
Predicting Code Context Models for Software Development
Tasks

Zhiyuan Wan∗
Zhejiang University
Hangzhou, China

wanzhiyuan@zju.edu.cn

Gail C. Murphy
University of British Columbia

Vancouver, Canada
murphy@cs.ubc.ca

Xin Xia
Monash University
Melbourne, Australia
xin.xia@monash.edu

ABSTRACT
Code context models consist of source code elements and their re-
lations relevant to a development task. Prior research showed that
making code context models explicit in software tools can benefit
software development practices, e.g., code navigation and searching.
However, little focus has been put on how to proactively form code
context models. In this paper, we explore the proactive formation
of code context models based on the topological patterns of code el-
ements from interaction histories for a project. Specifically, we first
learn abstract topological patterns based on the stereotype roles
of code elements, rather than on specific code elements; we then
leverage the learned patterns to predict the code context models
for a given task by graph pattern matching. To determine the effec-
tiveness of this approach, we applied the approach to interaction
histories stored for the EclipseMylyn open source project.We found
that our approach achieves maximum F-measures of 0.67, 0.33 and
0.21 for 1-step, 2-step and 3-step predictions, respectively. The most
similar approach to ours is Suade, which supports 1-step prediction
only. In comparison to this existing work, our approach predicts
code context models with significantly higher F-measure (0.57 over
0.23 on average). The results demonstrate the value of integrating
historical and structural approaches to form more accurate code
context models.

CCS CONCEPTS
• Software and its engineering� Development frameworks
and environments; • Human-centered computing� Human
computer interaction (HCI).

KEYWORDS
Context Models, Task, Developer, Interaction, Context Prediction

ACM Reference Format:
Zhiyuan Wan, Gail C. Murphy, and Xin Xia. 2020. Predicting Code Context
Models for Software Development Tasks. In 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE ’20), September 21–25,

∗The work was done when the first author was affiliated with the University of British
Columbia.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416544

2020, Virtual Event, Australia. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3324884.3416544

1 INTRODUCTION
As a software developer performs a development task, she spends
substantial time searching and navigating through code to under-
stand relevant parts in a software system for that task. Meanwhile,
she forms, in her mind, an implicit code context model consisting of
source code elements and relations between those elements rele-
vant to the task [12]. When even a portion of such a model can be
made explicit, the information in the model can be used in software
tools to benefit software developers and the software development
project. For example, approaches to make aspects of code context
models explicit have shown promise to support searching activi-
ties [19], to improve code recommendations [13, 29] and to improve
the quality of changes made to a system [7].

Despite the promise of improving software tools using explicit
code context models, there has been little focus on how to proac-
tively form these models to benefit a software developer as he
works. At present, there are three approaches that have been used
to capture and represent code context models.

First, a code context model for a task can be explicitly created by
the developer performing the task. For example, the CodeBasket
tool enables a developer to capture explicitly her mental model as
she works with code; this representation can support subsequent
navigation of the code [4]. This approach requires the developer to
expend extra effort to create the model. In an exploratory study con-
ducted about the CodeBasket tool, participants requested support
to automatically create or complete the representation.

Second, a code context model can be formed by utilizing in-
formation about the structure of the code. For example, Robillard
describes an algorithm, called Suade, that leverages topological fea-
tures of the code structure to suggest a fuzzy set of potential code
elements of interest for a code context model given elements al-
ready identified as interesting (seed code elements) [30]. This class
of approaches decreases the effort required to create a code context
model, but still requires either additional effort on the part of a
developer, or access to other information, such as documentation,
which can be difficult to obtain.

Third, a code context model can be formed based on the history
of the software development project. The history may describe
which files were changed as part of a task as found in a source
code repository or may contain information about both viewed
and changed files as found in interaction histories [13] or change
history data [29]. Techniques like association rule mining can be
used against historical information to suggest what other code
elements have been associated with given seed code element(s) in

https://doi.org/10.1145/3324884.3416544
https://doi.org/10.1145/3324884.3416544
https://doi.org/10.1145/3324884.3416544

ASE ’20, September 21–25, 2020, Virtual Event, Australia Zhiyuan Wan, Gail C. Murphy, and Xin Xia

the past (e.g., [39]). These approaches tend to treat code elements
involved in past changes as isolated with no relations, rather than
ones that have structural, or other relations, to other elements that
comprise the system. This treatment of elements limits the ability
to form sufficiently complete code context models for tasks.

We believe the benefits of code context models can be increased
by improving the proactive automatic formation of code context
models as a developer works. In effect, the proactive formation
would represent a collection of other code elements and relation-
ships the developer is likely to need to draw on to complete the
task, beyond a recommendation of what is the next code element
for the developer to consider (e.g., [10]). The proactive formation of
code context models can enable tools to draw upon the context of
the work being performed to improve the accuracy of recommen-
dations, whether for navigation, searching or other reasons, and to
better speculate on, and prefetch answers to, questions a developer
is likely to pose (e.g., [33]), amongst other potential applications.
By automatically forming code context models, tools can provide
these benefits at lower cost to the developer.

