
Retrieve and Refine: Exemplar-based Neural
Comment Generation

Bolin Wei
Key Lab of High Confidence Software
Technology, MoE (Peking University)

Bejing, China
bolin.wbl@gmail.com

Yongmin Li
Key Lab of High Confidence Software
Technology, MoE (Peking University)

Bejing, China
liyongmin@pku.edu.cn

Ge Li∗
Key Lab of High Confidence Software
Technology, MoE (Peking University)

Bejing, China
lige@pku.edu.cn

Xin Xia
Faculty of Information Technology

Monash University, Australia
xin.xia@monash.edu

Zhi Jin∗
Key Lab of High Confidence Software
Technology, MoE (Peking University)

Bejing, China
zhijin@pku.edu.cn

ABSTRACT
Code comment generation which aims to automatically generate
natural language descriptions for source code, is a crucial task in
the field of automatic software development. Traditional comment
generation methods use manually-crafted templates or information
retrieval (IR) techniques to generate summaries for source code.
In recent years, neural network-based methods which leveraged
acclaimed encoder-decoder deep learning framework to learn com-
ment generation patterns from a large-scale parallel code corpus,
have achieved impressive results. However, these emerging meth-
ods only take code-related information as input. Software reuse is
common in the process of software development, meaning that com-
ments of similar code snippets are helpful for comment generation.
Inspired by the IR-based and template-based approaches, in this
paper, we propose a neural comment generation approach where
we use the existing comments of similar code snippets as exemplars
to guide comment generation. Specifically, given a piece of code,
we first use an IR technique to retrieve a similar code snippet and
treat its comment as an exemplar. Then we design a novel seq2seq
neural network that takes the given code, its AST, its similar code,
and its exemplar as input, and leverages the information from the
exemplar to assist in the target comment generation based on the se-
mantic similarity between the source code and the similar code. We
evaluate our approach on a large-scale Java corpus, which contains
about 2M samples, and experimental results demonstrate that our
model outperforms the state-of-the-art methods by a substantial
margin.

∗Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416578

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; •

Software and its engineering→ Softwaremaintenance tools.
KEYWORDS

Comment generation, Deep learning

ACM Reference Format:
Bolin Wei, Yongmin Li, Ge Li, Xin Xia, and Zhi Jin. 2020. Retrieve and Refine:
Exemplar-based Neural Comment Generation. In 35th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE ’20), September
21–25, 2020, Virtual Event, Australia. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3324884.3416578

1 INTRODUCTION
Code comments provide a clear natural language description for
a piece of the source code, which can help software developers
understand programs quickly and correctly [37]. Previous studies
showed that during software maintenance, program comprehen-
sion takes more than half of the time [6, 9, 22, 44]. Although proper
comments are very helpful for software maintenance, they are ab-
sent or out-dated in many software projects [7]. On the other hand,
manually writing comments is very time-consuming and labor-
intensive, and the comments should be updated as the software
is upgraded. Therefore, automatic comment generation becomes
greatly crucial for software development and maintenance.

Creating manually-crafted templates is a common way to gener-
ate comments automatically [31, 37]. These methods defined differ-
ent templates for different types of programs to generate readable
text descriptions. Sridhara et al. [37] used Software Word Usage
Model and heuristics to select important code statements, defined
templates for each code statement, and generated corresponding
comments. Moreno et al. [31] predefined heuristic rules to extract
information from source code, and defined templates for different
types of information to help generate code summaries. Manually-
crafted templates are introduced in these approaches to extract key
information in the source code into comments, helping improve the
readability and comprehensibility of comments. However, defining
a template is a time-consuming task and requires extensive domain
knowledge. Also, different projects might use different kinds of
templates.

https://doi.org/10.1145/3324884.3416578
https://doi.org/10.1145/3324884.3416578

ASE ’20, September 21–25, 2020, Virtual Event, Australia Wei, et al.

As an alternative, information retrieval (IR) techniques arewidely
used in automatic comment generation [8, 11, 42, 43]. Some re-
searchers used IR techniques to select terms from source code to
generate term-based comments [8, 11]. Haiduc et al. [11] applied
the Vector Space Model and Latent Semantic Indexing to retrieve
the appropriate terms, while Eddy et al. [8] introduced a hierarchi-
cal topic model for comment generation. Based on the idea that
software reuse is common [20, 21], other researchers leveraged code
clone detection techniques to detect similar code snippets and use
their corresponding comments for comment generation. Note that
similar code snippets can be retrieved from existing open-source
software repositories in GitHub or software Q&A sites such as
Stack Overflow [42, 43]. However, code snippets may contain some
information that is inconsistent with the content in comments of
their similar code snippets.

In recent years, more and more researchers have focused on
applying neural machine translation models for comment genera-
tion and viewed the process of generating comments from source
code as a language translation task (e.g., translating English to
German) [14, 16, 25]. These research works have adopted the main-
stream encoder-decoder framework of neural machine translation,
with source code as input and comments as output, and achieved
state-of-the-art performance on the comment generation. The main
difference between these works is the source code encoding meth-
ods. Iyer et al. [16] directly modeled the source code as a sequence of
tokens, while Hu et al. [14] used the traversal sequence of Abstract
Syntax Tree (AST) tokens as the model input. LeClair et al. [25]
integrated previous work and used two different ways to represent
source code. By virtue of the naturalness of the source code [2, 12],
these neural models can mine patterns for generating comments
from large corpora, but they only relied on source code information,
such as tokens or structures of source code, to create comments.

Note that these aforementioned comment generation methods
have their own advantages. The comments generated based on
the manually-crafted template methods are usually fluent and in-
formative; the IR-based methods can take advantage of tokens in
comments of similar code snippets; the neural-based methods can
learn the semantic connection between natural and programming
languages. Although the neural-based methods have achieved the
best performance [14, 16, 25], it tends to generate high-frequency
words in comments or "lose control" sometimes. For example, ac-
cording to LeClair et al.’s study [25], 21% comments in the test set
contain tokens with the frequency of less than 100. Conversely,
only 7% comments predicted by their proposed approach contain
tokens with the frequency of less than 100. Besides, more than two
thousand generated comments even do not have a normal end-of-
sequence </s> token. Specifically, the comments generated by the
neural model suffer a loss in readability and informativeness. This
phenomenon also appears in the use of neural models in machine
translation [23]. Therefore, we argue that it is not enough for the
neural model to generate comments only based on the source code.

Inspired by the template-based methods and IR-based methods,
we assume that comments of similar code snippets can be retrieved
as templates to guide the process of neural comment generation.
These templates, on the one hand, provide reference examples for
generating comments, and on the other hand, may contain low-
frequency words related to the source code, enhancing the neural

model’s ability to output low-frequency words. Considering the dif-
ferences between comments of similar code snippets and manually-
crafted templates, we call existing similar comments as exemplars.
Due to the strong pattern recognition capabilities of neural net-
works [2], we argue that encoder-decoder neural networks can be
combined with traditional template-based and IR-based methods.

Therefore, in this paper, we propose a novel comment genera-
tion framework, namely Re2Com, which consists of two modules:
a Retrieve module and a Refine module. In the Retrieve module,
given an input code snippet, we exploit IR techniques to retrieve
the most similar code snippet from a large parallel corpus of code
snippets and their corresponding comments, and treat the comment
of the similar code snippet as an exemplar. In the Refine module,
we apply a novel seq2seq neural network to learn patterns for gen-
erating comments. More specifically, the encoder takes the given
code snippet, the similar code snippet, and the exemplar as input,
and the decoder generates the token sequences of comments. It is
worth noting that the similar code snippet retrieved may not be se-
mantically similar to the given code snippet. With the similar code
snippet as input, we can perform a semantic comparison through
a neural network and decide whether to use the exemplar based
on the degree of similarity. Furthermore, we adopt the attention
mechanism [3] to focus on the important parts of the input. In
the testing phase, given a new piece of code snippet without com-
ments, our approach retrieves a similar code snippet and comment
pair from the corpus, utilize the trained neural model to generate
annotations, and select the token with the highest probability in
the vocabulary as the output. In this way, we leverage the advan-
tages of template-based and IR-based methods, and model them
into the neural network to improve the performance of comment
generation.

To train and evaluate our approach, we conduct experiments on
a real-world Java dataset. The dataset comes from the Sourcerer
repository1 and has been processed by LeClair et al. [25], including
removing duplicates, dividing into training, validation, and test
sets by projects. We employ the evaluation metrics BLEU score in
machine translation to evaluate the generated comments and also
perform a human evaluation. Experimental results show that our
method performs substantially better than the IR-based method and
outperforms the state-of-the-art approaches. Besides, experimental
results also show that our proposed modules are orthogonal to
other techniques, i.e., applying the Retrieve and Refine modules to
other neural models can improve the performance of the models.

