
API-Misuse Detection Driven by Fine-Grained API-Constraint
Knowledge Graph

Xiaoxue Ren∗†
Zhejiang University

China
xxren@zju.edu.cn

Xinyuan Ye
Australian National University

Australia
u6296255@anu.edu.au

Zhenchang Xing‡
Australian National University

Australia
zhenchang.Xing@anu.edu.au

Xin Xia§
Monash University

Australia
xin.xia@monash.edu

Xiwei Xu
Data61, CSIRO

Australia
Xiwei.Xu@data61.csiro.au

Liming Zhu¶
Data61, CSIRO

Australia
Liming.Zhu@data61.csiro.au

Jianling Sun
Zhejiang University

China
sunjl@zju.edu.cn

ABSTRACT
API misuses cause significant problem in software development.
Existing methods detect API misuses against frequent API usage
patterns mined from codebase. They make a naive assumption
that API usage that deviates from the most-frequent API usage
is a misuse. However, there is a big knowledge gap between API
usage patterns and API usage caveats in terms of comprehensive-
ness, explainability and best practices. In this work, we propose a
novel approach that detects API misuses directly against the API
caveat knowledge, rather than API usage patterns. We develop
open information extraction methods to construct a novel API-
constraint knowledge graph from API reference documentation.
This knowledge graph explicitly models two types of API-constraint
relations (call-order and condition-checking) and enriches return
and throw relations with return conditions and exception triggers.
It empowers the detection of three types of frequent API misuses -
missing calls, missing condition checking and missing exception
handling, while existing detectors mostly focus on only missing
calls. As a proof-of-concept, we apply our approach to Java SDK
API Specification. Our evaluation confirms the high accuracy of
the extracted API-constraint relations. Our knowledge-driven API

∗Also with Ningbo Research Institute.
†Also with PengCheng Laboratory.
‡Also with Data61, CSIRO.
§Corresponding author.
¶Also with University of New South Wales.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416551

misuse detector achieves 0.60 (68/113) precision and 0.28 (68/239)
recall for detecting Java API misuses in the API misuse benchmark
MuBench. This performance is significantly higher than that of
existing pattern-based API misused detectors. A pilot user study
with 12 developers shows that our knowledge-driven API misuse
detection is very promising in helping developers avoid API misuses
and debug the bugs caused by API misuses.

CCS CONCEPTS
• Software and its engineering→ Software libraries and reposi-
tories.

ACM Reference Format:
Xiaoxue Ren, Xinyuan Ye, Zhenchang Xing, Xin Xia, Xiwei Xu, Liming Zhu,
and Jianling Sun. 2020. API-Misuse Detection Driven by Fine-Grained API-
Constraint Knowledge Graph. In 35th IEEE/ACM International Conference
on Automated Software Engineering (ASE ’20), September 21–25, 2020, Virtual
Event, Australia. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3324884.3416551

1 INTRODUCTION
Software libraries provide reusable functionalities through Appli-
cation Programming Interfaces (APIs). APIs often come with usage
caveats, such as constraints on call order or value/state conditions.
For example, when using the Iterator in Java, one should check
that hasNext() returns true (i.e., the iteration has more elements)
before calling next(), to avoid NoSuchElementExcpetion. Applica-
tions that fail to follow these caveats (i.e., misuse APIs) may suffer
from bugs. [3, 9–11, 24, 37]. There are many pattern-based tools
for detecting API misuses by static code analysis [2, 17, 18, 24–
26, 30, 41–44]. All these methods mine API usage patterns from a
codebase, and make a naive assumption that any deviations with
respect to these patterns are potential misuse [4].

The systematic evaluation by Amann et al. [4] reveals that all
pattern-based API-misuse detectors, no matter which form of API

https://doi.org/10.1145/3324884.3416551
https://doi.org/10.1145/3324884.3416551
https://doi.org/10.1145/3324884.3416551

ASE ’20, September 21–25, 2020, Virtual Event, Australia Xiaoxue Ren, Xinyuan Ye, Zhenchang Xing, Xin Xia, Xiwei Xu, Liming Zhu, and Jianling Sun

patterns they adopt (call pairs/sequences [17, 44], program depen-
dency graph [25, 29, 42], state machine [26]), suffer from low preci-
sion (0-11%) and recall (0-20%) in practice. Some approaches attempt
to improve detection results by obtaining larger codebase through
code search engine [41], adopting more informative usage repre-
sentation [25, 38], or building more robust probabilistic models of
deviation [26]. However, none of these improvements go beyond
the naive assumption of pattern-based API-misuse detection.

In this paper, we propose a knowledge-driven approach, which
detects API misuse against a novel API-constraint knowledge graph,
rather than against API usage patterns that may not reliably man-
ifest API usage caveats (see Section 2 for the discussion on the
knowledge gap between API usage patterns and API usage caveats).
Existing static code linting tools like FindBugs [28], Pylint [40]
cover only general programming anti-patterns (e.g., null reference,
useless control flow) that may cause program errors, but not usage
caveats of hundreds or thousands of specific APIs. Compilers report
only compilation errors (e.g., unhandled exception) based on API
declaration, but they are unaware of API usage constraints, such as
proper call order, prerequisite state, or value range.

API documentation is an important knowledge source of API
usage caveats [16, 20]. Although IDEs provide direct access to API
documentation, API documentation, at least in their current semi-
structured document form, are insufficient to directly solve the API
misuse problem [1, 16, 27]. To improve the accessibility of API-
caveat knowledge, Li et al. [16] used Natural Language Processing
(NLP) techniques to construct a API-caveat knowledge graph from
API documentation. This knowledge graph supports API-centric
search of caveat sentences. The extracted natural language caveat
sentences are useful for linking API caveats with erroneous code
examples or explaining controversial API usage on Stack Over-
flow [32, 33]. However, caveat sentences cannot be directly used to
detect API misuses in source code in their natural language form.

In this paper, we propose a API-constraint knowledge graph:
the entities represents API elements and value literals, and the
edges represent declaration relations and four types of constraints
(call-order, condition-checking, return-condition, exception-trigger)
between APIs (see Section 3.1). Different from existing API knowl-
edge graphs [16, 19] that capture only declaration relations and
simply link API-caveat sentences to an API as its attributes, we
develop NLP techniques to transform API-caveat sentences into
specific API constraint relations. For example, by analyzing the
return description “true if the iteration has more elements” of It-
erator.hasNext() and the throws description “NoSuchElementEx-
cpetion - if the iteration has no elements” of Iterator.next(), we
infer a state-checking relation from next() to hasNext() with the
expected state true, and the consequenceNoSuchElementException
of violating this expected state, as shown in Figure 2(b). Compared
with existing methods that infer specifications from text [39, 48, 49],
our approach infers more types of and more informative API con-
straints. Given a graph representation (e.g., Abstract Syntax Tree)
of a program, we link the program elements with the API entities
in our API-constraint knowledge graph. By analyzing the API con-
straints in the knowledge graph that the linked program elements
violate, our approach reports API misuses and explain the detected
misused by relevant API caveats (see Figure 6 for an example).

As a proof of concept, we apply our approach to Java SDK API
Specification and construct a knowledge graph which contains
1,938 call-order relations and 74,207 condition-checking relations
among 21,910 methods and 8,632 parameters, and 8,215 return-
value conditions and 12,477 exception trigger clauses. Using the
statistical sampling method [35], two developers independently
annotate the accuracy of the extracted API-constrained relations.
The annotation results confirm the high accuracy (>85%) of the
extracted information with substantial to almost perfect agreement
between the two annotators. For the 239 API misuses in the 54 Java
projects in the MuBench [3], our API misuse detector achieves 60%
in precision and 28% in recall. As a comparison, existing pattern-
based detectors achieve about 0-11.4% in precision and 0-20.8% in
recall according to the systematic evaluation of these detectors [4].
We conduct a pilot user study with 12 junior developers who are
asked to find and fix the bugs in six API misuse scenarios derived
from the MuBench. The developers, assisted by our API misuse
warnings, find and fix bugs much faster and more correctly than
those using standard IDE support. The developers rate highly (4 or
5 in 5-point likert scale) the relevance and usefulness of our API
misuse warnings, not only for debugging API misuses but also for
potentially avoiding them in the first place.

This paper makes the following contributions:
• We analyze the knowledge gap between API usage caveats
and API usage patterns, and how a knowledge graph ap-
proach may bridge the gap.

• We construct the first API-constraint knowledge graph with
four types of API constraint relations, and build the first
knowledge-graph based API misuse detector.

• Our manual analysis confirms the high quality of the con-
structed knowledge graph, and our benchmark evaluation
and user study demonstrate the effectiveness and usefulness
of our knowledge-graph based API misuse detection.

2 MOTIVATION EXAMPLES
To overcome the limitations of pattern-based API misuse detection
identified in [4], we analyze the knowledge gap between API usage
caveats and API usage patterns. We focus on API usage caveats
specifying call order and condition checking, as violations of these
caveats represent the most frequent API misuses [4]. We illustrate
the gap with typical examples and API usage patterns in the form
of call sequences, but the observed knowledge gap is not restricted
to these examples or specific forms of API patterns. We discuss how
a API-constraint knowledge graph can bridge the gap (see Section 3
for knowledge graph schema and construction method).

