into separate code change
documents. For each document, we further extract removed
and added code lines and split them into the rem-code and
add-code segments, respectively.

2. Process the removed code and added code lines. For each
segment, we first tokenize code lines into a sequence of tokens,
and then further split camel case style (e.g., “addData’)
and snake case style (e.g., “add_data”) tokens, by using
codeprep [21]].

3. Input tokens construction. To construct the same input
representation in CodeBERT [17]], we use the same tokenizer!?
that CodeBERT used to concatenate two segments. Three
separator tokens (i.e., [CLS], [SEP], and [EOS]), are used for
concatenation. [CLS] is a special classification token found
always as the first token of input. The final hidden state
of CodeBERT corresponding to [CLS] is considered as the
contextual embedding (i.e., aggregated sequence embedding)
of the input tokens, and can be used for classification. [SEP]
and [EOS] are used to separate two segments, and to indicate
the end of input, respectively. All inputs are either padded
or truncated to the same length (i.e., 256) by the CodeBERT
tokenizer. Figure [3] shows an example of the constructed input
tokens.

2) CodeBERT fine tuning: The downstream fine-tuning task
is to predict the probability that the code changes in a file are
for fixing vulnerabilities. Figure [3| shows the architecture of
fine-tuning CodeBERT. Note that we use the same CodeBERT
tokenizer to generate the input embedding vector. Since it is
not the main focus of our approach, we omit the details of the
input embedding generation (which is explained in the original
work of CodeBERT [17]). During fine-tuning, the output of
CodeBERT includes the contextual embedding vectors (i.e.,
CEr) of each token and an embedding vector (i.e., CEy)
of [CLS], which works as the contextual embedding of the
input tokens. We use the contextual embedding vector of the

1Zhttps://huggingface.co/microsoft/codebert-base/tree/main

https://huggingface.co/microsoft/codebert-base/tree/main

input tokens (i.e., the removed and the added code tokens) to
represent the semantic relevance between removed and added
code lines. Then we connect C'E¢ with a fully connected layer
followed by an output layer, which computes a score indicating
the probability that the code changes in a file are for fixing
vulnerabilities. To improve the robustness of our model, we
apply the dropout technique [22] on the fully connected layer.

During fine-tuning, the parameters of CodeBERT are
learned to minimize the cross-entropy loss. After fine-tuning,
all parameters of CodeBERT are frozen, and the fine-tuned
CodeBERT is used as a file change transformer to consume
file-level input tokens, and output contextual embedding vec-
tors of the file-level code changes.

C. Phase 2: Training

Following the same code change preprocessing in Sec-
tion the constructed file-level input tokens are encoded
into file-level contextual embedding vectors (i.e., CEy) by the
file change transformer, which is the fine-tuned CodeBERT.
We then use a commit change aggregator to aggregate the
file-level vectors belonging to the same commit, to generate a
unified file-level code change representation (i.e., C' Ecommit),
representing commit-level code changes.

In the commit change aggregator, we compute the element-
wise mean for the vectors of” files belonging to the same

commit as CFE.ommit = %Ef where C'Ey; is the
contextual embedding vector of the i file in a given commit,
and n is the number of files belonging to that commit.
Finally, we use a one-layer neural network classifier to
classify commits. The aggregated C Eommq+ is fed into a fully
connected layer, followed by an output layer which computes
a score indicating the probability that the code changes in
a commit are for fixing vulnerabilities. We also apply the

dropout technique [22] on the fully connected layer here.

D. Phase 3: Application

After the Training Phase, OSS users can use the trained
VulFixMiner to mine vulnerability fixes from new commits.
For example, VulFixMiner can be integrated into an automatic
monitoring service of OSS code repositories. Given a set of
new commits, VulFixMiner computes scores for each of them
and outputs a commit ranking to OSS users. The commits
are ranked by scores and the higher score of a commit
indicating the higher probability of the commit being for fixing
vulnerabilities (see Figure [1).

IV. EXPERIMENTS

In this section, we aim to answer the following RQs:

o RQI1: How effective is VulFixMiner compared to the

state-of-the-art baselines?

¢ RQ2: Does VulFixMiner benefit from fine tuning using

cross-domain data?

Next, we describe our dataset and each step of data pro-
cessing. We then present the details of five baselines, four
evaluation metrics, and experiment setup. Finally, we show
our research questions and results.

S AEP KB Extract: + l_ Label—+
___ Extract - Vulnerability
Vulnerability L_g a0 Fix All commits
Fixes Link .
Information
¢ Extract T Extract T Label
> Issues and B Issue and Pull Repo
Pull Requests [—Extract» Requests)
N ’ Information
Link Information
Extract * *

Fig. 4: An overview of our data collection approach. We
collect vulnerability data from SAP KB project [23]] and Mitre.
We collect commit data from GitHub.

A. Data Collection

Our dataset consists of commit information from a set of Java
and Python OSS. We rely on two vulnerability-related data
sources to first collect a set of commits that are for fixing
vulnerabilities and then collect all commits of OSS that contain
any of the vulnerability fixes we collected. Figure [illustrates
the overview of data collection approach.

1. Collecting vulnerability fix links. We first collect data
from an existing Java vulnerability fix dataset [23]], which is
manually curated by SAP KB project.'? From this data source,
we obtain 1,055 vulnerability fix links, spanning across 183
Java OSS projects and corresponding to 615 CVE:s.

Next, we collect all CVEs (disclosed by January 26, 2021)
from Mitre CVE database'4, resulting in 201,234 CVEs. We
proceed by extracting CVEs containing a patch fixing that
vulnerability, with a link toward a GitHub"® commit, issue,
or pull request. We then collect the commit information and
filter for commits that contain Java or Python file extensions.
For Java, we obtain a total of 199 commits, 227 issues,
and 155 pull requests, spanning across 189 projects and
corresponding to 340 CVEs. For Python, we obtain a total
of 288 commits, 244 issues, and 353 pull requests, spanning
across 256 projects and corresponding to 444 CVEs. We then
merge all commits collected up until this point and remove any
duplicates. We note that in these steps we include vulnerability
fixes regardless of when they were disclosed in relation to the
vulnerability itself.

2. Collecting issue and pull request information. We pro-
ceed by collecting the commit links related to the total number
of issues (471) and pull requests (508) from Java and Python
projects using GitHub. This results in 383 Java vulnerability
fixes, spanning across 101 projects and corresponding to 186
CVEs. As for Python, this results in 597 vulnerability fixing
commits spanning across 141 projects and corresponding to
233 CVEs. We add this result to the list from the previous
step and remove any duplicates.