In this paper, we explore how we can improve the proactive au-
tomatic formation of code context models by investigating whether
we can: 1) learn abstract patterns of how developers typically in-
vestigate structurally connected code elements when performing
tasks on a system, and then 2) use the learned patterns to predict
code context models based on a developer’s new interaction with
the code for a system. Specifically, we use interaction histories col-
lected as a developer works to form code context models at different
points of time in the development of a system. We assign stereo-
types to code elements in these code context models that represent
the behavioral aspects and design intents of the elements [22], such
as whether a method is a getter or a setter. The stereotypes allow
us to abstract away from specific code elements. We then mine
patterns across these abstracted code context models; as each code
context model is a graph, we use a graph patternmatching approach
to support prediction. Our approach enables a 𝑑-step prediction
where the known code context model is expanded to include likely
code elements of interest up to 𝑑 steps away in the structure from
known code elements. When presented with code element seeds
as a developer works on a new task on the system, we can apply
the learned patterns to predict the future code context model. The
approach applies equally well at the start or middle of a task.

We applied this novel approach to interaction histories created
and stored as part of the Eclipse Mylyn open source project. We
found that our approach achieves maximum F-measures of 0.67,
0.33 and 0.21 for 1-step, 2-step and 3-step predictions, respectively.
The most similar approach to ours is Suade, which supports 1-step
prediction only. In comparison to this existing work, our approach
predicts code context models with significantly higher F-measure
(0.57 over 0.23 on average). The results demonstrate the value of
integrating historical and structural approaches to forming more
accurate code context models.

This paper makes three contributions:

• We introduce a novel approach to forming code context
models that learns abstract patterns of how developers work
with code as part of performing change tasks to a system.

• We demonstrate that our approach can predict code con-
text models effectively, achieving maximum F-measures of
0.67, 0.33 and 0.21 for 1-step, 2-step and 3-step predictions,
respectively.

• We provide a dataset that includes 1,887 code context models
to enable future investigations by others1.

We begin by describing existing work in the area of code context
models (Section 2). Next, we describe our approach for forming a
dataset using interaction histories (Section 3) and helping to form
code context models from interaction histories (Section 4). We
then evaluate the ability of the approach to predict the evolution
of code context models (Section 5). We discuss the implications
of results (Section 6) and limitations of the approach (Section 7),
before concluding (Section 8).

2 RELATEDWORK
Many empirical methods in a variety of settings have been used to
explore how developers understand code, from investigating the
comprehension approaches taken by developers (e.g., [36]) to study-
ing how they interact with code and tools (e.g., [20]) as they perform
change tasks to a system. A number of the studies performed about
these phenomena find that developers spend a substantial amount
of time searching and navigating source code to understand and lo-
cate the relevant parts for a task. To help developers perform these
activities, researchers have investigated several ways to capture
and represent the code context models developers mentally form
as they perform their work.

Some of these efforts focus on saving code context models af-
ter the relevant code elements have been identified or navigated
for work being performed. Concern graphs [32] help a developer
manually capture and represent the relevant elements and rela-
tionships between them. Code Bubbles [5] propose a novel IDE
editor interface that allows a developer to create views of code
fragments relative to work being performed. CodeBasket [4] en-
ables developers to externalize their mental models by providing
a canvas on which developers can arrange code elements. These
approaches specialize in saving the code context models after the
relevant code elements have been identified or navigated for work
being performed. We are interested in this paper in proactively
forming a code context model so that the model is available for a
developer and tools to make use of the information. More general
benefits possible from increasing the capture and use of context in
software development are provided elsewhere [24].

Other efforts focus on automating the creation, or otherwise
lessening, the manual burden on a developer to capture code con-
text models. Mylyn [13] automatically creates a task context, which
contains information relevant to a code context model, from a de-
veloper’s interactions with code. Suade [31] analyzes the structural
dependencies of code elements that have already been navigated,
and identifies additional relevant code elements as the context for a
task. Our approach is most similar to Suade in the proactive genera-
tion of code context information. In contrast to Suade, our approach
uses information learned from historical information about how a
developer has worked to predict potential code context elements.

1https://github.com/zhiyuan-wan/ASE_2020_predicting_code_context

https://github.com/zhiyuan-wan/ASE_2020_predicting_code_context

Predicting Code Context Models for Software Development Tasks ASE ’20, September 21–25, 2020, Virtual Event, Australia

Closely related to the formation of code context models are var-
ious recommendation approaches. These approaches build on a
variety of information to try to predict code that might be relevant
to a developer’s work. For example, DeLine et al. use information
about how developers navigate a code base to recommend where
a developer should navigate next [10]. Other approaches use pro-
gram structural information [3, 14], textual similarity between code
elements and task descriptions [15] version histories [16, 38, 39], or
a combination of multiple sources [28]. Our approach differs in two
ways. First, instead of aiming to produce a direct recommendation
to the developer, we predict what code matters for a task to inform
and improve other tools, such as the display of code or filtering
of search results. Second, our approach can leverage additional
context when expanding what a code context model may be by
basing predictions on the graph structure of previous code context
models.