The contributions of our work are shown as follows:

• We propose an exemplar-based neural comment generation
method, which combines traditional template-based and IR-
based methods with neural methods. We use comments of
similar code snippets as exemplars to assist in generating
comments.
• We conduct extensive experiments to evaluate our approach
on a large-scale dataset of Java methods. The experimental
results show that our Retrieve and Refine modules substan-
tially improve the performance of the neural model and
achieve the state-of-the-art results.

1https://www.ics.uci.edu/ lopes/datasets/

Retrieve and Refine: Exemplar-based Neural
Comment Generation ASE ’20, September 21–25, 2020, Virtual Event, Australia

Input Code:

Similar Code:

Ground Truth: wake up at most one thread sleeping on this condition variable
Exemplar: wake up all threads sleeping on this condition variable
Ast-attendgru: wake up the thread if necessary

public void wake(){
Lib.assertTrue(conditionLock.isHeldByCurrentThread());
boolean prevStatus = Machine.interrupt().disable();
KThread nextThread = waitQueue.nextThread();
if (nextThread != null){

nextThread.ready();
}
Machine.interrupt().restore(prevStatus);

}

public void wakeAll(){
Lib.assertTrue(conditionLock.isHeldByCurrentThread());
boolean intStatus = Machine.interrupt().disable();
KThread thread = waitingQueue.nextThread();
while(thread != null){

thread.ready();
thread = waitingQueue.nextThread();

}
Machine.interrupt().restore(intStatus);

}

(a) An example of the retrieved similar code snippet and the
input code that are semantically similar.

Input Code:

Similar Code:

Ground Truth: enqueues a new array into the pipe
Exemplar: accepts notification about character events
Ast-attendgru: enqueues a new array of elements in the payload

private void enqueue(String[] array) {
try {

s.acquire();
q.offer(new ArrayWrapper(array));

} catch (InterruptedException e) {
e.printStackTrace();

}
}

public void characters(char charArray[], int start, int length) throws
SAXException {

try {
ctxHandlerStack[ctxTop].characters(charArray, start, length);

} catch(SdaiException e) {
SAXException wrapper = new SAXException(e.toString());
wrapper.initCause(e);
throw wrapper;

}
}

(b) An example of retrieved similar code snippet and input
code that are not semantically similar.

Figure 1: Examples of exemplar-based comment generation.
Same tokens in ground truths, exemplars and predictions of
ast-attendgru aremarked in red. Same tokens (split on camel
case) in the input code and the similar code are also marked
in red.

Paper Organization. The rest of our paper is organized as follows.
Section 2 describes motivating examples. Section 3 presents our
proposed method. Section 4 and Section 5 describe the experiment
setup and results. Section 6 and Section 7 discuss some results and
describe the related work, respectively. Finally, Section 8 concludes
the paper and points out future directions.

2 MOTIVATING EXAMPLES
To explain why we use the comment of the retrieved similar code
snippet as an exemplar to guide the neural model to generate a

comment, we select two representative examples from the dataset
used in the evaluation, as shown in Figure 1. The input code and the
similar code are Java methods, and we also display the comments
predicted by the ast-attendgru model [25] for the input code. For
the input code, we leverage the open-source search engine Lucene2
to retrieve the most similar code snippet from the training corpus.
The retrieval technique is based on the lexical level similarity of
the source code, which will be explained in detail in Section 3.1.

Comment generation methods based on neural networks are
difficult to generate low-frequency tokens, whereas comments of
similar code snippets selected based on IR-based methods may
contain low-frequency tokens. For example, in Figure 1a, we can
observe that the specific phrase "sleeping on this condition variable"
appears in both the ground truth and the exemplar, meaning that
the input code and the similar code are semantically similar. In
addition, "sleeping" is a low-frequency token in the corpus, which
appears only 71 times. This is one of the reasons that the prediction
of the ast-attendgru ignores the token. Although the prediction
of the neural network is very close to the ground truth, it still
lacks some key information in the source code. Therefore, with the
exemplar as input to the neural model, the low-frequency tokens
will affect the comment generation process, and the neural network
will generate more informative comments.

However, it is not enough to only take an exemplar as additional
input, and the similar code retrieved by search engines is not nec-
essarily semantically similar, which is partly due to the fact that
there is no real source code reuse in the corpus, and partly due to
the limitations of the retrieval technique. For instance, in Figure 1b,
even though the input code and the similar code have some same
tokens (Tokens in the source code are split on camel case.), they are
not similar in semantics and behavior. In this case, the exemplar is
unsuitable for guiding the comment generation process of neural
networks. In contrast, ast-attendgru can generate a comment that is
close to the ground truth without the exemplar. For this reason, we
argue that it is necessary to use the similar code and the input code
as the input of the neural network at the same time, and calculate
the semantic similarity between the similar code and the input code
through the neural model, and determine the degree of using the
exemplar according to the semantic similarity. We design a novel
network structure to implement this idea, the details of which will
be described in Section 3.2.

In view of the many discussions on the effectiveness of deep
learning methods in the field of software engineering in recent
years [17, 27], we think that our study may be a good starting
point, combining traditional methods on specific tasks with deep
learning methods. Previous methods applied neural networks to
solve tasks in software engineering. Although specific input for
specific tasks was proposed, such as AST and control flow graphs,
previous researchers did not analyze the existing problems of deep
learning methods, e.g., overfitting (which tends to generate high-
frequency terms). Therefore, we believe that traditional methods
can be modeled into neural networks to improve performance.

2https://lucene.apache.org/

ASE ’20, September 21–25, 2020, Virtual Event, Australia Wei, et al.

Source Code Repository

Extract

Java Methods

Comments

Comment Code

Comment Code

Comment Code

Training Set

Test Set

Validation Set

Divided by project

Retrieval Corpus / Training Set
Retrieve Module

Refine Module

Attention Mechanism

Input Code Representation Similar Code Representation Exemplar Representation

Data Preprocessing Training and Test

Encoders Encoders Encoders

Decoder

Figure 2: An overview of our approach for exemplar-based comment generation.

3 PROPOSED APPROACH
In this work, we propose the exemplar-based comment generation
method (Re2Com), modeling traditional IR-based and template-
based methods into the neural method. Different from the IR-based
methods, we employ a neural network tomodify the comment of the
similar code to conform to the semantics of the input code. Different
from the traditional template-based method, which requires manual
definition of the template, we treat the comment of the retrieved
code as an exemplar. Re2Com consists of two parts: a Retrieve
module and a Refine module. The Retrieve module uses the IR
technique to explore the similar code and extract its comment
from a parallel corpus, while the Refine module is a novel neural
network based on a seq2seq network with an attention mechanism
to generate a comment.

The overall framework is illustrated in Figure 2. The data pre-
processing step refers to the extraction, cleaning, and partition of
the dataset, and the training and test step refers to the Re2Com. We
use a massive training set as a retrieval corpus while training the
Refine module. The details of the Retrieve module are described
in Section 3.1. To take advantage of the structure information of
input code, we not only use the token sequence representation of
the code but also use the AST of the code as an input of the Refine
module. The details of this part will be described in Section 3.2.

3.1 Retrieve Module
Considering that software reuse is widespread in software devel-
opment, a similar code snippet usually has a similar comment.
Furthermore, as we analyzed in Section 2, there are some potential
problems with the previous neural-based methods. Therefore, we
argue it is beneficial for the neural network to use an exemplar as a
reference when generating new comments. In practice, developers
have similar experiences during software development. For exam-
ple, when adding a comment to a piece of source code, they will
refer to the comment of a similar code snippet. In our framework,
the goal of the Retrieve module is to retrieve similar code from a
retrieval corpus given the input code and treat its comment as an
exemplar generating comments.

To identify which piece of code in the retrieval corpus is most
similar to the input code, we need to define and calculate the simi-
larity between two pieces of code snippets. In this work, we chose
the similarity of the lexical level of the source code to measure the

code similarity, which was inspired by [20, 27, 35]. Specifically, we
adopt BM25 as the similarity evaluation metric, which is a bag-of-
words retrieval function to estimate the relevance of documents to
a given search query in IR. Given a query and a document, based on
TF-IDF, the BM25 scoring function calculates the term frequency
in the document of each keyword in the query and multiplies it by
the inverse document frequency of this term. The more relevant
two documents have, the higher the value of BM25 score.

We leverage the open-source search engine Lucene to build our
Retrieve module. Since the size of the training set is quite large
(over 1.9M), we use it as the retrieval corpus, i.e., given the input
code snippet, we search for the most similar code from the training
set. The Retrieve module contains two parts, creating the index
and searching. We first tokenize the source code and comments,
usingWhitespaceAnalyzer in Lucene. Then we process each code
and comment pair into a document, add it to the index library, and
store it on disk. In the search phase, for each query code, we get
similar code sequences arranged in descending order of similarity,
choose the first-ranked similar code (when training, we choose the
second-ranked), and use its comment as an exemplar. We keep the
default settings of BM25 in Lucene.