3. Collecting OSS repository and commit information.
Finally, we collect the commit information from each vul-
nerability fix link and collect all commits made within their

Bhttps://sap.github.io/project-kb/
4https://cve.mitre.org/
5https://github.com/

https://sap.github.io/project-kb/
https://cve.mitre.org/
https://github.com/

projects, up until February 26, 2021. If their IDs are found
within the list of vulnerability fixes from the previous step,
we label these commits by assigning a ”’1” to them, defining
the positive label.

As a result, the Java dataset includes 1,436 vulnerability
fixes and 839,682 non-vulnerability fixing commits, spanning
across 310 projects and corresponding to 839 CVEs. The
Python dataset includes 885 vulnerability fixes and 722,291
non-vulnerability fixing commits, spanning 256 projects and
corresponding to 444 CVEs.

B. Data Preprocessing

We further preprocess our dataset to filter out noisy data and
enhance existing data.

1. Remove noisy data. First, we remove duplicate code
change information, keeping the first instance. Next, we re-
move OSS that only have one vulnerability fix. One challenge
for identifying vulnerability fixes in a practical setting is the
extremely imbalanced dataset. We expect that it is likely for
these specific OSS to offer less opportunity for our models
to learn and differentiate between vulnerability and non-
vulnerability fixing commits. We then remove large commits
that are less likely to fix vulnerabilities, by calculating two
thresholds using the 95" percentile of the total modified lines
of code and the number of changed files of vulnerability fixes.
For Java, these values are 309 and 15 respectively. The removal
results in 474,555 non-vulnerability fixing commits, and 1,353
vulnerability fixes, across 150 projects. For Python, these val-
ues are 80 and 6 respectively. The removal results in 357,696
non-vulnerability fixing commits, and 751 vulnerability fixes,
across 106 projects.

2. Enhance the dataset by identifying more secret vulner-
ability fixes. Next, we enhance our dataset by labeling more
commits that are relevant to vulnerability fixes. To do this, we
define a regular expression adapted from the work of Zhou and
Sharma [|12]. The original regular expression contains a diverse
set of security-related keywords, and as a result, commonly
mislabels commits. For example, the message of a commit'® is
“Migrate xml-insecure groovy —> java”, containing a security-
related keyword, “insecure”, though the purpose of the com-
mit is for code refactoring. To avoid such false alarms, we
select three conservative keywords (i.e., “vuln”, “CVE”, and
“NVD”) from [12] to generate a new regular expression. We
use this regular expression to relabel commits not identified
by analyzing the fix links (described in Section as
vulnerability fixes, by matching the words found within their
commit messages. In the Java dataset, we relabel 420 non-
vulnerability commits across 123 OSS. In the Python dataset,
we relabel 501 non-vulnerability commits across 98 OSS.

3. Split dataset into training, testing, and validation sets. In
this step, we first split the data project-wise, using an 80%/20%
split, and consider the 20% split as the testing dataset. We then
further split the 80% training set project-wise, into a 90%/10%

16https://github.com/spring- projects/spring-security/commit/
2e2b22f87ecbd40e3328a089efb3189a3b9cdd99

split, and consider the 10% split as the validation dataset, and
the remaining split as the training dataset. In this case, the
commits in test data are from different projects which are never
seen in the training and validation sets.

We randomly undersample non-vulnerability fixing commits
for each OSS, and combine the result with the unmodified
vulnerability fixes, to form our final training and validation
datasets. We perform this approach as another mechanism to
reduce the imbalanced nature of the dataset; however, we note
that these resulting datasets continue to remain imbalanced.
Also, we do not apply this undersampling to the test dataset,
as our goal is to evaluate our model in a practical setting.

Table [[] describes our final dataset. We notice an extremely
imbalanced class distribution of vulnerability fixes. For the
percentage of vulnerability fix within each OSS, the median
number is 0.35%. The median number of vulnerability fixes
within each OSS is only 4.

C. Baselines

We compare VulFixMiner with several baselines:

e RandomGuess: Random Guess is a strawman baseline
that randomly predicts whether a code change is for fixing
vulnerabilities.

e SVM: The closest work to ours is by Sabetta and Bezzi
[13]. Their work treated code and commit messages as a
collection of tokens in a bag of words (BoW), and trained
two linear support vector machine (SVM) models basing
on commit messages and code of commit, respectively.
We replicate the code-based model.

e RandomForest: It is widely applied throughout software
engineering studies (e.g., defect prediction [24] and se-
curity bug report prediction [25]]) and showed robust and
high performances [26]—[28]].

e LSTM: Long short-term memory (LSTM) network [29] is
a widely applied RNN-based model throughout software
engineering studies [30]]. Instead of treating code as a
bag of words, we use LSTM to represent the sequential
information of code by considering code as a sequence
of tokens.

o Transformer: Transformer [16] is an encoder-decoder,
neural network-based language model with multi-head
attention layers, giving way to the use of pre-trained
models (e.g., CodeBERT), and is used for a variety of
natural language processing tasks.

D. Evaluation Metrics

Given the fact that the vulnerability fixes are rare among
the code commits (i.e., the extremely imbalanced dataset
scenario), the goal of VulFixMiner is to help users reduce the
efforts in identifying vulnerability fixes from a large scope
of code commits. We leverage two effort-aware performance
metrics (i.e., CostEffort@L and P, [31]-[34]) to evaluate the
effectiveness of VulFixMiner in practical setting. Similar to
prior studies [35]-[38]], instead of using threshold-dependent
measures (e.g., precision and recall) which depend on arbi-
trarily thresholds and are sensitive to imbalanced data, we use

https://github.com/spring-projects/spring-security/commit/2e2b22f87ecbd40e3328a089efb3189a3b9cdd99
https://github.com/spring-projects/spring-security/commit/2e2b22f87ecbd40e3328a089efb3189a3b9cdd99

TABLE I: Description of our dataset after preprocessing. We refer to vulnerability fixes and non-vulnerability fixing commits

as V.F. and N.V.F, respectively.