Our approach relies on the use of stereotype roles [22] to general-
ize from specific code context models formed as a developer works
to abstract forms that facilitate pattern detection. We use these pat-
terns as a basis for completing code context models based on devel-
oper’s partial work on a task. Prior studies have utilized stereotype
roles for other purposes, including generating natural-language
summaries for code in Java [21, 23] and C++ [1] programming lan-
guages, feature location [2], detecting code smells [9], categorizing
source code identifiers [27], generating commit messages [6, 18],
categorizing methods in unit tests [17], and serving as an indicator
of system design [11]. We are the first to use stereotype roles to
summarize the behaviors of methods and classes in past code con-
texts and to then use the abstracted code context models to support
prediction.

3 CODE CONTEXT MODEL DATASET
To experiment with the proactive formation of code context models,
we need a dataset of such models. We form such a dataset using
interaction histories captured as developers work with the Eclipse
Mylyn open source project2. We describe the data we extract from
the project (Section 3.1) and how we transform this data into code
context models ready for experimentation (Section 3.2). Figure 1
provides an overview of the process used to create the dataset. The
resulting dataset formed from this process is available online3.

3.1 Data Extraction
The top part of Figure 1 describes the extraction of data from the
Mylyn system development. The Eclipse Mylyn tool records interac-
tion histories as a developer works on a code base. Each interaction
history includes a record of the code elements that are viewed and
edited by the developer. Mylyn enables one or more interaction
histories to be associated with each task performed by developers
on a system. For the development of the Mylyn tool, interaction
histories are stored with the tasks recorded in the Eclipse Bugzilla
system. We chose to use the Mylyn project as the data source for
our investigations because the project has collected interaction
histories for over 15 years, and these interaction histories represent

2https://www.eclipse.org/mylyn
3https://github.com/zhiyuan-wan/ASE_2020_predicting_code_context

the work of over 117 developers. We consider the threat to validity
of our work from this choice in Section 7.
Bug Report Filtering. To gather interaction histories, we con-
sidered the 5,208 FIXED and CLOSED bug reports of the Mylyn
project from the Eclipse Bugzilla bug tracker between April 2004
and December 2019. From this set of fixed bug reports, we filtered
all bug reports that did not have one or more interaction histories
associated with the report, leaving 1,246 bug reports to consider.
The 1,246 bug reports have an average of 1.72 interaction histories
attached (Min: 1, Max: 11, Median: 1, SD: 1.3).
Interaction Trace Extraction. We extracted and used the last
interaction history associated with each of these bug reports. We
only considered interaction histories with events directly recording
interaction with code elements (“selection” and “edit” events about
class, method, and field code elements). The final dataset consists of
1,219 valid interaction traces with an average of 145.19 interaction
events (Min: 1, Max: 4,179, Median: 65, SD: 376.37).

3.2 Code Context Model Formation
The bottom part of Figure 1 describes the formation from the ex-
tracted data into code context models.
Breaking Interaction Histories. For code context models, we
are interested in representing the models that developers usually
keep in their minds as they work with code for a task. As a result,
we need to break interaction histories into units that more likely
represent a period of time in which a developer is working with the
code and for which they may have formed a working mental code
context model. To capture such units, we define the concept of a
working period, consisting of the portion of the interaction history
consisting of events within two hour time periods. We chose two
hours because an analysis of all of the interaction histories showed
two hours was the mean time between two consecutive interaction
events in the histories. By applying this step, we formed 2,815
working periods.
Extracting Code Elements.We are only interested in interaction
histories4 recording work with code elements, as opposed to docu-
mentation or xml files. Thus, we filtered for interaction histories
accessing or editing Java code elements as Mylyn is predominantly
written in Java. Of the 2,815 working periods we identified, de-
velopers considered Java code elements in 2,726 working periods
(96.8%).

Structural dependencies between code elements are not available
in interaction histories. To capture structural information, we need
to be able to relate each interaction history to version(s) of the code
active when the interaction history was collected. Thus, for each
working period, we 1) resolved the git repository for extracted code
elements, 2) extracted event timestamps from the interaction his-
tory, and 3) associated each working period with code snapshot(s).
Resolving Git Repository.We resolved git repository (reposito-
ries) of accessed code elements for each working period as the My-
lyn code is stored across several git repositories. This step excluded
839 working periods that access only coarse-grained code elements

4In the remaining of this section, unless otherwise mentioned, we use “interaction
history” to refer to a portion of an interaction history corresponding to a working
period.

https://www.eclipse.org/mylyn
https://github.com/zhiyuan-wan/ASE_2020_predicting_code_context

ASE ’20, September 21–25, 2020, Virtual Event, Australia Zhiyuan Wan, Gail C. Murphy, and Xin Xia

Data Extraction

Interaction Histories

Event Timestamps
First event 2010-02-21 11:35:53
Last event 2010-02-21 15:23:27

Bug Report 303431
remove CommonColors.CONTEXT
_ACTIVE

Fixed

Interaction History 159708
<InteractionHistory Version="1"
Id="https://bugs.eclipse.org/bugs-303431">
…
<InteractionEvent CreationCount="9"
NumEvents="4" StructureKind="java"
StructureHandle="=org.eclipse.mylyn.comm
ons.ui/src<org.eclipse.mylyn.internal.provisi
onal.commons.ui{CommonThemes.java[Com
monThemes^COLOR_TASK_ACTIVE"
StartDate="2010-02-21 11:36:05.55 CET"
OriginId="org.eclipse.jdt.ui.PackageExplorer"
Navigation="null" Kind="selection"
Interest="4.0" EndDate="2010-02-21
15:21:48.606 CET" Delta="null"/>
…
</InteractionHistory>