2.1 Comprehensiveness
API patterns may cover only some API usage caveats, depending
on API usage frequencies. Figure 1(a) shows a code example of
Java Swing APIs which satisfies the call-order constraint “the add()
method changes layout-related information ... the component hier-
archy must be validated thereafter in order to reflect the changes”.
If there are enough code snippets like the one in Figure 1(a) in a
codebase, add()→validate() can be mined as an API pattern, which
helps to detect calling add() without validate() as a misuse. Besides
add(), there are many other layout-changing methods like remove()

API-Misuse Detection Driven by Fine-Grained API-Constraint Knowledge Graph ASE ’20, September 21–25, 2020, Virtual Event, Australia

(a)

JPanel

add(...) remove(...)

validate()

hasmethod

<callorder>
[follow]

hasmethod hasmethod

<callorder>
[follow]

(b)

Figure 1: Example of Java Swing APIs

(a)

Iterator

hasnext()

next()

remove()

[Violation:
 IllegalStateException]

hasmethod hasmethod

<callorder>
[precede]

[Violation:
 NoSuchElementException]

<state-checking>
[Expected State: true]

NoSuchElementException IllegalStateException

hasmethod

(b)

Figure 2: Example of Java Collections APIs

which have the same call-order constraint. However, if the API call
sequence panel.remove(); panel.validate() is not frequent enough
in the codebase, remove()→validate() will not mined as a pattern,
and consequently cannot detect missing validate() after remove().

If we model API usage caveats themselves, rather than how
frequent they manifest in a codebase, we can achieve more compre-
hensive coverage of API usage caveats. For example, by analyzing
the call-order constraint of all layout-changing methods, we can
construct a knowledge graph like Figure 1(b), which captures the
<call-order>[follow] relations from the method validate() to all
layout-changing methods (only add() and remove() is shown for
the clarify). Based on this knowledge graph, even there is no prior
use of remove() at all in the codebase, we can still detect calling
remove() without validate() as a misuse.

2.2 Explainability
API patterns represent the outcomes of following API usage caveats
in code, but often cannot distinguish why such outcomes emerge.
Figure 2(a) shows a code example of Java Collection APIs: check
that hasNext() returns true, then get the next element in the itera-
tion and finally remove this element. Some patterns can be mined
from such frequent use of collection APIs, such as hasNext()→
next(), next()→remove(), or even hasNext()→ next()→remove(). Su-
perficially, they all look like call-order constraints. However, unlike
add()→validate() discussed in Section 2.1, there are no constraints
about calling next() (or remove()) after hasNext() (or next()).

The actual constraint results in the pattern next()→remove() is
next()must precede remove(), otherwise remove() throws IllegalSta-
teException. The actual constraint results in the pattern hasNext()→
next() is that one should call hasNext() to check the state of the iter-
ation before calling next(), because if the iteration has no elements,

(a)

String

indexOf(int) substring(int) length()

beginIndex

Negative-1

hasmethod hasmethod hasmethod

hasparameter
<state-checking>
[Expected State: <]
[Violation:
IndexOutOfBoundsException]IndexOutOfBoundsException

<state-checking>
[Expected State: !=]
[Violation: IndexOutOfBoundsException]

return
[if the characrer
 does not occur]

(b)

Figure 3: Example of Java String APIs

(a)

isDirectory()

File

exists()

FileReader

FileReader
(String)

read()

IOException
fileName

hasmethod
hasmethodhasmethod

trigger
[cannot be opened

for reading]

trigger
[an I/O error occurs]

<state-checking>
[Expected State: true]

[Violation::FileNotFoundException]

<state-checking>
[Expected State: false]

[Violation: FileNotFoundException]]

hasparameter

FileNotFoundException

hasmethod

FileNotFoundException

FileNotFoundException

(b)

Figure 4: Example of Java IO APIs

next() throwsNoSuchElementException. API patterns cannot distin-
guish such fine details of API caveats. Graph-based patterns [25, 38]
are more informative than call sequences, but it is not straightfor-
ward to infer all fine details of API caveats from code.

In contrast, we can analyze the natural language descriptions
of API caveats to distinguish different types of API constraints
and extract their fine details, as shown in the knowledge graph
in Figure 2(b). Due to the clear semantics of the state-checking
and call-order relations, we will not report calling (hasNext()) (or
next()) without the following next() (or remove()) as a misuse. More
important, we can provide specific explanation of detected API
misuses, such as missing state checking versus missing preceding
call, as well as the expected state and violation consequences.

2.3 Best Practices
API patterns fundamentally assume frequencies reflect the ratio-
nality of API usage, but this rationality may not correspond to the
best practices of handling API caveats. Figure 3(a) shows a code ex-
ample of Java String APIs: substring(indexOf()). This API chain call
is frequent in code, but it lacks a sanity checking of the indexOf()’s
return value, because indexOf() returns -1 if the char does not occur
in the string, and substring() throws IndexOutOfBoundsException
if its beginIndex argument is negative. As another example, Fig-
ure 4(a) shows a code example of Java IO APIs: enclose file open and
read operations in a try-catch to handle IOException, which is also
very common in code. However, this way of handling IOException
does not consider the specific causes of the exception: “the file does
not exist, or the file is a directory or an IO error occurs”.

By analyzing the description of return value conditions, pa-
rameter constraints, exception causes and API functionalities, we
can model and reason about the complex constraint relations be-
tween APIs in the knowledge graphs in Figure 3(b) and Figure 4(b).
For example, by examining the chain call substring(indexOf())

ASE ’20, September 21–25, 2020, Virtual Event, Australia Xiaoxue Ren, Xinyuan Ye, Zhenchang Xing, Xin Xia, Xiwei Xu, Liming Zhu, and Jianling Sun

API Reference
Documentation

API Textual
Description

Extract API
Caveat Clause

Link Caveat Clause
to API Elememts

Creat API Constraint
Relations

 Semi-structured
API Declaration

Construct API
Declaration Graph

Return Condition

Exception Trigger

Call-order

Condition-checking
Developer

API-constraint
Knowledge

Graph

Knowledge
Driven API

Misuse Detection

Code

API-misuse &
Caveat Description

API Declaration Graph

Derive API Constraint Relations

Entity
Declared Relation

Return

Throw

Contain

API
Elements

Report

Value

Literals

Develop

Figure 5: The Overall Framework of Our Approach
against the relations [indexOf(), return, -1] and [beginIndex, <value-
checking>[!=], negative], we can identify a missing-value-checking,
its condition “the character does not occur” and its consequence
IndexOutOfBoundsException. By examining the code in Figure 4(a)
against specific parameter state-checking relations (e.g., [filename,
<state-checking>[true], File.exist()]) and exception triggers, we can
identify missing file.exists() checking and missing file.isDirectory()
checking, and make specific fix suggestions (see Figure 6), as op-
posed to a generic unhandled exception error raised by the IDE.

3 OUR APPROACH
To support the knowledge-graph based API misuse detection pre-
sented in Section 2, we develop open information extraction meth-
ods to construct the API-constraint knowledge graph from API
reference documentation, e.g. Java SDK API Specification. Figure 5
shows the overall framework of our approach. Our API-constraint
knowledge graph significantly extends existing general API knowl-
edge graphs [16, 19] (referred to as API declaration graph (see
Section 3.3) in this work) with four categories of fine-grained API
constraint relations derived from API caveat sentences (see Sec-
tion 3.4). These API constraint relations correspond to the three
most-frequent API misuse categories in the API misuse benchmark
MuBench [4] (see Section 3.1). We develop a novel knowledge-
driven API misuse detector that checks the program for API misuses
against the API-constraint knowledge graph (see Section 3.5).

3.1 Knowledge Graph Schema
The knowledge graph entities include API elements (package, class,
exception, method, parameter and return-value) and value literals
(e.g., null, -1, true, or a range like negative or [0-9]). We distinguish
exception from class to facilitate exception handling analysis. An
entity has a name (null for return-value). A method or parameter
entity has a functionality description, which is used to link method
or parameter to relevant API caveat description for deriving API-
constraint relations. A return-value entity has a return-value de-
scription. This work focuses on API-method constraints, so we do
not need descriptions for packages and classes. Packages and classes
are used as the declaration scope to limit the search space of API
constraint relation inference.

The relations of our knowledge graph include declaration re-
lations and constraint relations. The declaration relations include:
an API element contains another API element (e.g., a class con-
tains a method), a method returns a value-literal, and a method
throws an exception. Different from the existing API knowledge
graphs [16, 19], we attach condition attribute to return relations,
for example the relation [String.indexOf(char), returns, -1] with

the condition “the character does not occur”. This helps identify
the situation where using the return value of one method as the
argument of the other method may cause program errors. For exam-
ple, substring(indexOf(ch)) in Figure 3(a) may have an unhandled
IndexOutOfBoundsException under this return-value condition
of indexOf(). Furthermore, we attach trigger attribute to throw
relations, which records the exception situation that cannot be
prevented by certain pre-condition checking, e.g., the relation [Fil-
eReader(String), throw, FileNotFoundException] with the trigger “the
named file for some other reason cannot be opened for reading”.
In contrast, the condition “the named file does not exist” can be
checked by File.exists() in order to avoid FileNotFoundException.