Training Set

Validation Set

Testing Set

#VE #N.VF #Projects #VE #N.VF #Projects #VE #N.VF #Projects

Java 983 31,323 120 191 6,921 119 300 87,856 30

Python 522 20,362 84 80 2,949 83 195 55,638 22
B100————= o For a given prediction model m, its P,, is computed
b3 - _ Area(O,P)
875) Models as Popt(m). 7AreaiO,W)’ where Oi P, and R repre-
85 ol) « + = Optimal model sent the optimal model curve, the prediction model curve,
§) i | = = Prediction model and the worst model curve, respectively, and the function
25 ./ | e Worse model Area(curvel, curve2) represents the corresponding area be-
= 2 S s . .
z 0™%5 50 75 100 tween the two curves. A larger P,,; value indicates a smaller
o

% LOCs Inspected

Fig. 5: An example of the relationship between the percentage
of vulnerability fixes detected and the amount of inspection
cost (i.e., %LOC) for different prediction models.

AUC to quantify the discriminative capability of VulFixMiner.
We introduce each measure as follows:

CostEffort@L: We wish to identify more vulnerability fixes
under the limited inspection effort. Similar to the effort eval-
vation in the defect prediction task [31]-[33], [39]], we also
consider the LOC as the proxy of the inspection effort. CostEf-
fort@L is the proportion of inspected vulnerability fixes among
all the actual vulnerability fixes when L. LOC of all commits
are inspected. CostEffort@L is computed as +, where n
accounts for the correctly identified vulnerability fixes, N
accounts for the total vulnerability fixes, and L accounts
for L% of total LOC of commits. The high CostEffort@L
indicates more vulnerability fixes could be identified costing
the effort of inspecting L LOC. We calculate CostEffort@5%
and CostEffort@20% in our study.

Py,i: is the normalized version of the effort-aware per-
formance metrics which is first introduced by Mende and
Koschke [34], basing on the concept of the “code-churn-
based” Alberg diagram [40]]. P,,; is a widely used effort-aware
performance metric in defect prediction [31]-[33]], [39]. In our
study, we calculate F,,; as same as they do.

Figure [5] is an example of the Alberg diagram in the vul-
nerability fix detection context, where the diagram shows the
relationship between the percentage of identified vulnerability
fixes (i.e., y-axis) achieved by a model and the percentage
of LOCs that are inspected (i.e., x-axis). The optimal and
worst model represents the cases where all commits are
respectively sorted in decreasing and ascending order by vul-
fix-density. The vul-fix-density of a commit ¢ is defined as
D(c) = %, where Y(c) is 1 if the commit ¢ is vul-fix
and O otherwise, and Effort(c) is the LOC the commit c. By
doing this, in Figure [5 the points on the optimal model and
worst model represent the maximum and minimum percentage
of vul-fix detected, respectively, with %LOCs inspected. Then
we can use optimal model and worst model as the upper bound
and lower bond, respectively, to further assess the prediction
model.

difference of performance between the prediction model and
the optimal case. In our study, we calculate P,,; when 5%
and 20% of the LOCs are inspected and we denote them as
P,,+@5 and P,,;@20, respectively.

AUC: is the area under the receiver operating characteristic
(ROC) curve [41], which measures the prediction performance
of the model for all possible classification thresholds (i.e., from
0 to 1). It is robust in quantifying the discriminative capability
of a classifier, especially in imbalanced class distributions,
due to its insensitivity toward them [26[]. The AUC has been
recommended as the primary metric to determine and compare
the performance of classifiers [42]], and should be used over
other metrics which are threshold-dependent (e.g., Fl-score)
[43]]. A classifier with an AUC > 0.7 (0 < AUC < 1) is
considered to have achieved an acceptable performance [44].
In our experiment, the AUC measures the probability that our
classifier will rank a randomly selected vulnerability fixing
commit higher than a randomly selected non-vulnerability
fixing commit.

E. Experiment Setup

For VulFixMiner, we use the CodeBERT tokenizer for input
embedding vector generation. The size of the vocabulary is
50,265 and the size of the input embedding vector is 256. The
sizes of the fully connected layers described in Sections [[TI-B2]
and are both set to 768, which is the same size as the
hidden state of CodeBERT. Before computing the score, a
dropout [22] rate of 0.1 is used for both fully connected layers
in the fine-tuning and classification steps.

VulFixMiner is fine-tuned using Adam [45] with shuffled
mini-batches. During fine-tuning, we set the learning rate of
Adam to le-5 and the batch size to 8. We fine-tune CodeBERT
for 15 epochs with an early stopping strategy [46], [47] to
avoid overfitting problems during the fine-tuning process. We
stopped the fine-tuning if the value of the cross-entropy loss
has not been updated on the validation dataset in the last 5
epochs. We train the neural network classifier with a batch
size of 32 for 60 epochs with an early stopping strategy.

The input of each baseline model is the file-level code
change tokens. Except for adding separator tokens and ap-
plying truncating and padding, we process the code changes
in the same way as what we do in Section We choose

4,000 most frequent tokens in the training set to build the
token vocabulary.

For the SVM baseline, we use the same hyperparameter set-
ting in [[13]]. Similar to [48]], for the RandomForest baseline, we
tune the mitry (i.e., number of randomly sampled variables).
We find that using the square root of the feature number (i.e.,
the size of vocabulary) can achieve the best performance on
the validation dataset. Hence, we set mtry to 200. LSTM
baseline has a single-layer LSTM network with an unrolling
length of 32 and a hidden unit size of 256. For transformer
baseline, except for the size of hidden states, we use the same
hyperparameter setting in [[16]]. We set the size of hidden states
to 768, which is the same size used in CodeBERT.

Our experiments are conducted on EulerOS v1.13.10-r1 64
bits, with a V100-32GB GPU.!".

F. Research Questions and Results

RQ1: VulFixMiner vs. Baselines

To answer this RQ, we evaluate VulFixMiner and baseline
models on Java and Python test dataset respectively, in terms
of AUC, CostEffort@5%, CostEffort@20%, Popt@5%, and
Pyt @20%. Tables [II] and [T show the evaluation results on
Java and Python projects, respectively. We observe that Vul-
FixMiner outperforms all baselines on both Java and Python
projects in terms of all evaluation performance metrics.

For Java projects, VulFixMiner achieves AUC, CostEf-
fort@5%, CostEffort@20%, P,p,;@5%, and P,,;@20% of
0.81, 0.61, 0.71, 0.53, and 0.63, respectively. Using Random-
Forest, the best performing model for comparison, these results
constitute improvements of 1%, 41%, 14%, 39%, and 24%,
respectively. VulFixMiner thus achieves about the same AUC
as RandomForest, but outperforms by substantial margins
in terms of CostEffort@5% and P,,,@5%, which indicates
VulFixMiner can reduce the inspection effort in a practical
use. When comparing to RandomGuess, SVM, LSTM, and
Transformer, VulFixMinerava outperforms them in terms of
all evaluation metrics by large margins.