3.2 Refine Module
Once we have an exemplar, a straightforward way is to treat it as
a comment for the input code. However, due to the non-existence
of software reuse or the limitation of retrieval technology, there
is a certain difference between the semantic of the exemplar and
the semantic of the input code. Especially, the similar code usually
contains information that is inconsistent with the input code, such
as different API calls and operations. Therefore, we use the exemplar
as a soft-template and refine it according to the semantic difference
between the source code and the similar code. Based on a widely
used seq2seq neural network [34, 38, 39], we design a novel network
structure that can learn the semantic similarity between the input
code and the similar code, refine the exemplar, and generate a
comment.

The Refine module contains three components, four encoders,
a decoder, and an attention mechanism module between encoders
and the decoder. Figure 3 illustrates the detailed Refine module.

3.2.1 Encoders. The four encoders take a token sequence of the
input code x, an AST traversal sequence of the input code t, a

Retrieve and Refine: Exemplar-based Neural
Comment Generation ASE ’20, September 21–25, 2020, Virtual Event, Australia

token sequence of the similar code s and the exemplar r as input,
respectively. Among them, the input code x and its AST traversal
sequence t constitute the Input Code Representation in Figure 2.
We use the Structure-based Traversal (SBT) method [14] to obtain
the traversal sequence of AST to utilize the structural information
of the input code. There is no difference in the structure of the four
encoders. Take the input code x as an example.

The encoder of the input code first maps the one-hot embedding
of a token𝑤𝑖 into a word embedding 𝑥𝑖 :

𝑥𝑖 =𝑊 ⊤𝑒 𝑤𝑖 (1)

where𝑊𝑒 is a trainable embedding matrix. Then to leverage the con-
textual information, we use a bidirectional long short-term memory
(LSTM) [13] to process the sequence of the word embeddings, which
is explicitly designed to avoid the long-term dependency problem.
At each time step 𝑡 , the hidden state of the forward LSTM

−→
ℎ 𝑡 can

be represented by:

−→
ℎ 𝑡 = LSTM(𝑥𝑡 ,

−→
ℎ 𝑡−1) (2)

where𝑊 ’s and𝑈 ’s are trainable weights; 𝜎 stands for the sigmoid
function and ⊙ is element-wise multiplication. The hidden states
of the backward LSTM can be obtained with another LSTM. We
concatenate hidden states of the time step 𝑡 from two directions
as the representation of the 𝑡-th token ℎ𝑡 in the input code, i.e.,
ℎ𝑡 = [

−→
ℎ 𝑡 ;
←−
ℎ 𝑡]. For the traversal sequence of AST, the similar code,

and the exemplar, we get their respective hidden states as ℎ𝑡 , ℎ𝑠 ,
and ℎ𝑟 in the same way. We denote the hidden states of tokens of
the input code as ℎ𝑥 . Note that in our experiments, we used four
separate LSTMs to encode different input sequences.

Then we explore the difference between the input code and
the similar code using a nonlinear sigmoid function to obtain a
semantic similarity score 𝑠𝑖𝑚:

𝑠𝑖𝑚 = 𝜎 (𝑊𝑠𝑖𝑚 [ℎ𝑥−1;ℎ
𝑠
−1]) (3)

where𝑊𝑠𝑖𝑚 are trainable weights, and the index "-1" stands for
the last hidden state. According to previous work in the natural
language processing community [3], this structure performs well in
the relevance measurement. A larger value of the score 𝑠𝑖𝑚 (ranges
from 0 to 1) indicates that the semantics of the input code and the
retrieved code are more similar.

3.2.2 Attention. Attention is a component that allows the decoder
to focus and place more "attention" on the relevant parts of the
input sequence as needed. It is useful to introduce this mechanism
into the comment generation model. For example, when developers
write comments, they use the token "get" because they notice the
token "return" in the source code. Therefore, we argue that different
parts of the comment are related to different parts of the source
code. Similarly, after the introduction of the exemplar, we can also
focus on some parts of the exemplar when generating comments.
The attention mechanism in the Refine module is built by the classic
method of Bahdanau et al. [3].

Take the attention between the target comment and the input
code as an example. Specifically, for each target token 𝑦𝑖 , we use
the hidden state of its previous token ℎ

′
𝑖−1 to calculate the attention

sim

Com
bination

Decoder

Exemplar

AST

Input
Code

Similar
Code

ℎ!" ℎ#" ℎ|"|
"...

ℎ!% ℎ#% ℎ|%|
%...

ℎ!& ℎ#& ℎ|&|
&...

ℎ!' ℎ#' ℎ|'|
'...

Figure 3: The structure of the Refine module. The calcula-
tion details of the "sim" block and the "combination" block
are Equation 3 and Equation 8, respectively. The dashed
lines represent information used to initialize the decoder
and to calculate the context vector.

weights as,

𝛼𝑖 𝑗 = 𝑎(ℎ
′
𝑖−1, ℎ

𝑥
𝑗) (4)

𝛼𝑖 𝑗 =
exp{𝛼𝑖 𝑗 }∑
𝑘 exp{𝛼𝑖𝑘 }

(5)

where 𝑎 is an alignment model which scores how well the input
around position 𝑗 and the output at position 𝑖 match. We use a
Multi-Layer Perception (MLP) [32] unit as the alignment model.
Then the context vector 𝑐𝑥

𝑖
is computed as a weighted sum of all

hidden states of the input code:

𝑐𝑥𝑖 =
∑
𝑗

𝛼𝑖 𝑗ℎ
𝑥
𝑗 (6)

The attention weights and context vector for the exemplar 𝑐𝑟
𝑖
and

the AST traversal sequence 𝑐𝑡
𝑖
can be computed in the same way.

3.2.3 Decoder. The purpose of the decoder is to generate the target
comment 𝑦. When generating the 𝑡-th token in the comment, we
first use an LSTM to get the 𝑡-th hidden state ℎ

′
𝑡 :

ℎ
′
𝑡 = LSTM(ℎ

′
𝑡−1, 𝑦𝑡−1) (7)

The initial state of the decoder is a combination of the input code
representation and the last hidden state of the exemplar:

ℎ
′
0 = ℎ𝑐 ∗ (1 − 𝑠𝑖𝑚) + ℎ𝑟−1 ∗ 𝑠𝑖𝑚 (8)

where ℎ𝑐 is the feature vector of the input code, which is obtained
by concatenating the last hidden state of x and the last hidden state
of t and performing an affine transformation:

ℎ𝑐 =𝑊𝑐 [ℎ𝑥−1;ℎ
𝑡
−1] + 𝑏𝑐 (9)

where𝑊𝑐 and 𝑏𝑐 are trainable parameters. The purpose of the com-
bination in Eqn. 8 is that if the input code is different semantically
from the similar code, that is, the value of the similarity score is
lower, then the decoder should pay more attention to the content

ASE ’20, September 21–25, 2020, Virtual Event, Australia Wei, et al.

of the input code. We can obtain the context vector 𝑐𝑡 in the same
way:

𝑐
′
𝑡 = (𝑊𝑐 [𝑐𝑥𝑡 ; 𝑐𝑡𝑡] + 𝑏𝑐) ∗ (1 − 𝑠𝑖𝑚) + 𝑐𝑟𝑡 ∗ 𝑠𝑖𝑚 (10)

Then the probability of a token 𝑦𝑡 is conditioned on the context
vector 𝑐𝑡 and its previous generated tokens 𝑦1,...,𝑦𝑡−1, i.e.,

𝑝 (𝑦𝑡 |𝑦𝑡−1, ..., 𝑦1, 𝑥) = 𝑔(𝑦𝑡−1, ℎ
′
𝑡 , 𝑐𝑡) (11)

where 𝑔 is a MLP layer with the softmax activation function.
The training objective of the Refine module is to minimize the

cross-entropy:

𝐻 (𝑦) = − 1
𝑁

𝑁∑
𝑖

∑
𝑗

log𝑝 (𝑦𝑖𝑗) (12)

where𝑁 is the total number of training samples, and𝑦𝑖
𝑗
means the 𝑗-

th token in the 𝑖-th sample. Through gradient descent optimization
methods, the parameters of the Refine module can be estimated.
During inference, we use a beam search [38] to generate comments.
Specifically, the decoder generates the comment token by token
from left-to-right while keeping 𝐵-best candidates at each time step
where 𝐵 is the beam size.

4 EXPERIMENT SETUP
Dataset. We evaluate our approach on the dataset provided by
LeClair et al. [25]. The original dataset comes from Lopes et al. [29],
containing 5.1 million Java methods from the Sourcerer repository.
Because the original dataset contains a large number of samples
that are not suitable for evaluating neural models, such as repeated
and auto-generated code, LeClair et al. preprocessed the data.