Code Context Model

1

2 3
4

Git Repositories

mylyn.tasks

mylyn.commons

Code Elements
org.eclipse.mylyn.internal.provisional.commons.ui.
CommonThemes^COLOR_TASK_ACTIVE
org.eclipse.mylyn.internal.provisional.commons.ui.
CommonThemes
org.eclipse.mylyn.tasks.ui.TaskElementLabelProvider
org.eclipse.mylyn.tasks.ui.TaskElementLabelProvider
[getForeground

1

2

3
4StructureKind="java"

Extracting Code
Elements

Resolving Git
Repository

Extracting
Event

Timestamps

Associating with
Commit

Event StartDate

Working Period
<InteractionEvent …/>
…

Breaking into
Working
Periods

Event Interval > 2 hours

Repository Snapshots
mylyn.commons
Commit 3ead864c 2010-02-21 10:43:34
mylyn.tasks
Commit 78457484 2010-02-21 10:43:32

Running Doxygen

Structural
Dependencies
between Code
Elements

Forming Code
Context Model

declares declares

Eclipse
Bugzilla

Mylyn Bug Reports
Bug Report 115179

Fixed

Bug Report 303431

Fixed

...

...

Interaction History 159691
Interaction History 159708

Filtering Bug
Reports

Extracting
Interaction
Histories

Interaction HistoriesMylyn Bug Reports

Bug Report 201466

Fixed

Bug Report 303431

Fixed

...

...

Interaction History 77185

Interaction History 159708

Code Context Model Formation

Bug Report 201466

Fixed

Interaction History 77185

...

Final Interaction History

Figure 1: Process of collecting dataset.

Table 1: Characteristics of 1,887 code context models in dataset. In terms of node number, 51 code context models lie outside
the interval [𝑄1 − 3𝐼𝑄𝑅,𝑄3 + 3𝐼𝑄𝑅] where 𝑄1 = 3, 𝑄3 = 14, 𝐼𝑄𝑅 = 11; 4 code context models lie above 200.

Code Context Model Connected Component (CC)
Node # Edge # CC # Node # Edge # Diameter

Min 1 0 1 1 0 0
Max 944 421 572 152 210 16
Median 7 3 3 1 0 0
Mean 12.32 8.48 4.61 2.67 1.84 0.90
SD 30.34 18.38 17.58 5.02 6.51 1.56

(directory or file), which lack structural relations, or involve code
elements from unavailable code repositories (e.g., dependency li-
braries), or access only code elements that were not committed to
the repository when the interaction history was collected. For exam-
ple, for the working period in Figure 1, we resolved two related git
repositories: mlylyn.tasks and mylyn.commons. After this step,
we are left with 1,887 working periods from which to form code
context models.
Extracting Event Timestamps. We extracted the StartDate at-
tribute of each interaction event from an interaction history as the
timestamp of the event, and identify the timestamps of the first and

last events. The timestamps help to locate the commits before and
during the working period. In terms of the example working period
in Figure 1, the timestamps of first and last events are “2010-02-21
11:35:53” and “2010-02-21 15:23:27”, respectively.
Associating with Commits. By using the timestamps of first and
last events in the interaction history, we associated each interaction
history with one or multiple commits in the related git reposito-
ries. Specifically, we retrieved the most recent commit in the git
repository prior to the timestamp of the first event in the inter-
action history. In addition, to capture the code changes during a
working period, we accessed any other commits that occur before

Predicting Code Context Models for Software Development Tasks ASE ’20, September 21–25, 2020, Virtual Event, Australia

the timestamp of the last event. With regard to the example work-
ing period in Figure 1, we associated the working period with the
commit 78457484 in mlylyn.tasks and the commit 3ead864c in
mylyn.commons.
Running Doxygen.We used Doxygen [35] to identify structural
relations between code elements. Specifically, we run Doxygen for
each code snapshot of each commit associated with the working
period. In this paper, we consider four structural relations: declares,
calls, inherits, and implements. Figure 1 illustrates that using Doxy-
gen we identify two declares relations between the code elements.
Forming Code Context Model. For each working period, we
formed one code context model. The extracted code elements form
the nodes of the code context model for a working period, while
the identified structural dependencies form the edges of the code
context model. Figure 1 presents the code context model for the
example working period, with four nodes and two directional edges
labeled by structural relations. This code context model, which
consists of two connected components, is the sole working period
associated with the Bug Report 303431.