For Python projects, VulFixMiner achieves AUC, Cost-
Effort@5%, CostEffort@20%, P,,:@5%, and P, @20% of
0.73, 0.32, 0.56, 0.24, and 0.39, respectively. Using all base-
lines for comparison, these results constitute improvements of
11-23%, 18-26%, 18-41%, 16-21%, and 18-30% respectively.

These results indicate that VulFixMiner has high discrimi-
native power in identifying vulnerability fixes, and is capable
of identifying vulnerability fixes with less inspection effort in
practical use.

RQ2: Impact of Cross-domain Data

To answer this RQ, we construct three variants of VulFixMiner
with different fine-tuning strategies: 1) without fine-tuning,
2) only fine-tuning with Java projects, 3) only fine-tuning
with Python projects, and we refer these three variants as
to VulFixMinery,r7, VulFixMiner;, and VulFixMinerp, re-
spectively. We evaluate these three variants using the same
evaluation metrics on Java and Python projects. Tables

Thttps://www.nvidia.com/en-us/data-center/v100/

TABLE II: Performance of VulFixMiner and baseline models
for the Java projects.

Model AUC CostEffort Popt
@5% @20% @5% @20%

RandomGuess 0.50 0.07 0.19 0.05 0.20
SVM 0.59 0.20 0.57 0.14 0.39
RandomForest 0.80 0.44 0.6 0.41 0.50
LTSM 0.52 0.05 0.22 0.03 0.11
Transformer 0.64 0.33 0.50 0.06 0.24
VulFixMiner 0.81 0.61 0.71 0.53 0.63

TABLE III: Performance of VulFixMiner and baseline models
for the Python projects.

Model AUC CostEffort Popt
@5% @20% @5% @20%

RandomGuess 0.53 0.06 0.23 0.05 0.20
SVM 0.55 0.14 0.15 0.08 0.14
RandomForest 0.62 0.11 0.31 0.08 0.18
LTSM 0.50 0.06 0.18 0.03 0.09
Transformer 0.56 0.08 0.38 0.04 0.21
VulFixMiner 0.73 0.32 0.56 0.24 0.39

and [V] show the evaluation results on Java and Python
projects, respectively. We observe that VulFixMinery,pr
performs the worst on both tasks. Comparing VulFixMiner
to VulFixMinery,rr, we find that the fine-tuning process
improves VulFixMiner in terms of AUC, CostEffort@5%,
CostEffort@20%, P,,@Q5%, and P,,;@20% by 14-17%, 27-
50%, 42-44%, 22-46%, and 31-42%, respectively. We also
observe that VulFixMiner; and VulFixMinerp outperform all
baselines on Java and Python projects, respectively. However,
the performance of VulFixMiner, which is fine tuned with both
Java and Python data, outperforms both VulFixMiner; and
VulFixMinerp on both Java and Python projects

When fine-tuning is done using data from only one domain
(e.g., Java projects), the fine-tuned model achieves better
performance on the task within the same domain. For example,
VulFixMiner ; is fine-tuned using Java projects, and performs
better than VulFixMinerp on Java projects. One possible
explanation is different programming languages vary in their
syntactical features. Hence, the knowledge learned solely from
one language may not be aligned well on the task involving
code in another language.

However, the knowledge learned from one domain may
contribute to the task belonging to the other domain. Figure []
shows Venn diagrams indicating the number of vulnerability
fixes identified by VulFixMiner; and VulFixMinerp, with an
inspection effort of 5% of the total LOC. In Java projects,
we observe that VulFixMinerp identifies 11% (32 out of
300) Java vulnerability fixes, which cannot be identified by
VulFixMiner ;. On Python projects, VulFixMiner; identifies
14% (27 out of 195) Python vulnerability fixes, which cannot
be identified by VulFixMinerp. This could be a possible
explanation of why VulFixMiner benefits from fine-tuning
with cross-domain data.

The overall performance of VulFixMiner on both Java and

https://www.nvidia.com/en-us/data-center/v100/

TABLE IV: Performance of VulFixMiner and 3 variants on
Java projects.

AUC CostEffort Popt
@5% @20% @5% @20%
VulFixMiner 5,7 0.64 0.11 0.37 0.07 0.21
VulFixMiner ; 0.8 0.52 0.66 0.46 0.57
VulFixMiner p 0.61 0.24 0.42 0.17 0.3
VulFixMiner 0 0.81 0.61 0.71 0.53 0.63

TABLE V: Performance of VulFixMiner and 3 variants on
Python projects.

AUC CostEffort Popt
@5% @20% @5% @20%
VulFixMiner y, 7 0.59 0.05 0.14 0.02 0.08
VulFixMiner y 0.71 0.26 0.49 0.18 0.33
VulFixMiner p 0.66 0.3 0.53 0.21 0.38
VulFixMiner 0.73 0.32 0.56 0.24 0.39

Python projects are 0.77, 0.49, 0.62, 0.41, and 0.53 for AUC,
CostEffort@5%, CostEffort@20%, P,,:@5%, and P,,;@20%,
respectively.

V. QUALITATIVE ANALYSIS AND DISCUSSION
A. Identification of Unreported Vulnerability Fixes

During our study, we observed that not all of the vulnerabilities
and the corresponding fixes have been reported to the CVE
database. Thus, we conduct a user study to evaluate the
usefulness of our approach for identifying those secret (i.e.,
unreported) vulnerability fixes.

Experimental Tasks. We create tasks based on the 577
commits that are identified as false positives by VulFixMiner
(with 0.5 as the threshold). Specifically, we randomly selected
a statistically representative sample of 82 commits from these
false positives (with a 95% confidence level and 10% confi-
dence interval), which belong to 20 OSS systems. Each OSS
system has 1 to 27 commits in the sampled set. For each
commit, we ask two questions:

e Q1. Does this commit fix a security vulnerability?
o Q2. If the answer to Q1 is “Yes”, what type of vulnera-
bility does the commit fix?

In terms of the second question, we provide 11 options for
types of vulnerabilities as referring to the top 10 frequent CWE
software vulnerabilities [5]], including (1) Buffer Overflow, (2)
Improper Input Validation, (3) Access Control Error, (4) Cross-
Site Scripting, (5) Information Disclosure, (6) Numeric Error,
(7) Resource Management Error, (8) Race Condition, (9) SQL
Injection, (10) Cryptographic Issues, and (11) Other.
Participants. We invite 6 security experts who have 5 to 12
years of experience with software security to participate in our
user study. We ask each of them to finish an experimental task
that includes 12 to 15 commits.