Besides constraint-enriched return/throw relations, our knowl-
edge graph includes two other constraint relations: call-order and
condition-checking which correspond to the top-2most frequent API
misuses in the API misuse benchmark [4]: missing-call and missing-
condition-checking. A call-order relation can be either precede (e.g.,
calling Iterator.next() before calling Iterator.remove()) or follow (e.g.,
calling Container.validate() after calling Container.add()). It may
have an optional condition attribute for the preceding/following
method call, e.g., the condition “if the container has already been dis-
played” for the relation [Container.validate(), <call-order>[follow],
Container.add()]. Call-order is not transitive, and precede-follow are
not symmetric. A condition-checking relation can be either value
checking (e.g., [beginIndex, <value-checking>[!=], negative] in Fig-
ure 3(b)) or state-checking (e.g., [filename, <state-check-ing>[true],
File.exist()] in Figure 4(b)). The value-checking records the expected
expression (e.g., !=, <), and the state-checking records the expected
state (e.g., true indicating the named file exists). Both the call-order
and condition-checking relations may have a violation attribute
which records the consequence if the call-order or the expected ex-
pression or state is not satisfied, for example, IllegalStateException
for [next(), <call-order>[precede], remove()], or FileNotFoundExcep-
tion for [filename, <state-checking>[true], File.exists()].

3.2 API Documentation and Preprocessing
We construct API-constraint knowledge graph as defined above
from API reference documentation, such as Java SDK API Specifica-
tion. We crawl online API documentation using web crawling tool.
Following the treatment in [16, 19], we keep the semi-structured
API declarations and the API textual descriptions in the crawled
web pages for constructing a knowledge graph. We remove other
document contents, e.g., code snippets, program execution outputs
and images. <code> elements in natural language sentences are
kept. Following treatments in [16, 19], we use software-specific tok-
enizer [5, 46] to tokenize API descriptions. This retains the integrity
of API tokens, e.g., an API mention Iterator.next() in text will be
kept as one token rather than five tokens - Iterator, ., next, (, and).
After text tokenization, we use Stanford CoreNLP [21] to split texts.
A sentence from the return or throws section of a method usually
omit the subject and verb. We add “this method returns” and “this
method throws XXXException” to complete the sentence.

3.3 Constructing API Declaration Graph
First, we construct anAPI declaration graph from the semi-structured
API declarations in each API document. As our API declaration

API-Misuse Detection Driven by Fine-Grained API-Constraint Knowledge Graph ASE ’20, September 21–25, 2020, Virtual Event, Australia

graph is the same as the generic API knowledge graph in [16, 19],
we adopt their tested web page parser to extract API elements, API
names and descriptions, and declaration relations as required in our
knowledge graph (see Section 3.1). In this work, we use the brief
introduction sentences of each method in the method summary
section as that method’s functionality description.

To detect the API misuses related to API chain calls (e.g., sub-
string(indexOf())), we extend the original parser in [16, 19] to ex-
tract more fine-grained return relations. The return section of a
method may have more than one sentence to explain different re-
turn values in different situations, for example, String.indexOf()
returns “the index of the first occurrence of the character in the
character sequence” or “-1 if the character does not occur”. Based
on the observation of the return section of 1,000 randomly sampled
methods, we define a value gazetteer and a set of Part-Of-Speech
(POS) tag patterns to recognize specific values (e.g., -1, true, false)
or ranges (e.g., negative, [0, 9]) mentioned in the return-value sen-
tences. If a return-value sentence contains a specific value or range,
we link the return relation to a value-literal entity (may need to
be created if it is not yet in the knowledge graph). Otherwise, we
create a return-value entity with that sentence as its description
and link the return relation to this return-value entity.

3.4 Deriving API Constraint Relations
Different from existing API knowledge graphs [16, 19] that capture
only declaration relations, our API-constraint knowledge graph
contains call-order and condition-checking relations between re-
lated APIs, and constraint-enriched return and throw relations. We
use the API-caveat sentence patterns developed in [16] to extract
two categories of API-caveat sentences: temporal and conditional.
Different from [16] that simply links API-caveat sentences to API
elements as textual attributes, we develop sentence parsing and API
linking techniques to derive four types of API constraint relations
from API caveat sentences.

3.4.1 Extracting API-Caveat Clauses. As this work focuses on API-
method usage constraints, we limit the extraction to the main de-
scription of each method (excluding the functionality description
sentence of the method entity) and the description in the method’s
return and throws section. Each extracted caveat sentence is asso-
ciated with its corresponding method or return/throw relation. We
process the extracted caveat sentences into fine-grained API-caveat
clauses by the following three steps, to facilitate the subsequent
API linking and constraint relation inference.

Co-reference resolution.API elements are oftenmentioned by
pronouns in API-caveat sentences, for example, “If the SecureRan-
domSpi() constructor is overridden in an implementation, it (refer
to SecureRandomSpi()) will always be called whenever a SecureRan-
dom is instantiated”. We use co-reference resolution technique (as
implemented by Stanford CoreNLP [21]) to resolve the pronouns in
a API-caveat sentence to the APIs that the pronouns represent in
the paragraph from which the sentence is extracted. Furthermore,
the API methods being explained are commonly referred to as “this
method” in its description, For example, “This method is generally
called ... if a fatal error has made the connection unusable” in the
description of javax.sql.PooledConnection. Co-reference resolution

tools cannot resolve this type of co-reference because the corre-
sponding API does not appear in the surrounding texts. We use the
declaration-based heuristic [16] to resolve such co-reference to the
API method being explained.

Splitting sentences into clauses API-caveat sentences can be
rather complex. For example, “FileReader(String fileName) throws
FileNotFoundException if the named file does not exist, is a di-
rectory or for some other reason cannot be opened for reading”.
This sentence has a result clause and a long if clause that has three
condition clauses. To derive fine-grained API constraints, we use
POS tagging and dependency tree analysis (as implemented by
Standford CoreNLP [21]) to parse the whole sentence into several
fine-grained clauses. A conditional sentence is split into a result-
clause and one or more condition clauses. We also try to identify
subject, verb-phrase and object in each clause using semantic role
labeling [15]. For example, we can extract Subject-Verb-Object in
the result-clause as follows: FileReader(String fileName) [subject]
throws [verb-phrase] FileNotFoundException [object]. Note that
the missing subject (e.g., “the named file” for the 2nd and 3rd con-
ditions) can be inferred by dependency tree analysis.

Similar clause clustering. One API caveat may be mentioned
in different parts of a method in the same or similar way. For exam-
ple, the main description of String.indexOf() has a conditional sen-
tence “if no such character occurs in this string, then -1 is returned”,
and the return section of indexOf() has another conditional sen-
tence “indexOf() returns -1 if the character does not occur”. These
two sentences correspond to the same caveat. Furthermore, a class
may declare several overloading or similar-functionality methods
which often have the same or partially overlapping caveat sen-
tence. For example, both String.indexOf() and String.lastIndexOf()
have the caveat “return -1 if the character does not occur”. The
overloading methods substring(int beginIndex, int endIndex) and
substring(int beginIndex) have the same caveat clause “the beginIn-
dex is negative” but also other different clauses.

We cluster similar caveat clauses by the word-embedding based
sentence similarity (see Section 3.4.2) which has been shown to
be effective in matching software text [6, 13, 32, 33]. The cluster-
ing is done progressively, first within method, then within class,
and finally within package. Clustering within-method considers
all caveat clauses of a method (no matter their document section
origin), but clustering within-class or within-package groups only
the caveat clauses from the same type of document section. We
select the centroid sentence in a cluster as the representative of the
cluster. If the cluster has only two sentences, we select the shorter
one. Clustering similar caveat clauses have two benefits. First, we
can associate a caveat clause to a more specific API element/relation.
For example, we can know that the conditional clause from the
main description of String.indexOf() is actually related to the return
relation, because a very similar clause is in the return section of
indexOf(). Second, we can significantly reduce the number of caveat
clauses to be analyzed in the subsequent API linking step.