More specifically, they first extracted Java methods and com-
ments from the code repository. Assuming the first sentence of the
Javadoc summarizes the method’s behavior [24], the authors ex-
tracted the first sentence or line from the Javadoc as a comment of
the method and filtered out non-English samples. Considering that
the auto-generated and duplicate code (due to name changes, code
cloning, etc.) will have a negative impact on neural model evalua-
tion, the authors removed these samples using heuristic rules [36]
and added unique, auto-generated code to the training set to ensure
that no testing was performed on these samples. After splitting
camel case and underscore tokens, removing non-alpha charac-
ters, and setting to lower case, the authors divided the dataset by
project into training, validation and test set, meaning that all meth-
ods in one project are grouped into one category. They argue that
the preprocessing of the dataset is necessary for evaluating the
performance of neural models. Without these preprocessing, the
evaluation results of neural models will be inflated. For example,
in the ICPC’18 paper [14], the reported BLEU score of DeepCom is
about 38, while the result on this dataset is only about 19.

After getting the processed dataset, the authors used the srcml [5]
tool to parse the source code into AST, and traversed the AST
through the SBT [14] method to convert the AST into a token
sequence. To simulate more complicated scenarios, such as missing
keywords in the source code (due to poorly-written code or some
scenarios with only byte code), they replaced all tokens in the source
code with a <OTHER> token and got a token sequence called SBT-
AO for SBT AST only. In such cases, only the structure of AST is

Table 1: Statistics of datasets

Dataset Train Valid Test

Count 1,954,807 104,273 90,908
Avg. tokens in comment 7.594 7.710 7.654
Avg. tokens in code 29.67 29.68 30.17
Avg. tokens in SBT-AO 218.3 217.3 222.8

0 20 40 60 80 100
Code Length

0

1000

2000

3000

4000

Co
un

t

(a) Code length distribution

4 6 8 10 12
Comment Length

0

2000

4000

6000

8000

10000

Co
un

t

(b) Comment length distribution

Figure 4: Length distribution of test data

preserved. Then, the authors created two datasets to evaluate the
performance of neural models.
• The standard dataset contains three elements for each sam-
ple, a code sequence of the Javamethod, an SBT-AO sequence
of Java method, and a comment.
• The challenge dataset contains two elements for each sam-
ple, an SBT-AO sequence of Java method, and a comment.

The challenge dataset is used to evaluate the performance of neural
models when only the AST structure is available. In our experi-
mental setup, the retrieval corpus is constructed using source code
token sequence and comment pairs from the training set. For train-
ing and test, we select the second-ranked (since the first-ranked
similar code is itself) and top-ranked retrieved code as the similar
code, respectively. The statistical results of the dataset are shown
in Table 1. Figure 4 shows the length distribution of source code
and comment on the test data.
Training Details. Our model is implemented based on the Tensor-
flow framework. We set token embeddings and LSTM states to 100
dimensions and 256 dimensions respectively. The out-of-vocabulary
tokens are replaced by UNK. To maximize the utilization of GPU
memory, we set the batch size to 256. We choose the widely-used
stochastic gradient descent to optimize all parameters with the ini-
tial learning rate of 0.2. The learning rate is decayed with a factor of
0.95 every epoch. To mitigate overfitting, we use dropout with 0.2.
And to prevent exploding gradient, we clip the gradients norm by
5. According to the statistics of the dataset in Figure 4, we limit the
maximum length of the encoder LSTM to 100 and the maximum
length of the decoder to 13. Training runs for about 20 epochs, and
the best parameters are selected according to the performance of
the validation set. During the test, the beam size 𝐵 is set to 5. Each
experiment is run three times, and the average results are reported.
We conduct our experiments on a Linux server with the NVIDIA
GTX TITAN Xp GPU with 12 GB memory.
EvaluationMetrics. Following the previous comment generation
work [14, 16, 25], we evaluate different approaches using the metric
BLEU [33]. BLEU measures the quality of generated comments and

Retrieve and Refine: Exemplar-based Neural
Comment Generation ASE ’20, September 21–25, 2020, Virtual Event, Australia

can represent the human’s judgment, which calculates the similarity
between the generated comments and references. It is defined as
the geometric mean of 𝑛-grammatching precision scores multiplied
by a brevity penalty to prevent very short generated sentences:

𝐵𝐿𝐸𝑈 = 𝐵𝑃 · 𝑒𝑥𝑝 (
𝑁∑
𝑛=1

𝑤𝑛 log𝑝𝑛) (13)

where 𝑝𝑛 is the 𝑛-gram matching precision scores, 𝑁 is set to 4
in our paper, and 𝐵𝑃 is a brevity penalty to prevent very short
generated sentences. BLEU score ranges from 0 to 100; the higher
the score, the more the candidate correlates to the reference. This
evaluation metric is also widely used in various tasks of automatic
software engineering. Liu et al. [27] introduced BLEU to evaluate the
quality of the generated commit message. Gu et al. [10] employed
it to evaluate the accuracy of the generated API sequence. Jiang et
al. [19] exploited it to evaluate the generated summaries for commit
messages. Their experiments show that it is reasonable to use BLEU
to evaluate the quality of comments. In our experiments, we report
a composite BLEU score in addition to BLEU1 through BLEU4.

5 RESULTS
To evaluate our approach, in this section, we will answer the fol-
lowing research questions:
• RQ1: How does the Re2Com perform compared to the state-
of-the-art neural models?
• RQ2: How effective is the exemplar to all neural models?
• RQ3: How does the Re2Com perform compared to the IR
methods?

In the challenge dataset, all models have no source code tokens
as input, which is an experimental scenario to evaluate the ability
of the model to use limited information. In contrast, the standard
dataset is close to the real-world scenario where all the information
of the source code is available. Hence we evaluate our approach
and all baselines on the standard dataset in this section and discuss
the experimental results on the challenge dataset in the Section 6.

5.1 RQ1: Re2Com vs. Neural Baselines
5.1.1 Baseline. To answer this research question, we compare our
approach to four state-of-the-art neural methods.
• CODE-NN [16] is the first deep learning model and the first
end-to-end encoder-decoder framework for comment gener-
ation task. It encodes the source code sequence into token
embeddings, then uses an LSTM as a decoder to generate
comments, and employs the attention mechanism to intro-
duce information on the encoder side. Note that CODE-NN
only uses token embedding as the encoder, not the LSTM.
• attendgru [25] is a standard attentional seq2seq model,
where the encoder and the decoder are both gated recur-
rent unit (GRU). GRU is similar to LSTM and is a variant
of RNN. For a fair comparison, we replace GRU with LSTM
in the model. Hence, the difference between this model and
CODE-NN is whether the encoder uses an RNN.
• ast-attendgru [25] is also an attentional seq2seq model. Dif-
ferent from attendgru, it introduces the structure information
of the source code and uses a new encoder to process the

Table 2: The performance of our model compared with neu-
ral baselines.

Methods Params B B1 B2 B3 B4

CODE-NN 36.3M 12.54 32.23 14.71 8.558 6.090
DeepCom 37.9M 14.21 31.88 16.02 10.10 7.491
attendgru 37.7M 19.42 39.00 22.02 14.87 11.27
ast-attendgru 39.7M 19.67 39.32 22.19 14.98 11.42
Re2Com 28.4M 24.42 41.69 25.78 19.70 16.79

traversal sequence of AST. It concatenates the information
from the two encoders as input to the decoder and generates
comments. In our experiments, we used LSTMs as encoders
for a fair comparison.
• DeepCom [14] is a seq2seq model that uses LSTMs as the
encoder and the decoder, and also utilizes the attention
mechanism. It is the first comment generation model using
AST’s traversal sequence as input and proposed the traversal
method SBT.

We set the embedding size and LSTM states of all baselines to
256 dimensions, which can ensure that the number of Re2Com’s
parameters is less than the number of baselines’ parameters. As in
the ICSE’19 paper [25], we did not compare our model with other
baselines in the field of natural language processing, because the
tricks introduced by thosemodels wouldmake it difficult to compare
exactly which part of the model played a key role. Compared with
the above four baselines, it can not only explain the effectiveness
of our model but also show that the components of our model are
helpful.

5.1.2 Results. We calculate the gap between the comments gener-
ated by different methods and the ground truth. The experimental
results are shown in Table 2. The BLEU scores of the best baseline
ast-attendgru are comparable to those reported in the study [25],
although we made some modifications to their encoders. This re-
sult shows that the performance difference of an LSTM and a GRU
on this task is very limited. Although ast-attendgru introduces
structural information of the source code compared to attendgru,
it does not substantially improve the results. The phenomenon
also appears in the paper [25], explaining that after excluding cus-
tom identifiers in the AST, the structural information of the source
code has limited help in generating comments, and the information
contained in the token sequence of source code is sufficient. The
performance of DeepCom is much lower than the results in [14],
indicating that their data preprocessing has potential problems. The
auto-generated and duplicate code has a great negative impact on
the experimental results. The similar conclusion was reached in
the Allamanis’s paper [1]. The difference between DeepCom and
attendgru is only in the input information, while the former is about
5 points worse than the latter. One reason is that the AST’s traversal
sequence processed by DeepCom is about 7 times longer than the
token sequence processed by attendgru, which might contain more
useless and redundant information. Koehn and Knowles [23] found
that encoder-decoder frameworks have low generation quality on
very long sentences. From Table 2, we also notice that CODE-NN
performs worst compared with other methods since it does not use
an RNN to process the token sequence, which makes it unable to
grasp the semantic information of the source code context. From the

ASE ’20, September 21–25, 2020, Virtual Event, Australia Wei, et al.