Results. Among the 82 commits, 29 commits are confirmed
by the security experts as fixes of security vulnerabilities. The
result indicates that our approach can effectively identify secret
vulnerability fixes. In addition, the security experts suggest that

300 Java Vulnerability fixes

REIOE;#

195 Python Vulnerability fixes

" VulFixMinerp
_. (Effort@5%)

VulFixMiner
(Effort@5%)

Fig. 6: Venn diagrams showing the number of identified
vulnerability fixes by VulFixMiner; and VulFixMinerp with
inspection effort of 5% of total LOC.

TABLE VI: An example commit that fixes an unreported
vulnerability related to XXE and XML bomb attack.

[Jul 20, 2017] Key Code Change Snippet:
private static final XMLInputFactory inputFactory
= XMLInputFactory.newInstance () ;
+ private static final XMLInputFactory inputFactory
= StaxUtils.createDefensivelInputFactory();

[Jul 20, 2017] Commit Message: XmlEventDecoder uses common
defensive XMLInputFactory (now in StaxUtils). Issue: SPR-15797.

[Jul 20, 2017] Related Issue Title: [SPR-15797] Disable DTD and
external entities support in XmlEventDecoder to prevent XXE and
XML bomb attack.

[Sep 22, 2017] Commit Comment: @dmak: “... In our application
we are also concerned about the security and would like to re-use
the code from StaxUltils.createDefensivelnputFactory(). ...”

the 29 fixed security vulnerabilities can be further classified
into 6 categories, i.e., 12 of resource management error, 10
of improper input validation, 4 of access control error, 1 of
information exposure, 1 of cross-site scripting, and 1 null
pointer dereference. Table [VI{shows an example commit!® that
fixes a resource management error vulnerability in the spring-
framework project on Jul 20, 2017. In the code snippet of the
example commit, the developer replaces “XMLInputFactory”
with a defensive “XMLInputFactory” variant. Interestingly,
the corresponding issue report confirms that the commit can
prevent XXE and XML bomb attacks by disabling the support
of DTD and external entities in “XMLEventDecoder”. Also,
another contributor of the spring-framework project came
across this commit on September 21, 2017, commenting that
he would like to port this commit to another branch to improve
security.

B. Ethical consideration

VulFixMiner identifies silent vulnerability fixes before these
fixes are disclosed. Although attackers might use the pre-
disclosed information to gain temporal advantages, OSS users
can benefit from our tool by being aware of the fixes as soon
as they are developed, which is usually one week earlier than
the disclosure [5]. Hence, we are not “arming” the potential
attackers. Instead, we help OSS users become aware of the
vulnerability earlier and point out the corresponding fix, so
they could have more time and ease in defending against
potential attacks.

18https://github.com/spring- projects/spring- framework/commit/
e4651d6b50c5bc85c841537859¢c212ac4e33434

https://github.com/spring-projects/spring-framework/commit/e4651d6b50c5bc85c84ff537859c212ac4e33434
https://github.com/spring-projects/spring-framework/commit/e4651d6b50c5bc85c84ff537859c212ac4e33434

TABLE VII: The number of commit messages that are security
related and not security related according to the regular
expression that is used to match security-related issues [|12].

Commit type #Commit messages

Security related

Vulnerability fix 754
Non-vulnerability fix 58,979

Security unrelated

1,226
1,502,994

Note that we are not fighting against the coordinated vul-
nerability disclosure model since we do not leak information
about the vulnerabilities before they are fixed. Different from
the full disclosure model, which discloses vulnerabilities too
early and puts OSS users at a great disadvantage (since there is
no remediation solution available at the time of disclosure), we
aim at providing vulnerability fix information to OSS users.
In turn, OSS users are able to react to vulnerabilities earlier,
to avoid the potential security attacks due to the disclosure
latency. We advocate that OSS maintainers should disclose
vulnerabilities as soon as the corresponding vulnerability fixes
are publicly available. If OSS maintainers need more time to
integrate vulnerability fixes into a new release or test the fixes,
they should consider postponing submitting the fixes to public
code repositories.

C. Other possible application scenarios

Basing on the ability of identifying silent vulnerability
fixes, VulFixMiner can be further used to enhance published
vulnerability information by locating the corresponding vul-
nerability fixes. Many vulnerabilities are disclosed without the
information of the corresponding fixes and such information is
important for security researchers in vulnerability research, for
example, automated generation of security patches. In order to
locate vulnerability fix information for disclosed vulnerabili-
ties, the existing works mainly rely on the keyword-matching-
based approach, which is not able to locate silent vulnerability
fixes, while VulFixMiner can. In addition, VulFixMiner is
also useful in facilitating some other downstream tasks, for
example, the vulnerable dependency alert. Dependabot is a
GitHub security feature which is enabled in 3.5m active
GitHub repositories [49]. Dependabot analyzes the dependent
graph of a project with the published vulnerability infor-
mation [50]], and sends security notifications to OSS users
when the vulnerable dependencies are detected. By using
VulFixMiner to identify silent vulnerability fixes before the
vulnerabilities are disclosed, we believe Dependabot could
detect the vulnerable dependencies at an earlier stage.

D. The challenges of leveraging commit messages on mining
silent vulnerability fixes

Although the coordinated vulnerability disclosure [1]], [2] is
commonly and widely applied in 0SS,'%-2%2! we still observe
many cases of which the information of a vulnerability is

19https://www.microsoft.com/en-us/msrc/cvd
20https://github.com/google/oss-vulnerability-guide
2lhttps://www.apache.org/security/committers.html

TABLE VIII: Training and inference time of VulFixMiner.

VulFixMiner ;

3 h 47 min
0.04 sec/commit

VulFixMiner p

1 h 29 min
0.02 sec/commit

VulFixMiner

4 h 26 min
0.04 sec/commit

Training
Inference (Avg.)

leaked before disclosure. For example, the commit message of
the fix??> for CVE-2015-7326 [51]] is “patch XXE vulnerabil-
ity”, which explicitly mentions the vulnerability type and the
purpose of the commit. Such a practice is not recommended,
yet provides an opportunity for identifying vulnerability fixes
using commit messages [[12[|-[14]. To further check how often
this “leakage” happens, we apply a regular expression that is
used to match security-related words [[12] in commit messages.
Table shows the result of matching. We observe that
38% (754 out of 1,982) of commit messages in vulnerability
fixes contain security-related words, indicating the remaining
62% of vulnerabilities were fixed secretly. For such “secret”
cases, the message-based approach fails to identify vulnera-
bility fixes. On the other hand, the different commit message
documentation styles across projects is also a challenge for
identifying vulnerability fixes in a cross-project setting.