3.4.2 Linking Caveat Clauses to API Elements. Given a caveat de-
scription (a clause or its subject/object phrase) associated with a
method or a throw relation, we infer methods or parameters whose
functionality descriptions match the caveat description. For exam-
ple, for the exception trigger clause “the named file does not exist”

ASE ’20, September 21–25, 2020, Virtual Event, Australia Xiaoxue Ren, Xinyuan Ye, Zhenchang Xing, Xin Xia, Xiwei Xu, Liming Zhu, and Jianling Sun

Table 1: Rules for Creating Call-order or Condition-checking Relations (p: paramter; vl: value literal; m: method; e: parameter
or method; mc: method of concern; v-c: value-checking; s-c: state-checking; c-o: call-order)

Clause Subject Object Value Type Relation Example
1 - p - vl - [p,v-c,vl] [beginIndex, =, negative] “the beginIndex argument is negative”

2 - p e - - [p,v-c,e] [index, !<, String.length()] “the index argument is not less than the length
of string”

3 m p - - - [p,s-c,m] [filename, true, File.exists()] “the named file does not exis”

4 - m1 m2 - - [m1,c-o,m2] [setSystemId(String), precede, startDocument()] “setSystemId(String) must
be called before the startDocument event”

5 - m - - temporal [m,c-o,mc] [next(), precede, remove()] “if next() has not yet been called” in the remove()’s
throws section

6 - m - - conditional [m,s-c,mc] [undo(), true, canUndo()] “if canUndo() returns false” in undo()’s throws
section

7 m - - - temporal [m,c-o,mc] [validate(), follow, add()] “the container must be validated thereafter” in the
main description of Container.add()

8 m - - - conditional [m,s-c,mc] [next(), true, hasNext()] “if the iteration has no more element” in the next()’s
throws section

on the relation [FileReader(String), throw, FileNotFoundException],
the subject “the named file” matches the description “the name
of the file to read from” of the FileReader(String)’s parameter file-
Name, and the whole clause matches the functionality description
of File.exists() which states “tests whether the file or directory de-
noted by this abstract pathname exists”. Based on such matches, we
link the caveat clause or its subject/object to methods or parameters
that are referred to by the clause or its subject/object, or whose
functionality can fulfill or check the clause or its subject/object.

We perform the matching progressively, first match parameters
within method, then match methods within class, and finally match
methods within package. Thematching is done for the caveat clause,
its subject phrase and object phrase respectively. The whole clause
may match a method, and the subject or object phrase may match
a parameter or a method. If a subject or object phrase contains
annotated code element (e.g., in <code> or <href>), we directly
link the subject or object to the corresponding API element by
name matching. Otherwise, we match a caveat description with
the functionality description of API elements by text similarity.
We select the API element whose functionality description has
the highest similarity with the given caveat description within the
current matching context. If this highest similarity is above the
similarity threshold (0.8 in this work), a matching is found. If a
matching is found within the current context, the matching stops.

Considering the sentence characteristics of caveat and func-
tionality descriptions, we combine Jaccard coefficient and sentence-
embedding similarity tomatch them.We denote a caveat description
as 𝑐𝑑 and a functionality description as 𝑓 𝑑 . Before computing Jac-
card coefficient, we convert each sentence into a bag of words (𝐵𝑊𝑐𝑑

and 𝐵𝑊𝑓 𝑑) using the standard text processing procedure (i.e., tok-
enization, stop word removal and lemmatization). Then, the Jaccard
coefficient of 𝑐𝑑 and 𝑓 𝑑 is: 𝑠𝑖𝑚 𝑗𝑎𝑐𝑐𝑎𝑟𝑑=𝐵𝑊𝑐𝑑 ∩𝐵𝑊𝑓 𝑑/𝐵𝑊𝑐𝑑 ∪𝐵𝑊𝑓 𝑑 .
To compute sentence-embedding, we learn domain-specific word
embeddings with the corpus of API text descriptions from API ref-
erence documentation using the continuous skip-gram model [22].
We use domain-specific word embeddings because recent stud-
ies [5, 45] show that domain-specific word embeddings outperforms
general word embeddings for software text matching. We set the

word embedding dimension at 200, as this setting has the best per-
formance on similar API text corpus [6]. We compute a sentence
embedding by averaging the word embeddings of all words in the
sentence. Let 𝑆𝐸𝑐𝑑 and 𝑆𝐸𝑓 𝑑 are the sentence embedding of 𝑐𝑑 and
𝑓 𝑑 respectively. The sentence-embedding similarity of 𝑐𝑑 and 𝑓 𝑑 is
the cosine similarity of 𝑆𝐸𝑐𝑑 and 𝑆𝐸𝑓 𝑑 , i.e., 𝑠𝑖𝑚𝑠𝑒=𝑐𝑜𝑠 (𝑆𝐸𝑐𝑑 , 𝑆𝐸𝑓 𝑑).
Finally, we average 𝑠𝑖𝑚 𝑗𝑎𝑐𝑐𝑎𝑟𝑑 and 𝑠𝑖𝑚𝑠𝑒 as the similarity of a caveat
description and a functionality description.

3.4.3 Creating API Constraint Relations. Given a caveat clause, we
analyze its API linking results and create a call-order or condition-
checking relation according to the heuristic rules in Table 1. These
heuristics rules are summarized based on the observation of ran-
domly sampled 1,000 caveat clauses. For all other API linking results,
for example, none of the clause, subject phrase or object phrase is
linked to an API element (e.g., “an IO error occurs” associated with
the relation [FileReader.read(), throw, IOException]), or only the sub-
ject phrase is linked to a parameter of the method (e.g., “the named
file for some other reason cannot be opened for reading” associ-
ated with the relation [FileReader(String), throw, FileNotFoundExcep-
tion], the caveat clause remains intact with its originally associated
method or throw relation. The first three rows in Table 1 cover the
caveat clauses that describe the value or state validity of the pa-
rameters. Such caveat clauses are converted into value-checking or
state-checking relations between a parameter and a value literal, be-
tween two parameters, or between a parameter and a method. The
4th row covers the caveat clauses that explicitly mention two meth-
ods and describe call-order constraints, e.g., “setSystemId(String)
must be called before the startDocument event”.

It is common that a caveat clause mentions only one method in
its subject (the 5th and 6th rows) or the whole clause corresponds
to one method (the 7th and 8th rows). In such cases, the other
method that is implicitly referenced is the method of concern (i.e.,
the method that this clause is associated with), for example, the
caveat “if next() has not yet been called” for the Iterator.remove()
method, or “the container must be validated thereafter in order
to display the added component” for the Container.add() method.
Therefore, we create a constraint relation between the explicitly
mentioned method and the method of concern for the cases in
rows 5/6/7/8. Depending on whether the caveat clause is a temporal

API-Misuse Detection Driven by Fine-Grained API-Constraint Knowledge Graph ASE ’20, September 21–25, 2020, Virtual Event, Australia

or conditional clause, we create either a call-order relation or a
state-checking relation. Value literals are extracted by the value
gazetteer and POS tag patternswe develop. Never-seen value literals
will be added to the knowledge graph. We also develop POS tag
patterns to extract frequently-used value-checking expressions and
convert them into mathematical formula (e.g., ≥, <, =, ≠, ∈ [...])
as the expected expressions of the value-checking relations. If the
caveat clause is associated with a throw exception, we use the
negation of the formula as the expected expression. If the clause
does not have such frequently-used value-checking expressions,
we use the verb-phrase of the clause as the expected expression.
For state-checking relation, if the linked method has some specific
return value whose return-condition matches the caveat clause, we
use this specific return value as the expected state, such as true
for hasNext() checking before calling next(). Otherwise, we use
the verb-phrase of the clause as the expected state. For the call-
order relation, if the temporal clause has some guard condition
clause, e.g., “if the container has already been displayed” for calling
validate(), we use this condition clause as the condition of the
call-order relation. If the caveat clause is associated with a throw
relation, the violation attribute of the created constraint relation
references to the exception entity of the throw relation.

3.5 API Misuse Detection
We develop a knowledge-driven API misuse detector that examines
the API usage in a program against the constructed API-constraint
knowledge graph. In this work, the detector performs static code
analysis on the Abstract Syntax Tree (AST) of the program. For
each API method used in the program (denoted as 𝑎𝑝𝑖𝑝), it first
links 𝑎𝑝𝑖𝑝 to an API method in the knowledge graph (denoted as
𝑎𝑝𝑖𝑘𝑔) by matching their fully-qualified names. Then, it collects all
call-order, condition-checking, and throw relations of 𝑎𝑝𝑖𝑘𝑔 .

For the call-order relation, the detector examines if the required
preceding or following method is called before or after calling
𝑎𝑝𝑖𝑝 . For the condition-checking relation, the detector examines
if the required value or state checking is performed before call-
ing 𝑎𝑝𝑖𝑝 . If the required checking is found in the program and
the expected expression or state of the condition-checking rela-
tion involves specific values/states and mathematical formulas,
the detector further examines if the expected expression or state
can be satisfied by the program. Let 𝑒𝑥𝑝𝑝 and 𝑒𝑥𝑝𝑘𝑔 be the for-
mula of the corresponding condition checking in the program and
in the knowledge graph respectively. The detector examines if
(𝑒𝑥𝑝𝑝 ∧¬ exp𝑘𝑔) ∨ (¬𝑒𝑥𝑝𝑝 exp𝑘𝑔) is satisfiable by a SAT solver [8].
If a violation of the required call-order or condition-checking is
detected, the detector reports not only an API misuse, but also the
consequence of API misuse, the relevant API to fix the misuse, and
the original API caveat sentence as the explanation of the API mis-
use. If the compiler detects an unhandled exception 𝑢𝑒 for 𝑎𝑝𝑖𝑝 , our
detector locates the specific throw relation for 𝑢𝑒 in our knowledge
graph and reports the associated exception trigger.