Table 3: Effectiveness of exemplar on all neural methods.

Methods Params B B1 B2 B3 B4

CODE-NN + E. 63.0M 14.72 33.14 16.39 10.65 8.120
DeepCom + E. 64.4M 18.90 33.51 19.21 15.50 13.32
attendgru + E. 64.2M 22.60 39.01 23.48 18.17 15.68
ast-attendgru + E. 66.2M 22.81 39.55 23.77 18.29 15.74
Re2Com 28.4M 24.42 41.69 25.78 19.70 16.79

results, we can also observe that BLEU1 to BLEU4 are in descending
order. BLEU1 is very high compared to BLEU4 on all models, reveal-
ing that the matching accuracy of the 4-grams between comments
generated by neural networks and gold references is slightly lower.

From the table, we can see that Re2Com substantially outper-
forms all neural methods on the standard dataset, and improves
ast-attendgru (the best baseline) by 24.15%. In particular, the BLEU4
improvement achieves by Re2Com is 47.02%, which is not only due
to the similar code retrieved and the exemplar providing abundant
information for comment generation but also due to the ability of
the Refine module to integrate the code and the exemplar. Since
the word vectors of Re2Com are 100-dimensional, the number of
parameters of Re2Com is the smallest among all methods. However,
Re2Com can still achieve the highest BLEU score. In addition, we
evaluate Re2Com with completely random exemplars on the test
set. The model achieves 14.61 BLEU score, which shows that the
improved performance of Re2Com is due to the exemplar.

For a code snippet in the test set, the Retrieve module averagely
takes 48.91ms to retrieve the most similar code, and the Refine mod-
ule takes an average of 99.27ms to generate comments. However,
the best baseline ast-attendgru takes 199.1ms to generate a com-
ment for a given sample. Therefore, our model not only improves
the results, but it also improves efficiency.

5.2 RQ2: Effectiveness of Exemplar
We further explore whether exemplar is effective for all neural
models, i.e., when the neural model becomes simple, or when the
model does not have the structure information of the source code,
will the exemplar still be effective? To reach a conclusion, we first
add the exemplar as input on all baselines. Then we apply the
similarity score (Eqn. 3) and the combination block (Eqn. 8) in our
Refine module to each baseline for calculating the initial state and
context vector of the decoder. Finally, we train each baseline, and
the evaluation results are shown in Table 3.

It can be seen from the experimental results that exemplar can
bring stable improvement to all neural models. For all of the base-
line models, their BLEU scores are increased by after adding the
exemplar. Observing the improvement of BLEU1 to BLEU4, we can
find that the exemplar has the biggest improvement on BLEU4 on
all models. This indicates that the retrieved exemplar improves the
accuracy of continuous tokens in predicted comments in the neural
network, which also effectively improves the quality of the gener-
ated comments. In addition, the number of trainable parameters
of Re2Com is less than all the methods. Exemplar’s improvement
of all the models also shows that the exemplar is orthogonal to
the tricks used by other deep models, and can bring independent
improvements. Take ast-attendgru and DeepCom as examples. We
can see from the table that there is still a certain gap between the

Table 4: The performance of our model compared with IR
baselines.

Methods B B1 B2 B3 B4

Retrieve Module 18.04 32.06 17.83 14.39 12.87
LSI 17.19 31.38 17.05 13.48 12.07
VSM 17.76 31.91 17.52 14.02 12.70
NNGen 18.89 33.48 18.86 14.99 13.44
Re2Com 24.42 41.69 25.78 19.70 16.79

two models after adding exemplars, which is caused by the token
sequence of the source code as an input of ast-attendgru. Overall,
experimental results show that the exemplar is effective for all
neural models generating comments, and still, our proposed model
Re2Com shows the best performance.

5.3 RQ3: Re2Com vs. IR Baselines
5.3.1 Baseline. To answer this research question, we compare our
approach with four IR-based baselines.
• Retrieve Module is a component of Re2Com, whose details
are described in Section 3.1. We use the retrieved exemplar
as a comment directly.
• Latent Semantic Indexing (LSI) is an IR technique to ana-
lyze the semantic relationship between terms in documents,
which is used by Haiduc et al. [11] to extract important
terms in source code. For a given code snippet, we use LSI
to retrieve the similar code from the training set and use its
comment as a target. The similarity is the cosine distance of
the 500-dimensional LSI vector of the code.
• Vector Space Model (VSM) represents the source code as
a feature vector and is applied to some IR-based comment
generation methods [8, 11]. We represent the source code as
a vector using Term Frequency-Inverse Document Frequency
(TF-IDF) and use cosine similarity to retrieve the comment
of the most similar code from the training set.
• NNGen [27] is an approach for producing commit messages
based on nearest neighbors. It first encodes code changes
into a form of "bag of words", then uses the cosine distance
to select the closest 𝑘 code changes, and finally chooses the
message of the code change with the highest BLEU score as
the final result. We replace code changes with code snippets,
leverage this method to generate comments, and set 𝑘 as 5.

5.3.2 Results. We evaluate the quality of comments generated by
different IR-based methods, and the results are shown in Table 4.
Although our Retrieve module achieves high BLEU scores, it does
not perform as well as Re2Com, which proves that the importance
of the Refine module. Besides, the performance of the Retrieve
module is not substantially different from that of common IR-based
methods, illustrating that our Retrieve module is reasonable and
effective. LSI and VSM leverage different methods (LSI vectors and
TF-IDF) to represent source code as vectors, but their performance
is similar. NNGen chooses the comments with the highest BLEU
score and thus performs better than other IR-based methods. Note
that the IR-based baselines perform very well on BLEU4, even sur-
passing the neural network-based baselines in Table 2, i.e., the
IR-based methods can achieve a high matching precision score of

Retrieve and Refine: Exemplar-based Neural
Comment Generation ASE ’20, September 21–25, 2020, Virtual Event, Australia

Table 5: The results (standard deviation in parentheses) of
human evaluation

Methods Informativeness Naturalness Similarity

NNGen 1.555 (1.31) 3.560 (0.70) 1.205 (1.37)
ast-attendgru 2.575 (0.93) 3.425 (0.86) 2.215 (1.11)
Re2Com 2.930 (1.06) 3.820 (0.64) 2.640 (1.29)

4-gram, indicating that these comments are informative and have
a good readability. The phenomenon also explains why Re2Com
can improve more on BLEU4. Surprisingly, IR methods outperform
some neural-based methods on BLEU scores, such as CODE-NN
and DeepCom, showing that in more stringent and more realistic
scenarios (no duplicate and auto-generated code), neural networks
are not necessarily better than IR methods. Combining the advan-
tages of neural networks and traditional methods, our Re2Com
achieves the best performance.

5.4 Human Evaluation
Although BLEU scores can evaluate the gap between the gener-
ated comments and references, it cannot truly reflect the seman-
tic similarity. Therefore, we perform a human evaluation to mea-
sure the quality of comments generated by NNGen, Re2Com, and
ast-attendgru on the standard dataset. We follow the previous
work [15, 16, 27, 28] to design a human evaluation, and measure
three aspects, including the similarity of generated comments and
references, naturalness (grammaticality and fluency of the gener-
ated comments) and informativeness (the amount of content carried
over from the input code to the generated comments, ignoring flu-
ency of the text). Specifically, we invite 12 volunteers with 3-5 years
of Java development experience and excellent English ability for 30
minutes each to evaluate the generated comments in the form of a
questionnaire. Similar to [15], we randomly select 300 prediction
results and their references from the test set (100 from NNGen,
100 from Re2Com and 100 from ast-attendgru). The 300 samples
are then evenly divided into six groups, with each questionnaire
containing one group. We randomly list the comment pairs and the
corresponding input code on the questionnaire and remove their la-
bels to ensure that participants cannot distinguish which comment
is generated by NNGen, Re2Com, or ast-attendgru. Each participant
is asked to rate each sample from the above three aspects. All three
scores are integers, ranging from 0 to 4. Each group is evaluated by
two volunteers, and the score of a pair of comments is the average
of two evaluations. Participants are allowed to search the Internet
for related information and unfamiliar concepts.