E. Time Efficiency

Table shows the time costs of training and average infer-
ence for per commit. The training time varies as it depends
on the size of the dataset. Once models have been trained, it
only takes a few milliseconds to generate the prediction score
for a given commit.

VI. THREATS TO VALIDITY

Internal validity. Threats to internal validity relate to the
experimenter bias and errors. The automated approach we
proposed for labeling unreported vulnerability fixes in Sec-
tion [[V-B| may introduce bias. To mitigate the threat of
bias during the labeling, we design and apply a simple yet
conservative regular expression, which only matches commits
with messages containing “cvd”, “nvd”, and “vuln”. We also
randomly sampled 10% of 921 new labeled commits and
manually confirmed that all of them are labeled correctly. To
mitigate the threat of bias in the manual examination of false-
positive cases, we invite security experts who have at least 5
years of experience in software security and express interest
in our study. In addition, we give the security experts enough
time to conduct these tasks.

External validity. Threats to external validity relate to the
generalizability of VulFixMiner. Our dataset is built using
disclosed vulnerability fixes, which may not be representative
of all vulnerability fixes, especially unreported vulnerability
fixes. To mitigate the threat, we designed a strict regular ex-
pression to label the unreported vulnerability fixes and include
them in our dataset. Also, we have demonstrated the capability
of VulFixMiner to mine unreported vulnerability fixes in
Section Future research should include more unreported
vulnerability fixes if possible. We also note that we study only

22https://github.com/miltonio/milton2/commit/
5f81b0c48a817d4337d8b0e99ealbd744ecd720b

https://www.microsoft.com/en-us/msrc/cvd
https://github.com/google/oss-vulnerability-guide
https://www.apache.org/security/committers.html
https://github.com/miltonio/milton2/commit/5f81b0c48a817d4337d8b0e99ea0b4744ecd720b
https://github.com/miltonio/milton2/commit/5f81b0c48a817d4337d8b0e99ea0b4744ecd720b

vulnerability fixes that were reported to CVE. Although the
use of CVE is one of the most popular public vulnerability
advisory methods, future research should consider including
more data sources (e.g., Exploit Database®® or project-specific
web resources), and code or vulnerability related artefacts.
However, we evaluate VulFixMiner on a large dataset (i.e.,
143,989 commits from 52 projects which are unseen during
the training phase) and achieve high performance in a prac-
tical setting. Especially, we include two of the most popular
programming language, Java and Python in our study. In the
future, we plan to include more programming languages.

VII. RELATED WORK

Zhou and Sharma [12] first explored the identification
of vulnerability fixes by leveraging commit messages. They
extract features using word2vec embedding technique [52]]
and use ensemble classifiers to classify commits.They first
filter out security-unrelated commits using a regular expression
including a variety of security-related words. This filtering
reduces the imbalanced nature of the data, but also removes
secret vulnerability fixes of which messages do not contain
security-related words. Chen et al. [[14]] further considers code
changes of commits. By introducing a self-training process,
they can also utilize the filtered-out commits. Different from
their work, we use deep learning technique in the analysis
of code changes in commits. Their tool is not made open
source due to its commercial nature and thus we cannot make
a comparison with them.

Sabetta and Bezzi [13[] used an SVM model, constructed
using a BoW representation of code change and commit mes-
sage tokens, to classify vulnerability fixing commits. Although
their approach achieves high performance, the imbalance of
their sampled dataset does not reflect the natural imbalance
within a realistic scenario. Under the same evaluation setting,
VulFixMiner outperforms their approach (see Section |[[V-F).

Xu et al. [53] proposed SPAIN, a binary-level patch anal-
ysis framework, to automatically identify vulnerability fixes.
SPAIN locates and identifies the code changes that fix vul-
nerabilities between two versions (original and patched) of a
binary file. Different from SPAIN, VulFixMiner uses commit-
level code changes to identify vulnerability fixes, enabling
OSS users to discover them in real-time.

Li and Paxson [5] conducted a large-scale empirical study
on the development cycle of vulnerability fixes. They ob-
serve that vulnerability fixes are poorly timed with public
disclosures, and the disclosure time for the majority of fixes
is delayed by more than one week. They emphasize the
potential risk caused by disclosure delays. Combined with our
findings, this further advocates for the importance of real-time,
automated identification of vulnerability fixes.

In comparison, we use a deep learning approach to identify
vulnerability fixes. We leverage a Transformer-based language
model to learn the semantic meaning of code changes.

Zhttps://www.exploit-db.com/

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose VulFixMiner, a Transformer
architecture-based model for automated secret vulnerability
fix mining. To the best of our knowledge, we are the first to
use deep learning to identify vulnerability fixes in a practical
setting. Specifically, VulFixMiner is the first fine-tuned model
on cross-project and cross-language data, using a pre-trained
language model, CodeBERT. After fine-tuning, VulFixMiner
generates a contextual embedding vector for each commit
based on code changes in each affected file. This vector is then
used to compute a prediction score, indicating the likelihood
that a commit fixes a vulnerability. We evaluate VulFixMiner
on the full set of commits from 52 projects, which are never
seen during the training phase. The evaluation results show
that VulFixMiner outperforms five baselines in discriminative
power; VulFixMiner is capable of identifying vulnerability
fixes with less inspection effort in practical use. For example,
with an inspection effort of reviewing 5% of total LOC,
VulFixMiner can identify 49% of the total vulnerability fixes.

Future work could investigate ways to improve our ap-
proach, including using additional data, improving contextual
embedding vector learning by using a finer granularity of
code changes (e.g., at hunk level or line level), as well as
improving the generalizability of our approach by involving
more programming languages.

REFERENCES

[1] “ISO/IEC 29147:2018: Security techniques - Vulnerability disclosure,”
https://www.iso.org/standard/72311.html, 2018.

[2] A. D. Householder, G. Wassermann, A. Manion, and C. King, “The cert
guide to coordinated vulnerability disclosure,” Carnegie-Mellon Univ
Pittsburgh Pa Pittsburgh United States, Tech. Rep., 2017.

[3] “Examining apache struts remote code execution vulnerabilities,”
https://www.synopsys.com/blogs/software- security/apache- struts-
remote-code-execution-vulnerabilities/, 2017, accessed: 2020-04-06.