Empowered by the API-constraint knowledge graph, our API
misuse detector can perform fine-grained analysis of API usage in
the program. For example, for the code in Figure 6, the compiler
reports an “Unhandled exception: FileNotFoundException” for new
FileReader(file), and an “Unhandled exception: IOException” for

Figure 6: Our API Misuse Detection Capability

reader.read(). Reading API document may not clearly identify spe-
cific cause(s) for FileNotFoundException, because it can be caused
by three conditions “the file does not exist”, “the file is a directory”,
or “the file for some other reason cannot be opened for reading”.
A developer often simply encloses the API calls by try-catch like
the one in Figure 4(a). Actually, the code checks if(file.exists()),
which satisfies the state-checking relation [file, true, File.exists()].
Therefore, our detector does not report any issue for the first condi-
tion. But our detector reports the missing of the second condition
based on the state-checking relation [file, false, File.isDirectory()],
and recommends using File.isDirectory() to perform this missing
checking. As the first two conditions are either handled or reported
as missing, our detector reports the third condition as a specific
cause for FileNotFoundException. Such detailed API misuse reports
and suggestions can enable more robust API usage.

Our detector checks the issues related to API chain calls, such
as substring(indexOf()) in Figure 3(a). It analyzes the definition-use
information in the program to collect the APIs 𝑎𝑝𝑖𝑑 whose return
values are used as the parameters 𝑝𝑎𝑟𝑎𝑚 of 𝑎𝑝𝑖𝑝 . If 𝑎𝑝𝑖𝑑 returns spe-
cific values under certain conditions (e.g., [indexOf(), return, -1]with
the condition “the character does not occur”), the detector examines
if this specific return value violates some value-checking relations of
𝑝𝑎𝑟𝑎𝑚. For example, the beginIndex parameter of substring(int) has
a value-checking relation [beginIndex, <value-checking>[!=], nega-
tive], which is violated by the return-1 of indexOf(). Therefore, our
detector reports a missing-value-checking for substring(indexOf()),
with the condition “the character does not occur” and the violation
consequence IndexOutOfBoundsExcpetion.

4 TOOL IMPLEMENTATION
We construct a API-constraint knowledge graph for Java APIs. Us-
ing the web page parser developed Liu et al. [19], we extract 72,337
API elements (including 59,991 API methods, 11,334 parameters
and 1,012 exception), and 64,400 API declaration relations (includ-
ing 45,247 return relations and 18,999 throw relations). Using the
API-caveat sentence patterns developed by Li et al. [16], we ex-
tract 97,462 conditional and temporal API-caveat sentences. From
these API-caveat sentences, our approach creates 1,938 call-order
relations, 74,207 condition checking relations, and enrich 8,215
return relations with return-value conditions and 12,477 throw
relations with exception triggers. These API-constraint relations
involve 21,910 methods, 8,632 parameters, and 8,215 return and
12,477 throw relations. We develop an IntelliJ IDE plugin which
detects API misuses in Java programs based on the constructed
API-constraint knowledge graph (see Figure 6).

ASE ’20, September 21–25, 2020, Virtual Event, Australia Xiaoxue Ren, Xinyuan Ye, Zhenchang Xing, Xin Xia, Xiwei Xu, Liming Zhu, and Jianling Sun

5 QUALITY OF KNOWLEDGE GRAPH
We first want to evaluate the quality of the constructed knowl-
edge graph. As we use tested tools [16, 19] to extract API ele-
ments and declaration relations from API documentation and to
extract API-caveat sentences, we do not repeat the evaluation of
these information extraction steps. We focus our evaluation on the
four types of API constraint relations, which distinguish our API-
constraint knowledge graph from existing general API knowledge
graphs [16, 19] .

5.1 Experiment Setup
As our knowledge graph contains large numbers of API constraint
relations, we use a statistical sampling method [35] to examine
𝑀𝐼𝑁 [35] randomly sampled instances of each type of constraint
relation.𝑀𝐼𝑁 in this work which ensures the estimated accuracy
is in 0.05 error margin at 95% confidence level. For conditioned
return relations, we examine two checkpoints: the accuracy of
value-literals and the accuracy of condition clauses. For throw rela-
tions, we examine two checkpoints: the accuracy of trigger clauses,
and if the trigger clause should be converted into specific call-order
or condition-checking relations, rather than remaining as an ex-
ception trigger. For call-order and condition-checking relations,
we examine three checkpoints: if the corresponding API caveat
clause should be modeled as a call-order or condition-checking
relation, the accuracy of API linking, and the accuracy of relevant
attributes (expected expression, expected state, condition, violation).
The two developers (who are not involved in this study and have
more than 3 years Java development experience) independently
perform the examination and all decisions are binary. We compute
Cohen’s Kappa [14] to evaluate the inter-rater agreement. For the
data instances that the two annotators disagree, they have to dis-
cuss and come to a consensus. Based on the consensus annotations,
we evaluate the quality of the created API constraint relations.

5.2 Results
Table 2 shows the examination results. See Section 5.1 for the ex-
planation of checkpoints. The columns 𝐴𝑐𝑐1 and 𝐴𝑐𝑐2 show the
accuracy by the two annotators independently. The column 𝐴𝑐𝑐𝐹

is the final accuracy after resolving the disagreements. The column
Kap. is the Kappa inter-rater agreement. The accuracies of all types
of extracted information are above 85% The Cohen’s Kappa are all
above 0.60, which indicates substantial to almost-perfect agreement
between the two annotators.

The trigger clauses on throw relation have 100% accuracy, which
is unsurprising because these exception triggers extracted from
the throws section of a method. Exception clauses describe the
exception-handling knowledge in natural language sentences. In
our work, we want to covert as many exception clauses as possible
to call-order or condition-checking relations, because call-order
and condition-checking relations represent exception-handling
knowledge in a more fine-grained, structured way and supports
more fine-grained API usage analysis. However, the should-not-
be-trigger row shows that 15% of the examined exception triggers
should be converted into call-order or condition-checking relations,
but not. The primary reason is that our approach fails to link the
clause or its subject/object phrases to relevant API elements. For

example, the trigger clause “if the calling thread does not have
permission to create a new class loader.” for the relation [check-
CreateClassLoader(), throw, SecurityExceptio] should be model as a
state-checking relation [checkCreateClassLoader(), true, checkPer-
mission(Permission)]. However, as the functionality description of
checkPermission(Permission) is not similar to this trigger clause,
our method fails to make the link.

Although our method may miss some API links, the API links
it makes are very accurate (95.3% for call-order and 94.3% for
condition-checking). Many API elements that are mentioned in
the caveat clauses are within method or class, and these elements
are easy to match within local context. For those API elements
outside the class, they are usually annotated by the API hyperlink,
from which API elements can be directly inferred. Our method
also achieves high accuracy (>98%) for extracting value-literals,
return-condition clauses and attributes of call-order and condition-
checking relations. This is because these types of information are
extracted by the gazetteer and sentence patterns we carefully define.

Our API-constraint knowledge graph contains highly accurate API-
constraint relations, which can support practical use. The extraction
of call-order and condition-checking relations can be further en-
hanced by more robust API linking methods.

6 EFFECTIVENESS EVALUATION
Next, we evaluate the effectiveness of our knowledge-driven API
misuse detection using the API misuse benchmark MuBench [3].

6.1 Experiment Setup
MuBench has been activelymaintained. The latest version ofMuBench
contains 269 instances of intra-method API misuses in 69 software
projects. For each API misuse, MuBench identifies API(s) involved,
provides a brief description of the misuse, and reference to the
source code that contains the misuse. As our current knowledge
graph supports only Java SDK APIs, we use Java SDK API misuses
in the 54 Java projects. We download the project source code and
make it compilable. We collected in total 239 instances of API mis-
uses in these 54 projects, including 114 missing call, 107 missing
condition checking and 18 missing exception handling. These API
misuses involve 30 API methods, and violates 104 API usage caveats
described in Java SDK API documentation.

We apply our API misuse detector to the methods that contain
the API misuses, and examine how many of the 239 API misuses
can be detected by our detector. We also examine if the explanation
that our tool provides for the detected misuse matches the misuse
description in the benchmark. As determining the precision of the
detected API misuses requires in-depth project-specific knowledge,
we only make an estimation of the lower bound of the detection
precision. That is, we assume that only API misuses that match the
ground-truth misuses are correct, but all others are incorrect.