Our final dataset of code context models consists of 1,887 models.
To give a sense of these models, Table 1 reports on statistics about
these models. This data shows that the size of code context models
varies, with an average of just over 12 nodes. The code context
models are typically comprised of multiple connected components,
with an average of 4.61, indicating that developers’ worked with
multiple clusters of structurally connected code elements during a
working period. The right side of Table 1 reports statistics about
the range of size of the 8,696 connected components comprising
the code context models. This data shows that the average diameter
of connected components is 0.90, indicating that the developers did
not navigate code elements by following structural dependencies
in depth during a working period. The maximum number of nodes
in a code context model is 944, leading us to question the number
of outliers. We found that 51 models lie outside the interval [𝑄1 −
3𝐼𝑄𝑅,𝑄3 + 3𝐼𝑄] where the upper bound is 47 (𝑄1 = 3, 𝑄3 = 14,
𝐼𝑄𝑅 = 11)5.

4 CODE CONTEXT MODEL PREDICTION
Our goal is to predict the code context model for a task initiated
by a developer. We assume the developer has initiated the task
by identifying some code elements of interest for the task. For
example, a developer may have just started work on a task and could
benefit from a prediction of the code that will need to be consulted
to support the remaining work to be performed on the task. By
framing the problem as a prediction opportunity, we aim to provide
the code context model to tools that may help a developer search
or otherwise work with the code rather than simply recommend
the next step to a developer.

Specifically, in terms of a task on a system𝑚, our approach takes
as input a set of seeds, 𝑆 , for each connected component 𝑐𝑐 in the
complete code context model 𝑟 for the task. Each seed 𝑠 ∈ 𝑆 contains
a portion of a connected component. Our approach supports a 𝑑-
step prediction where the code elements predicted are structurally

5Q1 is the 25th quartile; Q3 is the 75th quartile; IQR (Interquartile Range) is defined as
the difference between the 25th and 75th quartile and served as a measure of statistical
dispersion.

connected with, and 𝑑 steps away, from the code elements in 𝑠 . Our
approach relies on abstract topological patterns of historical code
context models to make an effective prediction. These code context
models are extracted from previous interaction histories captured
and stored for tasks on the system 𝑚. The extracted topological
patterns are based on stereotype roles assigned automatically to
code elements in 𝑠 .

We describe the assignment of stereotype roles to code elements
(Section 4.1) before explaining our prediction approach (Section 4.2).

4.1 Stereotype Role Assignment
Developers perform tasks on a software system to add new and fix
existing functionality. As a result, developers often work on differ-
ent parts of the code base. An analysis of the code context models
in our dataset, which include Java code, indicates that developers
accessed each class element an average of 4.76 times (Min: 1, Max
118, Median: 3, SD: 7.53), each method element 1.91 times (Min: 1,
Max 60, Median: 1, SD: 2.11), and each field element 1.21 times (Min:
1, Max 9, Median: 1, SD: 0.56). These relatively low rates of access
to code indicate that if we wish to build on patterns of access to
predict code context models, we must abstract from the specific
code elements accessed. We hypothesize that the roles the code
elements play in the system are a good basis for this abstraction.

We use the method and class stereotype taxonomy proposed by
Moreno and Marcus to assign roles [22]. The taxonomy provides 17
stereotype roles for method elements divided across four categories:
structural accessor, structural mutator, creational and collabora-
tional. An example of a specific stereotype within these categories
is a structural mutator called Command that indicates a method
performing a complex change to an object’s state. The taxonomy
also provides 13 stereotype roles for class elements, including Data
Provider, which encapsulates data and consists mainly of accessor
methods, and Pure Controller that consists entirely of controller and
factory methods.

We use Moreno et al.’s JStereoCode tool [22] to assign stereotypes
to each code element on the fly as needed during the prediction
process. Specifically, we run the tool on the snapshots of code
repositories associated with the context models. During the predic-
tion, we search for each code element in the output of JStereoCode
for the related snapshot to assign a stereotype. For instance, in
terms of the example bug fixing task in Figure 1, we searched for
org.eclipse.mylyn.internal.provisional.commons.ui.Com-
monThemes (node 2) in the JStereoCode output for the snapshot right
after the commit 3ead864c. As a result, we assigned Pool Class as
the stereotype of node 2. Theoretically, it is possible that a code
element could have multiple stereotypes across different snapshots
in a repository due to software evolution.

4.2 Prediction Approach
The prediction approach consists of two stages. The first stage
mines abstract topological patterns from historical code context
models. Based on the abstract topological patterns, the second stage
predicts the final code context model of a task, with a set of seeds 𝑆
for each connected component in the code context model as input.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Zhiyuan Wan, Gail C. Murphy, and Xin Xia