[4] “Equifax releases details on cybersecurity incident, announces per-
sonnel changes,” https://investor.equifax.com/news-and-events/press-
releases/2017/09-15-2017-224018832, 2017, accessed: 2020-04-06.

[5] F. Liand V. Paxson, “A large-scale empirical study of security patches,”
in Proceedings of the 24th ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2017, pp. 2201-2215.

[6] Apache Software Foundation, “CVE-2018-11776,” https://nvd.nist.gov/
vuln/detail/CVE-2018-11776, 2018.

[7]1 Semmle Team, “Apache struts vulnerability - CVE-2018-11776,”
https://blog.semmle.com/remote-code-execution- vulnerability-in-
apache-struts-cve-2018-11776/, 2018.

[8] G. Altekar, I. Bagrak, P. Burstein, and A. Schultz, “OPUS: Online
patches and updates for security.” in Proceedings of the 14th USENIX
Security Symposium (USENIX Security), 2005, pp. 287-302.

[9] J. Arnold and M. E. Kaashoek, “Ksplice: Automatic rebootless kernel

updates,” in Proceedings of the 4th ACM European conference on

Computer systems (EuroSys), 2009, pp. 187-198.

Y. Chen, Y. Zhang, Z. Wang, L. Xia, C. Bao, and T. Wei, “Adaptive

android kernel live patching,” in Proceedings of the 26th USENIX

Security Symposium (USENIX Security), 2017, pp. 1253-1270.

C. Mulliner, J. Oberheide, W. Robertson, and E. Kirda, ‘“Patchdroid:

Scalable third-party security patches for android devices,” in Proceed-

ings of the 29th Annual Computer Security Applications Conference

(ACSAC), 2013, pp. 259-268.

Y. Zhou and A. Sharma, “Automated identification of security issues

from commit messages and bug reports,” in Proceedings of the 11th

2017 joint meeting on foundations of software engineering (FSE), 2017,

pp. 914-919.

(10]

(11]

[12]

https://www.exploit-db.com/
https://www.iso.org/standard/72311.html
https://www.synopsys.com/blogs/software-security/apache-struts-remote-code-execution-vulnerabilities/
https://www.synopsys.com/blogs/software-security/apache-struts-remote-code-execution-vulnerabilities/
https://investor.equifax.com/news-and-events/press-releases/2017/09-15-2017-224018832
https://investor.equifax.com/news-and-events/press-releases/2017/09-15-2017-224018832
https://nvd.nist.gov/vuln/detail/CVE-2018-11776
https://nvd.nist.gov/vuln/detail/CVE-2018-11776
https://blog.semmle.com/remote-code-execution-vulnerability-in-apache-struts-cve-2018-11776/
https://blog.semmle.com/remote-code-execution-vulnerability-in-apache-struts-cve-2018-11776/

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

A. Sabetta and M. Bezzi, “A practical approach to the automatic
classification of security-relevant commits,” in Proceedings of the 34th
IEEE International Conference on Software Maintenance and Evolution
(ICSME). 1EEE, 2018, pp. 579-582.

Y. Chen, A. E. Santosa, A. M. Yi, A. Sharma, A. Sharma, and D. Lo, “A
machine learning approach for vulnerability curation,” in Proceedings
of the 17th International Conference on Mining Software Repositories
(MSR), 2020, pp. 32-42.

R. Ramsauer, L. Bulwahn, D. Lohmann, and W. Mauerer, “The sound of
silence: Mining security vulnerabilities from secret integration channels
in open-source projects,” in Proceedings of the 11st ACM SIGSAC
Conference on Cloud Computing Security Workshop (CCSW), 2020, pp.
147-157.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings
of the 31st International Conference on Neural Information Processing
Systems (NIPS), 2017.

Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained model for
programming and natural languages,” in Findings of EMNLP, September
2020.

“Our replication package,” https://github.com/2021-CONFDATA/2021-
CONEF-DATA| 2020.

Wikipedia, “Full disclosure,” |https://en.wikipedia.org/wiki/Full_
disclosure_(computer_security), 2020, accessed: 2020-04-06.

“Roberta: A robustly optimized bert pretraining approach.”

R.-M. Karampatsis, H. Babii, R. Robbes, C. Sutton, and A. Janes,
“Big code!= big vocabulary: Open-vocabulary models for source code,”
in Proceedings of the 42nd IEEE/ACM International Conference on
Software Engineering (ICSE). 1EEE, 2020, pp. 1073-1085.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The journal of machine learning research, vol. 15, no. 1, pp.
1929-1958, 2014.

S. E. Ponta, H. Plate, A. Sabetta, M. Bezzi, and C. Dangremont, “A
manually-curated dataset of fixes to vulnerabilities of open-source soft-
ware,” in Proceedings of the 16th IEEE/ACM International Conference
on Mining Software Repositories (MSR). 1EEE, 2019, pp. 383-387.
Y. Kamei, T. Fukushima, S. McIntosh, K. Yamashita, N. Ubayashi,
and A. E. Hassan, “Studying just-in-time defect prediction using cross-
project models,” Empirical Software Engineering (EMSE), vol. 21, no. 5,
pp. 2072-2106, 2016.

X. Wu, W. Zheng, X. Xia, and D. Lo, “Data quality matters: A case
study on data label correctness for security bug report prediction,” IEEE
Transactions on Software Engineering (TSE), 2021.

G. K. Rajbahadur, S. Wang, Y. Kamei, and A. E. Hassan, “The impact
of using regression models to build defect classifiers,” in Proceedings
of the 14th IEEE/ACM International Conference on Mining Software
Repositories (MSR). 1EEE, 2017, pp. 135-145.

B. Ghotra, S. MclIntosh, and A. E. Hassan, “Revisiting the impact
of classification techniques on the performance of defect prediction
models,” in Proceedings of the 37th IEEE/ACM IEEE International
Conference on Software Engineering (ICSE), vol. 1. IEEE, 2015, pp.
789-800.

S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking clas-
sification models for software defect prediction: A proposed framework
and novel findings,” IEEE Transactions on Software Engineering (TSE),
vol. 34, no. 4, pp. 485-496, 2008.

K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmid-
huber, “Lstm: A search space odyssey,” IEEE transactions on neural
networks and learning systems (TNNLS), vol. 28, no. 10, pp. 2222—
2232, 2016.

Y. Yang, X. Xia, D. Lo, and J. Grundy, “A survey on deep learning for
software engineering,” arXiv preprint arXiv:2011.14597, 2020.