6.2 Results
Our detector reports 113 API misuses, including 66 missing call,
42 missing condition checking and 5 missing exception handling.
Among these 113 API misuses, 68 are confirmed by the MuBench,
including 37 missing call, 29 missing condition checking and 2
missing exception handling. The caveat descriptions of these 68

API-Misuse Detection Driven by Fine-Grained API-Constraint Knowledge Graph ASE ’20, September 21–25, 2020, Virtual Event, Australia

Table 2: Accuracy of the API-Constraint Relations

Relations Check Points Acc1 Acc2 AccF Kap.
Conditioned
Return

value-literal 98.7% 99.2% 99.0% 0.60
condition clause 99.7% 99.7% 99.7% 1.00

Trigger on
Throw

trigger clause 100.0% 100.0% 100.0% 1.00
should not be trigger? 88.0% 85.7% 85.9% 0.87

Call-order
API linking 95.1% 96.4% 95.3% 0.84
attribute 97.1% 98.7% 98.2% 0.62
Should be call-order? 90.4% 91.7% 90.9% 0.86

Condition-
checking

API linking 96.4% 94.3% 94.3% 0.77
attribute 99.5% 99.2% 99.5% 0.80
Should be cond-checking? 95.3% 96.4% 95.6% 0.74

Table 3: Six API Misuse Scenarios in Our User Study

Task Involved API Misuse reason Difficulty
T-1 java.util.Arrays Condition-checking Easy

T-2
java.util.List,
java.util.ArrayList Condition-checking Easy

T-3
java.io.FileReader,
java.io.File,
java.util.Scanner

Condition-checking Medium

T-4
javax.swing.JFrame,
javax.swing.JButton,
javax.swing.JPanel

Call-order Difficult

T-5
java.util.ArrayList,
java.util.Iterator,
java.util.List

Missing call Medium

T-6
javax.swing.JFrame,
java.awt.Dimension Missing call Difficult

confirmed API misuses are consistent with the corresponding API
misuse descriptions in the MuBench. Our detection precision is
60.18% overall, 56% for missing call, 69% for missing condition
checking and 40% for missing exception handling. Note that these
precision are lower bound estimations, as we assume that all non-
confirmed 45 (113−68) API missuses are incorrect. According to
our observation, some non-confirmed API misuses reported by our
detector, for example some missing value or state checkings, could
be API misuses. MuBench does not consider them, because they do
not yet cause any bugs in the program. But adding these condition
checkings could make the program more robust.

The lower bound precision of our detector is still much higher
than the precisions achieved by the best pattern-based API misuse
detector, which is only 11% according to the evaluation of all popu-
lar pattern-based detectors [4]. Such low precision is the primary
barrier for adopting these detectors in practice. According to [4],
there are two correlated reasons for such low precisions. First, the
API usage patterns mined by these detectors cover only the most
frequent usage, but they miss many uncommon and alternative
usage. Second, these detectors make a naive assumption that a devi-
ation from the mined patterns correspond to a misuse. In Section 2,
we illustrated these two reasons with four examples. Readers are
referred to [4] for the detailed analysis of these two reasons. In con-
trast, our detection is based on the API caveat knowledge extracted
from API reference documentation, which has nothing to do with
whether an API is used and how frequent it is used in code.

The recall of our detection is 28.45% (68/239), which is on-par
with the conceptual recall upper bound that all existing pattern-
based API misuse detector could achieve (by feeding them suffi-
ciently examples of correct usage corresponding to the misuses
in question) [4]. The actual recalls of pattern-based API misuse
detectors are much lower (0-20%). Our detector does not need to
learn from code examples, but it is limited by the knowledge cover-
age of the underlying knowledge graph. In fact, this is the primary
reason for the API misuses that our detector fails to detect, account-
ing for 86.55% (148/171) misses. Our knowledge graph currently
covers four types of API-constraint relations, but there are other
types of API usage knowledge, for example, multiplicity (e.g., It-
erator.remove() can only be called once after Iterator.next()), API
equivalence (e.g., isEmpty(), size()=0 and hasNext() for collection
APIs), no-effect API calls (e.g., the call to some API is ignored under
certain condition), or class-level usage (e.g., The CharsetEncoder
class should be used when more control over the encoding process
is required). We leave the extension of our knowledge graph to
accommodate these types of API usage knowledge as future work.
The rest of missed API misuses (13.45%) are due to the limitation
of our current programming analysis and detection heuristics, as
these API misuses demand advanced pointer analysis, data flow
analysis or expression evaluation.
Our knowledge-graph based API misuse detection can detect missing
calls, missing condition checking and missing exception handling
with good precision. To improve the recall of our detection, more
types of API usage knowledge should be extracted and added to the
underlying knowledge graph, and some advanced programming
analysis should be supported.

7 USEFULNESS EVALUATION
7.1 User Study Design
We select six API misuse scenarios from the webtend project in
MuBench [3]. Note that similar scenarios also occur in other projects
in MuBench. As summarized in Table 3, these six scenarios involve
misuses of Java Swing, IO and Collections APIs: two about missing
call, one about erroneous call order, and three about missing con-
dition checking. For each misuse scenario, we create a method to
simulate the core program logic and API usage (not just the misused
API) in the original method involved in the scenario. We do not
use the original method because they have project-specific code
elements which demand certain project-specific knowledge, while
our study focuses on finding and fixing API misuses. However, the
created methods are still realistic, executable programs. Our tool re-
ports potential API misuses for all APIs in a method, among which
developers have to identify the API misuse leading to the bug.

We recruit 12 master students from our school. None of these
students are involved in our work. These students have basic knowl-
edge of Java SDK APIs, but do not use Java in their daily work. As
our API misuse scenarios do not involve advanced Java APIs, we
believe these students are qualified for our study. Furthermore,
they also simulate the target audience that our tool aims to assist,
i.e., developers who may lack relevant knowledge in finding and
fix API misuses. Based on a pre-study survey of these students’
Java programming experience, we randomly allocate them into two

ASE ’20, September 21–25, 2020, Virtual Event, Australia Xiaoxue Ren, Xinyuan Ye, Zhenchang Xing, Xin Xia, Xiwei Xu, Liming Zhu, and Jianling Sun

Table 4: Results of User Study

Metric T-1 T-2 T-3 T-4 T-5 T-6 Aveg.

Accuracy
G1 1.00 1.00 1.00 0.33 0.67 0.50 0.75
G2 1.00 1.00 1.00 1.00 0.83 0.83 0.94
Imp. 0.00% 0.00% 0.00% 203% 24% 66% 49%

Time (min)
G1 2.92 2.53 5.08 9.33 4.37 7.50 5.29
G2 1.58 1.92 2.83 3.58 2.33 4.17 2.74
Imp. -46% -24% -44% -62% -47% -44% -45%

Error
Proneness

G1 2.00 2.50 4.17 4.17 3.33 4.17 3.39
G2 1.67 2.17 3.17 3.50 2.33 3.33 2.70
Imp. -17% -13% -24% -16% -30% -20% -20%

Warning
Relevance

G1 1.00 1.00 3.33 1.00 1.00 1.50 1.47
G2 4.33 4.33 4.33 4.17 4.17 3.00 4.06
Imp. 333% 333% 30% 317% 317% 100% 238%

Warning
Usefulness

G1 1.00 1.00 3.00 1.00 1.00 1.50 1.42
G2 4.00 4.17 4.50 4.33 4.33 3.67 4.17
Imp. 300% 317% 50% 333% 333% 144% 194%

equivalent groups: the control group (G-1) uses the standard IntelliJ
IDE to complete the tasks, while the experimental group (G-2) uses
the IntelliJ IDE with our API misuse detection plugin.

The participants are given 10 minutes for each task. Each task
includes a buggy method and describes the expected program out-
put. The participants can use any IDE features like accessing API
document and debugging. They can also search the Internet and
read any information they feel useful for the task. If the participants
believe they fix the API misuse in the task method, they submit
the fixed code which signal the task completion. The participants
fill in a short survey for each task. The survey asks the partici-
pants to rate: the error proneness of the API misuses if developers
were given our API misuse warnings (or standard IDE warnings if
any), the relevance of our detected API misuses (or standard IDE
warnings if any) to the task method, and the usefulness of our API
misuse warnings (or standard IDE warnings if any) for fixing the
misuse. All ratings are 5-point liked scale (1 being least and 5 being
most). After the experiment, we collect the task completion time
and examine if the submitted code actually fixes the API misuses.

7.2 Results
Our tool can report more than one API misuse warnings during
the completion of the each tasks. However, by examining the de-
scription of API misuse warnings (see the examples in Figure 6),
participants can quickly filter out warning irrelevant to the bug.
So their task completion does not seem to be interfered with by
multiple API misuse warnings. Furthermore, the irrelevance to the
bug does not necessarily mean the API misuse warnings are false-
positive warnings. As discussed in Section 6.2, some warnings, if
adopted, could improve the overall robustness of the code. That is
why such “irrelevant” API misuses does not lower the ratings of
warning relevance and usefulness.