The evaluation results are shown in Table 5. Re2Com surpasses
NNGen and ast-attendgru in three aspects. In particular, the NNGen
can generate more fluent comments than the ast-attendgru, because
its comments are all retrieved from the training set. The difference
in standard deviation of the three methods is very small, indicating
that their scores are about the same degree of concentration. Inter-
estingly, the scores of infomativeness of all three models are higher
than those of similarity, indicating that the generated comments are
more relevant to the input code than to the references. Since some
references contain information about the context of Java methods,
such as member variables in the class, it is not possible to generate

Table 6: The number of correctly generated low-frequency
tokens

Methods ≤10 ≤20 ≤50 ≤100

Reference 12,145 15,253 21,622 28,425
ast-attendgru 262 624 1,575 2,801
Re2Com 422 1,093 2,808 4,886

0 20 40 60 80 100
Code Length

15

20

25

30

35

40

45

50

BL
EU

 S
co

re
 (

%
)

Re2Com
ast-attendgru

4 6 8 10 12
Comment Length

15

20

25

30

35

40

BL
EU

 S
co

re
 (

%
)

Re2Com
ast-attendgru

Figure 5: BLEU scores for different code and comment
lengths.

the information for all three models with only Java methods as
input.

6 DISCUSSION
In this section, we further compare Re2Com and the best base-
line ast-attendgru. Then we discuss situations where our method
performs well and threats to validity.

6.1 Performance on Low-frequency Tokens
94.8% of tokens in the comment vocabulary of the standard dataset
have a frequency of less than 100. As we described in Section 1
and 2, previous methods perform poorly on low-frequency tokens.
To evaluate the results of the Re2Com on low-frequency tokens, we
collect all correctly generated tokens that appear in both prediction
and reference on the test set, calculate the frequency of these tokens
on the training set, and count the tokens with frequencies less than
10, 20, 50, and 100. We conduct the same analysis on ast-attendgru
and count the number of low-frequency tokens in the reference on
the test set. Table 6 shows the statistical results on low-frequency
tokens. The results show that Re2Com can predict more correct low-
frequency tokens than ast-attendgru, which indicates that Re2Com
can tackle the problem of predicting low-frequency tokens. The abil-
ity to predict more tokens that appear less frequently also indicates
that our Re2Com has better generalization capabilities.

6.2 Performance for Different Lengths
Here, we further analyze the prediction accuracy of the Re2Com
and the ast-attendgru on different code and comment lengths. We
calculate the BLEU score for each sample on the test set and then
average the scores by length. Figure 5 shows the evaluation results.
From the figures, we can observe that the Re2Com outperforms
the ast-attendgru with different code and comment lengths. When
the code and comments are very long, the performance of both
models decreases to some extent, but Re2Com is still better than
ast-attendgru. The improvement of Re2Com is stable on code and
comments of different lengths.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Wei, et al.

Table 7: The performance of ourmodel and ast-attendgru on
the challenge dataset

Methods B B1 B2 B3 B4

ast-attendgru 9.334 25.79 11.05 6.027 4.418
Re2Com 10.50 27.41 12.26 7.014 5.182

Table 8: Examples of generated comments

Case ID Example

1

public void resume () {

Enumeration e = actuators.elements ();

while (e.hasMoreElements ()) {

((Actuator) (e.nextElement ())).resume ();

}

e = sensors.elements ();

while (e.hasMoreElements ()) {

((Sensor) (e.nextElement ())).resume ();

}

}
Human-written: resume all actuators and sensors in this mechanism
NNGen: suspend all actuators and sensors on a mechanism
ast-attendgru: resumes all actuators
Re2Com: resume all actuators and sensors in this mechanism

2

public double function(double x, double y) {

if (y >= 0) {

return Math.pow(x, y);

}

else {

return 1/Math.pow(x, -y);

}

}
Human-written: calculates x to the power of y
NNGen: get the norm of the vector squared
ast-attendgru: returns the function value of the x y coordinate
Re2Com: method for x to the power of y

3

public boolean equals(String rawSQL) {

return TextUtil.removeLineBreaks(rawSQL).equals(

_singleLineText);

}
Human-written: check if the current element matches a given sql string
NNGen: get the value of sql text
ast-attendgru: returns true if the given sql string is equal to the given
Re2Com: check if the current element matches a given sql string

6.3 Performance on the Challenge Dataset
Here, we evaluate the Re2Com and the ast-attendgru on the chal-
lenge dataset. Because source code token information is not avail-
able in the dataset, we use the Retrieve module to retrieve the most
similar SBT-AO and treat its comment as an exemplar. The results
are shown in Table 7. From the table, we can see that the BLEU
score of ourmodel is improved by 12.49% compared to ast-attendgru.
However, compared to the results on the standard dataset, we find
that our Re2Com on the challenge dataset does not perform as well
as on the standard dataset, which is due to the limitation of the
Retrieve module. The Retrieve module calculates the token-level
similarity, and we remove all tokens from in the code to obtain
the SBT-AO (details are in Section 4), resulting in poor retrieval
results for similar SBT-AO. Therefore, Re2Com does not perform
well on the challenge dataset. But in the absence of code as input,
it is very difficult to achieve such an improvement, and when com-
pares Re2Com with ast-attendgru, it still proves that the Re2Com
is helpful for generating comments.

6.4 Qualitative Analysis and Visualization
We perform a qualitative analysis on the generated comments. We
present three Java methods with its comments from the test set and
the comments generated by different methods, as shown in Table 8.
We can see from the table that, thanks to the useful information
provided by exemplars, the comments generated by the Re2Com
and the human-written comments are very close in semantics, and
the Re2Com performs better than other methods.

6.5 Threats to Validity
One threat to validity is that we only evaluated our framework
on a Java dataset. Although Java may not be representative of all
programming languages, the dataset is large and safe enough to
show that our model is effective. Besides, the Re2Com can be easily
applied to comment generation for other programming languages.

The second threat to validity is our human evaluation.We cannot
guarantee that each score assigned to every comment pair is fair. To
mitigate this threat, we evaluate each comment pair by two human
evaluators, and we use the average score of the two evaluators as
the final score.

Another threat to validity is that the Retrieve module uses the
lexical-level similarity of the source code, which may cause the
code retrieved by the module to be semantically dissimilar. We
recommend increasing the scale of the retrieval corpus to avoid this
threat. However, in the Re2Com, we introduce the Refine module
to calculate the semantic similarity and decide whether to use the
exemplar based on the similarity score.

7 RELATEDWORK
Code Summarization.Automatic comment generation approaches
vary from manually-crafted templates [30, 31, 37], IR [8, 11, 42, 43]
and neural models [14, 16, 25].

Comment generation based on manually-craft templates was
one of the common methods for generating comments. Sridhara
et al. [37] developed the Software Word Usage Model (SWUM) to
capture the occurrences of terms in source code and their linguistic
and structural relationships and then defined different templates
for different semantic segments in source code to generate readable
natural language. Moreno et al. [31] defined heuristic rules to select
relevant information in the source code, and then divided the com-
ments into four parts, and defined different text templates for each
part to generate natural language descriptions. McBurney et al. [30]
also used the SWUM model to extract the keywords in the Java
method, employed the PageRank algorithm to select the important
methods in the given method’s context, and used a template-based
text generation system to generate comments. These frameworks
have achieved good results on Java classes and methods.

IR techniques have been widely used in comment generation
task. Haiduc et al. [11] used two IR techniques, Vector Space Model
and Latent Semantic Indexing, to retrieve relevant terms from a
software corpus, and then organized these terms into comments.
Eddy et al. [8] used hierarchical PAM, a probabilistic model that
selected relevant terms from the corpus and included them to the
comments. Unlike the first two research works, Wong et al. [43]
proposed that code snippets and their descriptions on the Q&A
sites can be used to generate comments for a piece of code. They

Retrieve and Refine: Exemplar-based Neural
Comment Generation ASE ’20, September 21–25, 2020, Virtual Event, Australia

used a token-based code clone detection tool SIM to detect similar
code snippets and used their comments as target comments. Wong
et al. [42] further thought that the resources of the Q&A sites were
limited and proposed to use token-based code clone detection tools
to retrieve similar code snippets from GitHub and leverage the
information obtained from their comments to generate comments.

Recently many neural networks have been proposed for com-
ment generation. With large-scale corpora for training, neural-
based approaches quickly became state-of-the-art models on this
task. Iyer et al. [16] first introduced the seq2seq model from neural
machine translation into comment generation, whose encoder is
the token embedding and decoder is an LSTM. Their model out-
performs traditional methods on C# and SQL summaries. Inspired
by the difference between natural language and programming lan-
guage, Hu et al. [14] proposed a neural model named DeepCom to
capture the structural information of source code. They proposed
a structure-based traversal method, using one LSTM to process
the AST’s traversal sequence, and the other LSTM to generate
comments for Java methods. LeClair et al. [25] proposed a neural
method to predict the comment by combining the sequence infor-
mation and structure information of the source code with two GRU
encoders. In addition, they reconstructed the benchmark dataset
for this task, removed duplicate and auto-generated code in the
dataset, and divided the dataset into training, validation, and test
by project.