Q. Huang, X. Xia, and D. Lo, “Revisiting supervised and unsupervised
models for effort-aware just-in-time defect prediction,” Empirical Soft-
ware Engineering (EMSE), vol. 24, no. 5, pp. 2823-2862, 2019.

Y. Yang, Y. Zhou, J. Liu, Y. Zhao, H. Lu, L. Xu, B. Xu, and H. Leung,
“Effort-aware just-in-time defect prediction: simple unsupervised models
could be better than supervised models,” in Proceedings of the 24th
ACM SIGSOFT international symposium on foundations of software
engineering, 2016, pp. 157-168.

Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time quality

[34]

(35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

assurance,” IEEE Transactions on Software Engineering (TSE), vol. 39,
no. 6, pp. 757-773, 2012.

T. Mende and R. Koschke, “Effort-aware defect prediction models,” in
Proceedings of the 14th European Conference on Software Maintenance
and Reengineering (CSMR). 1EEE, 2010, pp. 107-116.

S. MclIntosh and Y. Kamei, “Are fix-inducing changes a moving target?
a longitudinal case study of just-in-time defect prediction,” IEEE Trans-
actions on Software Engineering (TSE), vol. 44, no. 5, pp. 412-428,
2017.

G. H. Nguyen, A. Bouzerdoum, and S. L. Phung, “Learning pattern
classification tasks with imbalanced data sets,” Pattern recognition, pp.
193-208, 2009.

A. Severyn and A. Moschitti, “Learning to rank short text pairs with
convolutional deep neural networks,” in Proceedings of the 38th in-
ternational ACM SIGIR conference on research and development in
information retrieval (SIGIR), 2015, pp. 373-382.

T. Hoang, H. K. Dam, Y. Kamei, D. Lo, and N. Ubayashi, “Deepjit: an
end-to-end deep learning framework for just-in-time defect prediction,”
in Proceedings of the 16th IEEE/ACM International Conference on
Mining Software Repositories (MSR). 1EEE, 2019, pp. 34-45.

X. Yu, K. E. Bennin, J. Liu, J. W. Keung, X. Yin, and Z. Xu, “An
empirical study of learning to rank techniques for effort-aware defect
prediction,” in Proceedings of the 26th IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER). 1EEE,
2019, pp. 298-309.

E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic and
comprehensive investigation of methods to build and evaluate fault
prediction models,” Journal of Systems and Software, vol. 83, no. 1,
pp. 2-17, 2010.

J. A. Hanley and B. J. McNeil, “The meaning and use of the area under
a receiver operating characteristic (ROC) curve.” Radiology, vol. 143,
no. 1, pp. 29-36, 1982.

S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking clas-
sification models for software defect prediction: A proposed framework
and novel findings,” IEEE Transactions on Software Engineering (TSE),
vol. 34, no. 4, pp. 485-496, 2008.

C. Tantithamthavorn and A. E. Hassan, “An experience report on defect
modelling in practice: Pitfalls and challenges,” in Proceedings of the
40th International Conference on Software Engineering: Software En-
gineering in Practice (ICSE-SEIP). New York, NY, USA: Association
for Computing Machinery, 2018, p. 286-295.

D. Romano and M. Pinzger, “Using source code metrics to predict
change-prone java interfaces,” in Proceedings of the 27th IEEE Inter-
national Conference on Software Maintenance (ICSM). USA: IEEE
Computer Society, 2011, p. 303-312.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
Proceedings of the 3rd International Conference on Learning Represen-
tations (ICLR), 2014.

R. Caruana, S. Lawrence, and L. Giles, “Overfitting in neural nets:
Backpropagation, conjugate gradient, and early stopping,” Advances in
neural information processing systems (NIPS), pp. 402—408, 2001.

L. Prechelt, “Automatic early stopping using cross validation: quantify-
ing the criteria,” Neural Networks, vol. 11, no. 4, pp. 761-767, 1998.
G. K. Rajbahadur, S. Wang, G. Ansaldi, Y. Kamei, and A. E. Hassan,
“The impact of feature importance methods on the interpretation of
defect classifiers,” IEEE Transactions on Software Engineering (TSE),
2021.

GitHub, “Automated security updates,” https://github.blog/changelog/
2019-11- 14-automated-updates/, 2019.

——, “Keep all your packages up to date with dependabot,”
https://github.blog/2020-06-01-keep-all- your- packages-up- to-date-
with-dependabot, 2020.

MITRE, “CVE-2015-7326,” |https://nvd.nist.gov/vuln/detail/CVE-2018-
11776, 2015.

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in
Proceedings of the 26th International Conference on Neural Information
Processing Systems (NIPS), 2013.

Z. Xu, B. Chen, M. Chandramohan, Y. Liu, and F. Song, “Spain: security
patch analysis for binaries towards understanding the pain and pills,”
in Proceedings of the 39th IEEE/ACM International Conference on
Software Engineering (ICSE). 1EEE, 2017, pp. 462-472.

https://github.com/2021-CONFDATA/2021-CONF-DATA
https://github.com/2021-CONFDATA/2021-CONF-DATA
https://en.wikipedia.org/wiki/Full_disclosure_(computer_security)
https://en.wikipedia.org/wiki/Full_disclosure_(computer_security)
https://github.blog/changelog/2019-11-14-automated-updates/
https://github.blog/changelog/2019-11-14-automated-updates/
https://github.blog/2020-06-01-keep-all-your-packages-up-to-date-with-dependabot
https://github.blog/2020-06-01-keep-all-your-packages-up-to-date-with-dependabot
https://nvd.nist.gov/vuln/detail/CVE-2018-11776
https://nvd.nist.gov/vuln/detail/CVE-2018-11776

	Introduction
	Preliminaries
	Vulnerability disclosure models
	Common Vulnerabilities and Exposure (CVE), and the National Vulnerability Database (NVD)
	Pre-Trained NLP models for natural language tasks.

	Proposed Approach
	Overall Framework
	Phase 1: Fine-tuning
	Code change preprocessing
	CodeBERT fine tuning

	Phase 2: Training
	Phase 3: Application

	Experiments
	Data Collection
	Data Preprocessing
	Baselines
	Evaluation Metrics
	Experiment Setup
	Research Questions and Results

	Qualitative Analysis and Discussion
	Identification of Unreported Vulnerability Fixes
	Ethical consideration
	Other possible application scenarios
	The challenges of leveraging commit messages on mining silent vulnerability fixes
	Time Efficiency

	Threats To Validity
	Related Work
	Conclusion and Future Work
	References