Table 4 shows our study results with five metrics: answer cor-
rectness, task completion time, error proneness, warning relevance,
and warning usefulness. We average the metrics for the control and
experimental group respectively. For the three missing-condition-
checking tasks Task-1/2/3, both groups achieve 1.0 answer cor-
rectness. That is, all the participants successfully find and fix the
bugs in these three tasks. This is because missing condition check-
ings are relatively easy to spot, when analyzing the unexpected

program outputs. In Task-1/2/3, the standard IntelliJ IDE does not
provide any warnings for the buggy methods. In fact, IntelliJ pro-
vide very little support for the concerned API misuses in all tasks
except Task-3. That is why the control group generally give the
least rating (1) to warning relevance and usefulness. In contrast,
the experimental group highly rate (mostly 4 or 5) the relevance
and usefulness of our API misuse warnings. With the guidance of
our API misuse warnings, the experimental group find and fix the
bugs in Task-1/2/3 in a much shorter time than the control group.
Furthermore, the experimental group rate the bugs in Task-1/2/3
less error prone if developers were given our API misuse warnings,
compared with the error-prone ratings by the control group. While
the participants modify the code in Task-3, IntelliJ reports an un-
handled FileNotFoundException and suggest to use try-catch to fix
the problem. Therefore, Task-3 obtains the best warning relevance
and usefulness scores among the six tasks for the control group.
Task-4 has the largest difference in answer correctness between the
two groups. Only two participants in the control group find and fix
the bug in Task-4 in the given 10 minutes time slot. Even these two
participants spend about 8 minutes to complete the task. In contrast,
all six participants in the experimental group successfully complete
the task, with the average completion time 4 minutes. Task-4 is
a erroneous call order problem (validate() should be called after
add()). It is much harder to find the root cause of this call-order
problem than missing condition-checking. Task-5 and Task-6 are
missing-call problems. The difference of the answer correctness
between the two groups are in between that of the easy Task-1/2/3
and the difficult Task-4. The experimental group still complete the
Task-5/6 in shorter time than the control group, and rate the error
proneness lower and the warning relevance/usefulness higher.
Our pilot user study demonstrates that our knowledge-driven API
miuse detection is promising in assist developers in avoiding poten-
tial API misuses and debugging bugs caused by API misuses.

8 THREATS TO VALIDITY
As our approach extracts API caveat knowledge from API documen-
tation, the quality of API documentation affects the effectiveness of
our approach. Our approach is inspired by the studies [16, 19, 36]
showing that high-quality documentation exist, especially for major
SDKs, and they are an important source of information referenced
for resolving API misuses [16, 32, 33].

Our approach has been tested on Java SDK 13. Other SDKs may
describe the API knowledge in different document structures and
sentence variants. Our experiments identify other types of API
usage knowledge that should also be covered. As the schema of
our API-constraint knowledge graph and our open information
extraction pipeline are generic, we can adapt, extend and test our
knowledge graph on other libraries and other types of API usage
knowledge. We can also extend our knowledge graph to model API
caveats from multiple versions of a SDK, which may support novel
evolution analysis of API caveats/misuses.

Our approach achieves the start-of-the-art detection accuracy on
MuBench. However, further experiments are required to confirm
the generalizability of our approach onmore APIs and their misuses,
and unknown bugs beyond the benchmark. Furthermore, some ad-
vanced program analysis could be integrated in our tool to boost

API-Misuse Detection Driven by Fine-Grained API-Constraint Knowledge Graph ASE ’20, September 21–25, 2020, Virtual Event, Australia

the detection recall. Our user study demonstrates the promising
usefulness of our knowledge-driven API misuse detection. How-
ever, the scale of user study is small and in a control setting. In
future, we would also like to use existing projects to evaluate our
tool. additionally, we will work with industry partners to test the
practicality of our approach and tool in real-world software devel-
opment context, especially the usefulness of “non-bug” related API
misuse warnings, regarded as false positives in this work.

9 RELATEDWORK
API misuses are inevitable not only in source code [3, 31] but also in
programming discussion forums [1, 7, 32, 33]. To reduce the risk of
API misuses, many pattern-based API misuse detectors have been
proposed [23, 25, 43, 44]. According to the systematic evaluation of
the 12 detectors [4], most of them focus on detecting missing calls.
Only four [2, 25, 30, 41] can detect missing condition checking or
missing exception handling under special conditions. In contrast,
our knowledge graph based detector can detect all three types of
API misuses. Furthermore, Amann et al. [4] show that existing
detectors achieve very low precision and recall. A recent detector
MUDETECT [38] mines API usage graphs from cross-project code
examples, which improves significantly the performance of pattern-
based API misuse detectors. But its performance is still lower than
our knowledge-graph based detection, except for the recall achieved
by mining cross-project code examples. The recall of our approach
can be improved by adding more types of API constraints in the
knowledge graph. Readers are referred to Section 2 for the gap
analysis of pattern-based and our knowledge-based methods.

Knowledge graph has emerged as a novel way of representing
and reasoning software engineering knowledge [12, 47]. Two gen-
eral API knowledge graphs [16, 19] have been constructed from
API reference documentation and one task-oriented knowledge
graph [36] has been constructed from programming tutorials. These
knowledge graphs support entity-centric search of API caveats and
programming tasks. Ren et al. [32, 33] use the extracted API-caveat
sentences to distill erroneous code examples or explain controver-
sial API usage on Stack Overflow. All these existing works treat
API caveats as natural language sentences. In contrast, we develop
sentence parsing and API linking techniques to infer fine-grained
API-constraint relations from API-caveat sentences.

Robillard et al. [34] provides a survey on API property inference
techniques, including Doc2Spec [48] which infers rules from text.
Doc2Spec [48] and a similar work iComment [39] focus on call-
order rules, while our approach infers not only call order but also
condition checking, return condition and exception trigger. A recent
work by Zhou et al. [49] infer simple parameter value and type
restrictions from method comments. Our method infers much more
sophisticated parameter and exception constraints from API caveat
sentences (see Figure 3(b) and Figure 4(b)). Finally, different from the
tools FindBugs [28], Pylint [40] that detect general programming
anti-patterns, our tool detects misuses of specific APIs.

10 CONCLUSION AND FUTUREWORK
This paper presents the first knowledge-graph based API misuse
detection method. Unlike existing pattern-based API misuse detec-
tors, our method does not infer API misuses against API patterns

in code. Instead, it detects API misuses against four types of API-
constraint relations in a novel knowledge graph, derived from API
reference documentation using NLP techniques. This knowledge
graph advances the start-of-the-art in API misuse detection, and
outperform existing pattern-based detectors by a large margin in
precision and recall. The usefulness of our knowledge-graph based
API misuse detection has also been demonstrated. In the future,
we will enrich our knowledge graph with more types of API us-
age knowledge, support the chain effect analysis of API caveats,
and support advanced program analysis to boost its recall. We will
also evaluate the ability of our approach to battle the issues of API
misuses, from prevention to detection to fixing.

11 ACKNOWLEDGEMENTS
This research was partially supported by the National Key R&D Pro-
gram of China (No.2019YFB1600700), NSFC Program (No. 61972339),
the Australian Research Council’s Discovery Early Career Researcher
Award (DECRA) (DE200100021), ANU-Data61 Collaborative Re-
search Project(CO19314), and Alibaba-Zhejiang University Joint
Institute of Frontier Technologies.

REFERENCES
[1] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L Mazurek,

and Christian Stransky. 2016. You get where you’re looking for: The impact of
information sources on code security. In 2016 IEEE Symposium on Security and
Privacy (SP). IEEE, 289–305.

[2] Mithun Acharya and Tao Xie. 2009. Mining API error-handling specifications
from source code. In International Conference on Fundamental Approaches to
Software Engineering. Springer, 370–384.

[3] Sven Amann, Sarah Nadi, Hoan A Nguyen, Tien N Nguyen, and Mira Mezini.
2016. MUBench: a benchmark for API-misuse detectors. In Proceedings of the
13th International Conference on Mining Software Repositories. 464–467.

[4] Sven Amann, Hoan Anh Nguyen, Sarah Nadi, Tien N Nguyen, and Mira Mezini.
2018. A systematic evaluation of static api-misuse detectors. IEEE Transactions
on Software Engineering 45, 12 (2018), 1170–1188.

[5] Chunyang Chen, Zhenchang Xing, and Ximing Wang. 2017. Unsupervised
software-specific morphological forms inference from informal discussions. In
Proceedings of the 39th International Conference on Software Engineering. IEEE
Press, 450–461.

[6] Guibin Chen, Chunyang Chen, Zhenchang Xing, and Bowen Xu. 2016. Learning a
dual-language vector space for domain-specific cross-lingual question retrieval. In
2016 31st IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 744–755.

[7] Mengsu Chen, Felix Fischer, Na Meng, Xiaoyin Wang, and Jens Grossklags. 2019.
How reliable is the crowdsourced knowledge of security implementation?. In
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE,
536–547.

[8] Niklas Eén and Niklas Sörensson. 2003. An extensible SAT-solver. In International
conference on theory and applications of satisfiability testing. Springer, 502–518.

[9] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel.
2013. An empirical study of cryptographic misuse in android applications. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. 73–84.

[10] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd
Freisleben, and Matthew Smith. 2012. Why Eve and Mallory love Android: An
analysis of Android SSL (in) security. In Proceedings of the 2012 ACM conference
on Computer and communications security. 50–61.

[11] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and
Vitaly Shmatikov. 2012. The most dangerous code in the world: validating SSL
certificates in non-browser software. In Proceedings of the 2012 ACM conference
on Computer and communications security. 38–49.