Our proposed Re2Com combines the advantages of the three
methods, retrieves a similar code snippet from the training set, and
uses its comment as the exemplar to guide the neural model for
comment generation, improving performance over baselines.
Code Clone Detection. Code clone detection that measures code
similarity is a common program comprehension task in software
engineering. Existing researches mainly measure the similarity be-
tween code representation varying from lexical [20, 35] to syntacti-
cal [18] representations. Specifically, CCFinder [20] and Sourcer-
erCC [35] are code clone detection tools based on bag of tokens,
while DECKARD [18] detects code clones based on AST. Recently,
deep learning models are proposed to learn the implicit similarity
between code snippets [4, 26, 40, 41, 45, 46]. These methods use a
variety of neural networks: RtNN [41], DNN [26, 46], ASTNN [45]
and AST-based RNN [4, 40] to represent source code as feature
vectors, and use feature vectors to calculate the similarity between
source code snippets. Although we can use deep learning-based
code clone detection tools to retrieve similar code snippets, these
tools need to be trained on the labeled dataset. In our Retrieve
module, we prefer to use a lightweight search engine and then
exploit the Refine module to correct the retrieved exemplar. There-
fore, we argue that the similarity at the lexical level is sufficient to
find similar code snippets to assist in comment generation, and the
experimental results also prove our idea.

8 CONCLUSION
In this paper, we propose an exemplar-based comment generation
framework named Re2Com that takes advantage of three types of
methods based on neural networks, templates, and IR. Our frame-
work contains two modules, a Retrieve module for retrieving the

most similar code snippet, and a Refine module that uses the com-
ment of the similar code snippet as an exemplar to generate a target
comment. In order to verify the effectiveness of our framework,
we evaluated the Re2Com on a large-scale Java method dataset.
The experimental results show that the Re2Com has a substantial
improvement over the neural-based baselines and the IR-based base-
lines. Further analysis of the experimental results shows that the
Re2Com performs well not only on low-frequency tokens but also
on code and comments of different lengths. In future work, we plan
to explore the impact of more complex code retrieval techniques
on the Re2Com.

ACKNOWLEDGMENTS
This research is supported by the National Key R&D Program
under Grant No. 2018YFB1003904, the National Natural Science
Foundation of China under Grant Nos. 61832009, 61620106007 and
61751210, and the Australian Research Council’s Discovery Early
Career Researcher Award (DECRA) funding scheme (DE200100021).

REFERENCES
[1] Miltiadis Allamanis. 2019. The adverse effects of code duplication in machine

learning models of code. In Proceedings of the 2019 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software, Onward! 2019, Athens, Greece, October 23-24, 2019. 143–153. https:
//doi.org/10.1145/3359591.3359735

[2] Miltiadis Allamanis, Earl T. Barr, Premkumar T. Devanbu, and Charles A. Sutton.
2018. A Survey of Machine Learning for Big Code and Naturalness. ACM Comput.
Surv. 51, 4 (2018), 81:1–81:37. https://doi.org/10.1145/3212695

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings. http://arxiv.org/abs/1409.0473

[4] Lutz Büch and Artur Andrzejak. 2019. Learning-Based Recursive Aggregation of
Abstract Syntax Trees for Code Clone Detection. In 26th IEEE International Con-
ference on Software Analysis, Evolution and Reengineering, SANER 2019, Hangzhou,
China, February 24-27, 2019, Xinyu Wang, David Lo, and Emad Shihab (Eds.).
IEEE, 95–104. https://doi.org/10.1109/SANER.2019.8668039

[5] Michael L. Collard, Michael John Decker, and Jonathan I. Maletic. 2011. Light-
weight Transformation and Fact Extraction with the srcML Toolkit. In 11th
IEEE Working Conference on Source Code Analysis and Manipulation, SCAM 2011,
Williamsburg, VA, USA, September 25-26, 2011. 173–184. https://doi.org/10.1109/
SCAM.2011.19

[6] Thomas A. Corbi. 1989. Program Understanding: Challenge for the 1990s. IBM
Systems Journal 28, 2 (1989), 294–306. https://doi.org/10.1147/sj.282.0294

[7] Sergio Cozzetti B. de Souza, Nicolas Anquetil, and Káthia Marçal de Oliveira.
2005. A study of the documentation essential to software maintenance. In Pro-
ceedings of the 23rd Annual International Conference on Design of Communication:
documenting & Designing for Pervasive Information, SIGDOC 2005, Coventry, UK,
September 21-23, 2005. 68–75. https://doi.org/10.1145/1085313.1085331

[8] Brian P. Eddy, Jeffrey A. Robinson, Nicholas A. Kraft, and Jeffrey C. Carver. 2013.
Evaluating source code summarization techniques: Replication and expansion.
In IEEE 21st International Conference on Program Comprehension, ICPC 2013, San
Francisco, CA, USA, 20-21 May, 2013. 13–22. https://doi.org/10.1109/ICPC.2013.
6613829

[9] R. K. Fjeldstad and W. T. Hamlen. 1982. Application program maintenance study
- reports to our respondents.

[10] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep
API learning. In Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November
13-18, 2016. 631–642. https://doi.org/10.1145/2950290.2950334

[11] Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian Marcus. 2010. On the
Use of Automated Text Summarization Techniques for Summarizing Source Code.
In 17th Working Conference on Reverse Engineering, WCRE 2010, 13-16 October
2010, Beverly, MA, USA. 35–44. https://doi.org/10.1109/WCRE.2010.13

[12] Abram Hindle, Earl T. Barr, Mark Gabel, Zhendong Su, and Premkumar T. De-
vanbu. 2016. On the naturalness of software. Commun. ACM 59, 5 (2016), 122–131.
https://doi.org/10.1145/2902362

[13] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.
8.1735

https://doi.org/10.1145/3359591.3359735
https://doi.org/10.1145/3359591.3359735
https://doi.org/10.1145/3212695
http://arxiv.org/abs/1409.0473
https://doi.org/10.1109/SANER.2019.8668039
https://doi.org/10.1109/SCAM.2011.19
https://doi.org/10.1109/SCAM.2011.19
https://doi.org/10.1147/sj.282.0294
https://doi.org/10.1145/1085313.1085331
https://doi.org/10.1109/ICPC.2013.6613829
https://doi.org/10.1109/ICPC.2013.6613829
https://doi.org/10.1145/2950290.2950334
https://doi.org/10.1109/WCRE.2010.13
https://doi.org/10.1145/2902362
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

ASE ’20, September 21–25, 2020, Virtual Event, Australia Wei, et al.

[14] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment
generation. In Proceedings of the 26th Conference on Program Comprehension,
ICPC 2018, Gothenburg, Sweden, May 27-28, 2018. 200–210. https://doi.org/10.
1145/3196321.3196334

[15] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2019. Deep code comment
generation with hybrid lexical and syntactical information. Empirical Software
Engineering (2019), 1–39.

[16] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.
Summarizing Source Code using a Neural Attention Model. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics, ACL 2016,
August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. https://www.aclweb.
org/anthology/P16-1195/

[17] Lin Jiang, Haiwen Liu, and He Jiang. 2019. Machine Learning Based Recommen-
dation of Method Names: How Far are We. 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE) (2019), 602–614.

[18] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stéphane Glondu. 2007.
DECKARD: Scalable and Accurate Tree-Based Detection of Code Clones. In 29th
International Conference on Software Engineering (ICSE 2007), Minneapolis, MN,
USA, May 20-26, 2007. 96–105. https://doi.org/10.1109/ICSE.2007.30

[19] Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. Automatically generat-
ing commit messages from diffs using neural machine translation. In Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software Engineering,
ASE 2017, Urbana, IL, USA, October 30 - November 03, 2017, Grigore Rosu, Massi-
miliano Di Penta, and Tien N. Nguyen (Eds.). IEEE Computer Society, 135–146.
https://doi.org/10.1109/ASE.2017.8115626

[20] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: A
Multilinguistic Token-Based Code Clone Detection System for Large Scale Source
Code. IEEE Trans. Software Eng. 28, 7 (2002), 654–670. https://doi.org/10.1109/
TSE.2002.1019480

[21] Miryung Kim, Vibha Sazawal, David Notkin, and Gail C. Murphy. 2005. An
empirical study of code clone genealogies. In Proceedings of the 10th European
Software Engineering Conference held jointly with 13th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, 2005, Lisbon, Portugal,
September 5-9, 2005. 187–196. https://doi.org/10.1145/1081706.1081737

[22] A. J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006. An
Exploratory Study of How Developers Seek, Relate, and Collect Relevant Infor-
mation during Software Maintenance Tasks. IEEE Trans. Software Eng. 32, 12
(2006), 971–987. https://doi.org/10.1109/TSE.2006.116

[23] Philipp Koehn and Rebecca Knowles. 2017. Six Challenges for Neural Machine
Translation. In Proceedings of the First Workshop on Neural Machine Translation,
NMT@ACL 2017, Vancouver, Canada, August 4, 2017. 28–39. https://www.aclweb.
org/anthology/W17-3204/

[24] Douglas Kramer. 1999. API documentation from source code comments: a case
study of Javadoc. In Proceedings of the 17th annual international conference on
Documentation, SIGDOC 1999, New Orleans, Louisiana, USA, September 12-14, 1999.
147–153. https://doi.org/10.1145/318372.318577