1: Input
2: S a seed set for a connected component 𝑐𝑐
3: 𝑑 prediction step
4: 𝑃 a set of topological patterns
5: Output
6: 𝐺 a set of matched subgraphs
7: 𝑠𝑑 expanded seed
8: 𝑠 ′ a predicted context model for the connected compo-

nent 𝑐𝑐
9: for all 𝑠 ∈ 𝑆 do
10: 𝑔 = 𝑒𝑥𝑝𝑎𝑛𝑑 (𝑠, 𝑑)
11: 𝑠𝑑 = 𝑔𝑟𝑎𝑝ℎ𝑀𝑒𝑟𝑔𝑒 (𝑔, 𝑠𝑑)
12: end for
13: 𝑎𝑠𝑠𝑖𝑔𝑛𝑆𝑡𝑒𝑟𝑒𝑜𝑡𝑦𝑝𝑒𝑅𝑜𝑙𝑒 (𝑠𝑑)
14: for all 𝑝 ∈ 𝑃 do
15: 𝐺 = 𝐺 ∪ 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑀𝑎𝑡𝑐ℎ(𝑝, 𝑠𝑑)
16: end for
17: for all 𝑔 ∈ 𝐺 do
18: 𝑠 ′ = 𝑔𝑟𝑎𝑝ℎ𝑀𝑒𝑟𝑔𝑒 (𝑔, 𝑠 ′)
19: end for
20: for all 𝑣 ∈ 𝑠 ′ do
21: 𝑜𝑣 = 0
22: for all 𝑔 ∈ 𝐺 do
23: if 𝑣 ∈ 𝑔 then
24: 𝑜𝑣 = 𝑜𝑣 + 1
25: end if
26: end for
27: 𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒𝑣 = 𝑜𝑣/|𝐺 |
28: end for

Figure 2: Context model prediction algorithm.

Stage 1: Topological Pattern Mining. The stage takes as input
a system,𝑚, a threshold of pattern support,𝑀𝑖𝑛𝑆𝑢𝑝𝑝 , and a repos-
itory of code context models, 𝑅. 𝑅 is formed from interaction histo-
ries for previous tasks completed on𝑚. Each code element of 𝑟 ∈ 𝑅,
where possible, has been assigned a stereotype. A set of topological
patterns 𝑃 is populated by mining frequent graph patterns in 𝑅.
Specifically, we run gSpan [37] with 𝑅 as input and𝑀𝑖𝑛𝑆𝑢𝑝𝑝 as the
parameter.

gSpan is an efficient algorithm for graph-based substructure
pattern mining. Given a dataset of graphs, 𝐷 = {𝐺0,𝐺1, ...,𝐺𝑛},
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑔) denotes the number of graphs (in 𝐷) in which 𝑔 is a
subgraph. gSpan explores depth-first search to find any connected
subgraph 𝑔 s.t. 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑔) ≥ 𝑚𝑖𝑛𝑆𝑢𝑝 (a minimum support thresh-
old). We use a Python implementation6 of gSpan and calculate the
threshold𝑚𝑖𝑛𝑆𝑢𝑝 for gSpan by taking into account the size of graph
dataset, i.e.,𝑚𝑖𝑛𝑆𝑢𝑝 = 𝑀𝑖𝑛𝑆𝑢𝑝𝑝 ∗ |𝐷 |.
Stage 2: Context Model Prediction. Figure 2 illustrates the algo-
rithm for this stage. The stage takes as input a set of seeds 𝑆 for
each connected component 𝑐𝑐 in the code context model 𝑟 for a
task on𝑚, the prediction step, 𝑑 , and a set of topological patterns
that are derived at stage 1, 𝑃 . The first step expands each 𝑠 ∈ 𝑆 to 𝑔
by performing a depth-first search along the structural relations.

6gspan-mining v0.2.2, https://pypi.org/project/gspan-mining

The resulting code elements are structurally connected with the
nodes in 𝑠 to a depth of 𝑑 (line 10). After the expansion, all of the
expanded graphs 𝑔 are merged to form 𝑠𝑑 (line 11); all code ele-
ments in 𝑠𝑑 have been assigned a stereotype (line 13). Then, for
each pattern 𝑝 in 𝑃 , we locate similar structures in 𝑠𝑑 by applying
the patternMatching function (line 15).

The patternMatching function searches for the pattern 𝑝 among
particular subgraphs in 𝑠𝑑 . Note that 𝑑 represents the prediction
step and is limited by the diameter of a connected component. Thus,
the patternMatching function extracts a subset of subgraphs in 𝑠𝑑
for pattern matching. These subgraphs contain at least (𝑑+1) nodes
from 𝑠𝑑 , and are of two types: 1) subgraphs whose nodes exist in
any 𝑠 ∈ 𝑆 ; or 2) subgraphs that have 𝑑 nodes that do not exist in any
𝑠 ∈ 𝑆 . Finally, the patternMatching function returns the subgraphs
that are matched with the pattern 𝑝 .

Finally, all matched subgraphs with 𝑝 ∈ 𝑃 are merged to form
the predicted context model 𝑠 ′ for a connected component (line 18).
The confidence value of each node in 𝑠 ′ is calculated by evaluating
the frequency of occurrence across matched subgraphs (line 20 -
28).