[12] Zhuobing Han, Xiaohong Li, Hongtao Liu, Zhenchang Xing, and Zhiyong Feng.
2018. Deepweak: Reasoning common software weaknesses via knowledge graph
embedding. In 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 456–466.

[13] Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. 2018. API
method recommendation without worrying about the task-API knowledge gap. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. ACM, 293–304.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Xiaoxue Ren, Xinyuan Ye, Zhenchang Xing, Xin Xia, Xiwei Xu, Liming Zhu, and Jianling Sun

[14] J Richard Landis and Gary G Koch. 1977. An application of hierarchical kappa-
type statistics in the assessment of majority agreement among multiple observers.
Biometrics (1977), 363–374.

[15] Woong Ki Lee, Yeon Su Lee, Hyoung-Gyu Lee, Won Ho Ryu, and Hae Chang Rim.
2012. Open Information Extraction for SOV Language Based on Entity-Predicate
Pair Detection. In Proceedings of COLING 2012: Demonstration Papers. 305–312.

[16] Hongwei Li, Sirui Li, Jiamou Sun, Zhenchang Xing, Xin Peng, Mingwei Liu, and
Xuejiao Zhao. 2018. Improving api caveats accessibility by mining api caveats
knowledge graph. In 2018 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 183–193.

[17] Zhenmin Li and Yuanyuan Zhou. 2005. PR-Miner: automatically extracting
implicit programming rules and detecting violations in large software code. ACM
SIGSOFT Software Engineering Notes 30, 5 (2005), 306–315.

[18] Christian Lindig. 2015. Mining patterns and violations using concept analysis.
In The Art and Science of Analyzing Software Data. Elsevier, 17–38.

[19] Mingwei Liu, Xin Peng, Andrian Marcus, Zhenchang Xing, Wenkai Xie, Shuang-
shuang Xing, and Yang Liu. 2019. Generating query-specific class API summaries.
In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering.
120–130.

[20] WalidMaalej andMartin P Robillard. 2013. Patterns of knowledge inAPI reference
documentation. IEEE Transactions on Software Engineering 39, 9 (2013), 1264–
1282.

[21] Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven
Bethard, and David McClosky. 2014. The Stanford CoreNLP natural language
processing toolkit. In Proceedings of 52nd annual meeting of the association for
computational linguistics: system demonstrations. 55–60.

[22] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeffrey Dean. 2013.
Distributed Representations of Words and Phrases and their Compositionality.
arXiv: Computation and Language (2013).

[23] Martin Monperrus, Marcel Bruch, and Mira Mezini. 2010. Detecting missing
method calls in object-oriented software. In European Conference on Object-
Oriented Programming. Springer, 2–25.

[24] Martin Monperrus and Mira Mezini. 2013. Detecting missing method calls as
violations of the majority rule. ACM Transactions on Software Engineering and
Methodology (TOSEM) 22, 1 (2013), 1–25.

[25] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H Pham, Jafar M Al-Kofahi, and
Tien N Nguyen. 2009. Graph-based mining of multiple object usage patterns.
In Proceedings of the 7th joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT symposium on the Foundations of Software
Engineering. 383–392.

[26] Tam The Nguyen, Hung Viet Pham, Phong Minh Vu, and Tung Thanh Nguyen.
2015. Recommending API usages for mobile apps with hidden markov model. In
2015 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 795–800.

[27] “Artifact Page”. 2017. [Online]. Available: http://www.st.informatik.tu-darmstadt.
de/artifacts/mustudy/.

[28] Bill Pugh and David Hovemeye. 2015. FindBugs. http://findbugs.sourceforge.net/.
[29] Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan. 2007.

Path-sensitive inference of function precedence protocols. In 29th International
Conference on Software Engineering (ICSE’07). IEEE, 240–250.

[30] Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan. 2007.
Static specification inference using predicate mining. ACM SIGPLAN Notices 42,
6 (2007), 123–134.

[31] Anastasia Reinhardt, Tianyi Zhang, Mihir Mathur, and Miryung Kim. 2018. Aug-
menting stack overflow with API usage patterns mined from GitHub. In Pro-
ceedings of the 2018 26th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering. 880–883.
[32] Xiaoxue Ren, Jiamou Sun, Zhenchang Xing, Xin Xia, and Jianling Sun. [n.d.]. De-

mystify Official API Usage Directives with Crowdsourced API Misuse Scenarios,
Erroneous Code Examples and Patches. ([n. d.]).

[33] Xiaoxue Ren, Zhenchang Xing, Xin Xia, Guoqiang Li, and Jianling Sun. 2019.
Discovering, Explaining and Summarizing Controversial Discussions in Commu-
nity Q&A Sites. In 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 151–162.

[34] Martin P Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and Tristan
Ratchford. 2012. Automated API property inference techniques. IEEE Transactions
on Software Engineering 39, 5 (2012), 613–637.

[35] Ravindra Singh and Naurang Singh Mangat. 2013. Elements of survey sampling.
Vol. 15. Springer Science & Business Media.

[36] Jiamou Sun, Zhenchang Xing, Rui Chu, Heilai Bai, Jinshui Wang, and Xin Peng.
[n.d.]. Know-How in Programming Tasks: From Textual Tutorials to Task-
Oriented Knowledge Graph. In 2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 257–268.

[37] Joshua Sushine, James D Herbsleb, and Jonathan Aldrich. 2015. Searching the
state space: A qualitative study of API protocol usability. In 2015 IEEE 23rd
International Conference on Program Comprehension. IEEE, 82–93.

[38] Amann Sven, Hoan Anh Nguyen, Sarah Nadi, Tien N Nguyen, and Mira Mezini.
2019. Investigating next steps in static API-misuse detection. In 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR). IEEE, 265–
275.

[39] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007. /* iComment:
Bugs or bad comments?*. In Proceedings of twenty-first ACM SIGOPS symposium
on Operating systems principles. 145–158.

[40] Sylvain Thenault et al. 2006. PylintÂ¡ÂªCode Analysis for Python.
[41] Suresh Thummalapenta and Tao Xie. 2009. Alattin: Mining alternative patterns

for detecting neglected conditions. In 2009 IEEE/ACM International Conference on
Automated Software Engineering. IEEE, 283–294.

[42] Suresh Thummalapenta and Tao Xie. 2009. Mining exception-handling rules as
sequence association rules. In 2009 IEEE 31st International Conference on Software
Engineering. IEEE, 496–506.

[43] Andrzej Wasylkowski and Andreas Zeller. 2011. Mining temporal specifications
from object usage. Automated Software Engineering 18, 3-4 (2011), 263–292.

[44] Andrzej Wasylkowski, Andreas Zeller, and Christian Lindig. 2007. Detecting
object usage anomalies. In Proceedings of the the 6th joint meeting of the Euro-
pean software engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering. 35–44.

[45] Bowen Xu, Deheng Ye, Zhenchang Xing, Xin Xia, Guibin Chen, and Shanping Li.
2016. Predicting semantically linkable knowledge in developer online forums via
convolutional neural network. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering. ACM, 51–62.

[46] Xin Ye, Hui Shen, Xiao Ma, Razvan Bunescu, and Chang Liu. 2016. From word
embeddings to document similarities for improved information retrieval in soft-
ware engineering. In Proceedings of the 38th international conference on software
engineering. ACM, 404–415.

[47] Xuejiao Zhao, Zhenchang Xing, Muhammad Ashad Kabir, Naoya Sawada, Jing Li,
and Shangwei Lin. 2017. HDSKG: Harvesting domain specific knowledge graph
from content of webpages. (2017), 56–67.

[48] Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei. 2009. Inferring resource specifica-
tions from natural language API documentation. In 2009 IEEE/ACM International
Conference on Automated Software Engineering. IEEE, 307–318.

[49] Yu Zhou, Ruihang Gu, Taolue Chen, Zhiqiu Huang, Sebastiano Panichella, and
Harald Gall. 2017. Analyzing APIs documentation and code to detect directive
defects. In 2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE). IEEE, 27–37.

http://www.st.informatik.tu-darmstadt.de/artifacts/mustudy/
http://www.st.informatik.tu-darmstadt.de/artifacts/mustudy/
http://findbugs.sourceforge.net/

	Abstract
	1 Introduction
	2 Motivation Examples
	2.1 Comprehensiveness
	2.2 Explainability
	2.3 Best Practices

	3 Our Approach
	3.1 Knowledge Graph Schema
	3.2 API Documentation and Preprocessing
	3.3 Constructing API Declaration Graph
	3.4 Deriving API Constraint Relations
	3.5 API Misuse Detection

	4 Tool Implementation
	5 Quality of Knowledge Graph
	5.1 Experiment Setup
	5.2 Results

	6 Effectiveness Evaluation
	6.1 Experiment Setup
	6.2 Results

	7 Usefulness Evaluation
	7.1 User Study Design
	7.2 Results

	8 Threats to Validity
	9 Related Work
	10 Conclusion and Future Work
	11 Acknowledgements
	References