[25] Alexander LeClair, Siyuan Jiang, and Collin McMillan. 2019. A neural model for
generating natural language summaries of program subroutines. In Proceedings
of the 41st International Conference on Software Engineering, ICSE 2019, Montreal,
QC, Canada, May 25-31, 2019. 795–806. https://doi.org/10.1109/ICSE.2019.00087

[26] Liuqing Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara G. Ryder. 2017.
CCLearner: A Deep Learning-Based Clone Detection Approach. In 2017 IEEE
International Conference on Software Maintenance and Evolution, ICSME 2017,
Shanghai, China, September 17-22, 2017. 249–260. https://doi.org/10.1109/ICSME.
2017.46

[27] Zhongxin Liu, Xin Xia, Ahmed E. Hassan, David Lo, Zhenchang Xing, and Xinyu
Wang. 2018. Neural-machine-translation-based commit message generation:
how far are we?. In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, ASE 2018, Montpellier, France, September 3-7,
2018. 373–384. https://doi.org/10.1145/3238147.3238190

[28] Zhongxin Liu, Xin Xia, Christoph Treude, David Lo, and Shanping Li. 2019. Au-
tomatic Generation of Pull Request Descriptions. In 34th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2019, San Diego, CA, USA,
November 11-15, 2019. 176–188. https://doi.org/10.1109/ASE.2019.00026

[29] C. Lopes, S. Bajracharya, J. Ossher, and P. Baldi. 2010. UCI Source Code Data
Sets. https://www.ics.uci.edu/~lopes/datasets/

[30] Paul W. McBurney and Collin McMillan. 2016. Automatic Source Code Sum-
marization of Context for Java Methods. IEEE Trans. Software Eng. 42, 2 (2016),
103–119. https://doi.org/10.1109/TSE.2015.2465386

[31] LauraMoreno, Jairo Aponte, Giriprasad Sridhara, AndrianMarcus, Lori L. Pollock,
and K. Vijay-Shanker. 2013. Automatic generation of natural language summaries
for Java classes. In IEEE 21st International Conference on Program Comprehension,
ICPC 2013, San Francisco, CA, USA, 20-21 May, 2013. 23–32. https://doi.org/10.
1109/ICPC.2013.6613830

[32] Sankar K. Pal and Sushmita Mitra. 1992. Multilayer perceptron, fuzzy sets,
and classification. IEEE Trans. Neural Networks 3, 5 (1992), 683–697. https:
//doi.org/10.1109/72.159058

[33] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
Method for Automatic Evaluation of Machine Translation. In Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics, July 6-12,
2002, Philadelphia, PA, USA. 311–318. https://www.aclweb.org/anthology/P02-
1040/

[34] Alexander M. Rush, Sumit Chopra, and Jason Weston. 2015. A Neural Attention
Model for Abstractive Sentence Summarization. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon,
Portugal, September 17-21, 2015. 379–389. https://doi.org/10.18653/v1/d15-1044

[35] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V.
Lopes. 2016. SourcererCC: scaling code clone detection to big-code. In Proceedings
of the 38th International Conference on Software Engineering, ICSE 2016, Austin,
TX, USA, May 14-22, 2016. 1157–1168. https://doi.org/10.1145/2884781.2884877

[36] Kento Shimonaka, Soichi Sumi, Yoshiki Higo, and Shinji Kusumoto. 2016. Identi-
fying Auto-Generated Code by Using Machine Learning Techniques. 2016 7th
International Workshop on Empirical Software Engineering in Practice (IWESEP)
(2016), 18–23.

[37] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori L. Pollock, and K. Vijay-
Shanker. 2010. Towards automatically generating summary comments for Java
methods. In ASE. ACM, 43–52.

[38] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence
Learning with Neural Networks. In Advances in Neural Information Processing
Systems 27: Annual Conference on Neural Information Processing Systems 2014,
December 8-13 2014, Montreal, Quebec, Canada. 3104–3112. http://papers.nips.cc/
paper/5346-sequence-to-sequence-learning-with-neural-networks

[39] Oriol Vinyals and Quoc V. Le. 2015. A Neural Conversational Model. CoRR
abs/1506.05869 (2015). arXiv:1506.05869 http://arxiv.org/abs/1506.05869

[40] Huihui Wei and Ming Li. 2017. Supervised Deep Features for Software Functional
Clone Detection by Exploiting Lexical and Syntactical Information in Source
Code. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, Carles Sierra
(Ed.). ijcai.org, 3034–3040. https://doi.org/10.24963/ijcai.2017/423

[41] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
2016. Deep learning code fragments for code clone detection. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineering,
ASE 2016, Singapore, September 3-7, 2016. 87–98. https://doi.org/10.1145/2970276.
2970326

[42] Edmund Wong, Taiyue Liu, and Lin Tan. 2015. CloCom: Mining existing source
code for automatic comment generation. In 22nd IEEE International Conference
on Software Analysis, Evolution, and Reengineering, SANER 2015, Montreal, QC,
Canada, March 2-6, 2015. 380–389. https://doi.org/10.1109/SANER.2015.7081848

[43] Edmund Wong, Jinqiu Yang, and Lin Tan. 2013. AutoComment: Mining question
and answer sites for automatic comment generation. In 2013 28th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2013, Silicon
Valley, CA, USA, November 11-15, 2013. 562–567. https://doi.org/10.1109/ASE.
2013.6693113

[44] Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E. Hassan, and
Shanping Li. 2018. Measuring Program Comprehension: A Large-Scale Field
Study with Professionals. IEEE Trans. Software Eng. 44, 10 (2018), 951–976.
https://doi.org/10.1109/TSE.2017.2734091

[45] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. 2019. A novel neural source code representation based on abstract syntax
tree. In Proceedings of the 41st International Conference on Software Engineering,
ICSE 2019, Montreal, QC, Canada, May 25-31, 2019. 783–794. https://doi.org/10.
1109/ICSE.2019.00086

[46] Gang Zhao and Jeff Huang. 2018. DeepSim: deep learning code functional simi-
larity. In Proceedings of the 2018 ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018. 141–151.
https://doi.org/10.1145/3236024.3236068

https://doi.org/10.1145/3196321.3196334
https://doi.org/10.1145/3196321.3196334
https://www.aclweb.org/anthology/P16-1195/
https://www.aclweb.org/anthology/P16-1195/
https://doi.org/10.1109/ICSE.2007.30
https://doi.org/10.1109/ASE.2017.8115626
https://doi.org/10.1109/TSE.2002.1019480
https://doi.org/10.1109/TSE.2002.1019480
https://doi.org/10.1145/1081706.1081737
https://doi.org/10.1109/TSE.2006.116
https://www.aclweb.org/anthology/W17-3204/
https://www.aclweb.org/anthology/W17-3204/
https://doi.org/10.1145/318372.318577
https://doi.org/10.1109/ICSE.2019.00087
https://doi.org/10.1109/ICSME.2017.46
https://doi.org/10.1109/ICSME.2017.46
https://doi.org/10.1145/3238147.3238190
https://doi.org/10.1109/ASE.2019.00026
https://www.ics.uci.edu/~lopes/datasets/
https://doi.org/10.1109/TSE.2015.2465386
https://doi.org/10.1109/ICPC.2013.6613830
https://doi.org/10.1109/ICPC.2013.6613830
https://doi.org/10.1109/72.159058
https://doi.org/10.1109/72.159058
https://www.aclweb.org/anthology/P02-1040/
https://www.aclweb.org/anthology/P02-1040/
https://doi.org/10.18653/v1/d15-1044
https://doi.org/10.1145/2884781.2884877
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks
http://arxiv.org/abs/1506.05869
http://arxiv.org/abs/1506.05869
https://doi.org/10.24963/ijcai.2017/423
https://doi.org/10.1145/2970276.2970326
https://doi.org/10.1145/2970276.2970326
https://doi.org/10.1109/SANER.2015.7081848
https://doi.org/10.1109/ASE.2013.6693113
https://doi.org/10.1109/ASE.2013.6693113
https://doi.org/10.1109/TSE.2017.2734091
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1145/3236024.3236068

	Abstract
	1 Introduction
	2 Motivating Examples
	3 PROPOSED APPROACH
	3.1 Retrieve Module
	3.2 Refine Module

	4 EXPERIMENT SETUP
	5 RESULTS
	5.1 RQ1: Re2Com vs. Neural Baselines
	5.2 RQ2: Effectiveness of Exemplar
	5.3 RQ3: Re2Com vs. IR Baselines
	5.4 Human Evaluation

	6 DISCUSSION
	6.1 Performance on Low-frequency Tokens
	6.2 Performance for Different Lengths
	6.3 Performance on the Challenge Dataset
	6.4 Qualitative Analysis and Visualization
	6.5 Threats to Validity

	7 RELATED WORK
	8 Conclusion
	Acknowledgments
	References