Figure 3 illustrates the process of 1-step context model prediction
with the example bug fixing task (bug ID: 303431) as shown in
Figure 1. The code context model has two connected components.
We take the connected component 𝑐𝑐 with node 1 and node 2 as the
example. 𝑐𝑐 has a Class node (labeled 2) and a Field node (labeled
1). Each node in 𝑐𝑐 can serve as a seed for 1-step prediction and
belongs to the seed set 𝑆 (labeled seed 1 and seed 2). The 1-step
prediction approach then expands each seed to a depth of 𝑑 = 1
and generates an expanded graph 𝑔 for each seed. After expansion,
the two expanded graphs are merged to form 𝑠1, where all nodes
are assigned a stereotype. After running pattern matching with
each 𝑝 ∈ 𝑃 , we find that the pattern Pool class declares Field
matches 12 subgraphs in 𝑠1, which form the set of subgraphs𝐺 . All
of the subgraphs in𝐺 are merged to form a predicted context model
𝑠 ′. The confidence value for each node in 𝑠 ′ is calculated based on
its frequency of occurrence across subgraphs in 𝐺 . For instance,
the confidence value of node 2 equals to 12/12 = 1 because node
2 occurs in every subgraph. Meanwhile, node 1 occurs in just one
subgraph thus its confidence value equals to 1/12.

5 EVALUATION
We explain the results of applying the prediction approach to the
dataset described in Section 3. Specifically, we explore three re-
search questions to investigate the effectiveness of our approach
for code context model prediction:

• RQ1.What kinds of patterns can be learned from interaction
histories?

• RQ2. How does the performance of our approach for code
context model prediction differ over various values of 𝑑 , the
number of steps of prediction?

• RQ3. How does our approach compare to the state-of-the-
art?

Predicting Code Context Models for Software Development Tasks ASE ’20, September 21–25, 2020, Virtual Event, Australia

𝒈𝒈𝒄𝒄𝒄𝒄
Matched Patterns in𝑷𝑷

Pool
Class

Fielddeclares
1

2

𝑺𝑺

1

2

seed 1

seed 2

𝒔𝒔𝟏𝟏

1
2 93

4
5 6 7

8

10
1113 1214

declares

1
2

1

2 93

4
5 6 7

8

10
11

13 1214

�𝑮𝑮
82

92

2

2

2

2

12

32

42

52

62

72

10

11

12

13

1
2 93

4
5 6 7

8

10
1113 12

Node Stereotype Confidence
1 org.eclipse.mylyn.internal.provisional.commons.ui.CommonThemes^COLOR_TASK_ACTIVE Field 1/12
2 org.eclipse.mylyn.internal.provisional.commons.ui.CommonThemes Pool Class 1
3 org.eclipse.mylyn.internal.provisional.commons.ui.CommonThemes^COLOR_CATEGORY Field 1/12
4 org.eclipse.mylyn.internal.provisional.commons.ui.CommonThemes^COLOR_CATEGORY_GRADIENT_END Field 1/12
5 org.eclipse.mylyn.internal.provisional.commons.ui.CommonThemes^COLOR_CATEGORY_GRADIENT_START Field 1/12
6 org.eclipse.mylyn.internal.provisional.commons.ui.CommonThemes^COLOR_COMPLETED Field 1/12
7 org.eclipse.mylyn.internal.provisional.commons.ui.CommonThemes^COLOR_COMPLETED_TODAY Field 1/12
8 org.eclipse.mylyn.internal.provisional.commons.ui.CommonThemes^COLOR_INCOMING_BACKGROUND Field 1/12
9 org.eclipse.mylyn.internal.provisional.commons.ui.CommonThemes^COLOR_OVERDUE Field 1/12

10 org.eclipse.mylyn.internal.provisional.commons.ui.CommonThemes^COLOR_SCHEDULED_PAST Field 1/12
11 org.eclipse.mylyn.internal.provisional.commons.ui.CommonThemes^COLOR_SCHEDULED_THIS_WEEK Field 1/12
12 org.eclipse.mylyn.internal.provisional.commons.ui.CommonThemes^COLOR_SCHEDULED_TODAY Field 1/12
13 org.eclipse.mylyn.internal.provisional.commons.ui.CommonThemes^FONT_EDITOR_COMMENT Field 1/12
14 org.eclipse.mylyn.internal.provisional.commons.ui.CommonThemes[isCommonTheme Collaborator Method -

�𝒔𝒔𝒔

Figure 3: Sample task to illustrate how our approach does 1-step prediction.

5.1 Experiment Design
To answer the research questions, the experiment simulates code
context model prediction and applies our prediction approach to
the dataset.
Experimental Setup. We choose a simulation-based method to
experiment with our approach and evaluate our approach in a usage
scenario where a developer starts code search and navigation from
the middle of a task. The experimental method involves a training
set, a test set, and a simulator. The training set, 𝑅𝑇𝑟𝑎𝑖𝑛 , is a subset
of our dataset, to mine the abstract topological patterns 𝑃 . The test
set, 𝑅𝑇𝑒𝑠𝑡 , is the remaining code context models from our dataset
that are not in 𝑅𝑇𝑟𝑎𝑖𝑛 . Given the sequential nature of our dataset,
we use the 1,254 code context models from the year 2007 to 2009
(84%) as the training set, and the 231 code context models from the
year 2010 to 2011 (16%) as the test set.

The simulator first creates multiple seed sets from the test set
𝑅𝑇𝑒𝑠𝑡 , as illustrated in Figure 4. For each code context model 𝑟 ∈
𝑅𝑇𝑒𝑠𝑡 , the simulator creates a seed set 𝑆 for each connected com-
ponent 𝑐𝑐 ∈ 𝑟 with prediction step 𝑑 as input. Once the seed set
𝑆 is created from 𝑅𝑇𝑒𝑠𝑡 , the simulator mines abstract topological
patterns through 𝑅𝑇𝑟𝑎𝑖𝑛 . To select topological patterns, the sim-
ulator uses the minimum support 𝑀𝑖𝑛𝑆𝑢𝑝𝑝 as a threshold. Then,
the simulator iterates over each seed set 𝑆 ∈ 𝑆 and bootstraps a
prediction approach (i.e., our approach and the state-of-the-art)
with 𝑆 as input. Finally, the simulator aggregates prediction results
of all connected components for each code context model 𝑟 ∈ 𝑅𝑇𝑒𝑠𝑡 .
Experiment for RQ1. We investigate the numbers and kinds of
patterns extracted by considering the effect of 𝑀𝑖𝑛𝑆𝑢𝑝𝑝 on the
mined topological patterns. To make a tradeoff between the gener-
alizability and specificity of mined patterns, we experiment with
a range of 0.02 to 0.2 for 𝑀𝑖𝑛𝑆𝑢𝑝𝑝 . We compare the topological
patterns with various 𝑀𝑖𝑛𝑆𝑢𝑝𝑝 values in the range of 0.02 to 0.2
in increments of 0.02. We use the best result for𝑀𝑖𝑛𝑆𝑢𝑝𝑝 in subse-
quent experiments.

1: Input
2: 𝑅𝑇𝑒𝑠𝑡 test set
3: 𝑑 predition step
4: Output
5: 𝑆 seed sets
6: for all 𝑟 ∈ 𝑅𝑇𝑒𝑠𝑡 do
7: for all 𝑐𝑐 ∈ 𝑟 do
8: 𝑠𝑖𝑧𝑒 = 𝑛𝑜𝑑𝑒𝑁𝑢𝑚𝑏𝑒𝑟 (𝑐𝑐)
9: 𝑆 = 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 (𝑐𝑐, 𝑠𝑖𝑧𝑒 − 𝑑)
10: 𝑆 = 𝑆 ∪ {(𝑟, 𝑐𝑐, 𝑆)}
11: end for
12: end for

Figure 4: Seed generation algorithm.

Experiment for RQ2. To understand the effect of prediction step
𝑑 , we evaluate the performance of our prediction approach with 𝑑
to be 1, 2 and 3, representing 1-step, 2-step, and 3-step predictions,
respectively. Note that prediction step 𝑑 is limited by the diameter
of a connected component. For instance, a connected component of
diameter 2 can support 1-step and 2-step predictions. The average
diameter of the connected components in the test set is 2.1 (Min: 1,
Max: 16, Median: 2, SD: 1.7). To consider adequate instances in the
test set for each prediction step, we choose 𝑑 to be 1, 2 and 3. We
further investigate the impact of confidence threshold 𝑀𝑖𝑛𝐶𝑜𝑛𝑓

on the performance of prediction. The confidence value of a code
element in prediction results varies between 0 and 1. Thus, we set
𝑀𝑖𝑛𝐶𝑜𝑛𝑓 to be in the range of 0.1 to 1.0 in increments of 0.1.
Experiment for RQ3. Suade is the state-of-the-art approach for
code context model completion [31]. Suade leverages heuristic char-
acteristics of the structural dependencies (i.e., specificity and rein-
forcement) to rank code elements connected with the seed. Given

ASE ’20, September 21–25, 2020, Virtual Event, Australia Zhiyuan Wan, Gail C. Murphy, and Xin Xia

1: Input
2: 𝐿 relation types
3: 𝑤 selection window
4: 𝑆 a seed set for a connected component 𝑐𝑐
5: Output
6: 𝑠 ′ predicted context model for the connected compo-

nent 𝑐𝑐
7: for all 𝑠 ∈ 𝑆 do
8: 𝐹 = 𝑠𝑢𝑎𝑑𝑒 (𝑠, 𝐿,𝑤)
9: 𝑠 ′ = 𝑔𝑟𝑎𝑝ℎ𝑀𝑒𝑟𝑔𝑒 (𝐹, 𝑠 ′)
10: end for

Figure 5: Experimental setting of Suade.

that the original implementation of Suade is not accessible, we
implement Suade in Python and make it available online7.

As Suade supports only 1-step prediction, we compare only for
this prediction step. We have the simulator iterate over 𝑆 ∈ 𝑆 for
the prediction step 𝑑 = 1, and bootstrap the experimental setting of
Suade as described in Figure 5.We use the simulator to run Suade for
each seed 𝑠 ∈ 𝑆 and merge predicted results to form the predicted
context model 𝑠 ′ (line 7 - 10).

We simulate Suade with 1, 3 and 5 as the selection window 𝑤 ,
respectively, where Suade makes top-𝑤 recommendation for each
connected component.Whenever there exists a tie for a top position,
we break the tie by randomly choosing the top element(s) among
the equal-valued suggestions.

To ensure a fair comparison, we use declares, calls and inherits
as the relation types 𝐿 for Suade. For each selection window 𝑤

when applying Suade, we calculate the actual size of 𝑠 ′ as 𝑘 for each
connected component in a code context model. For comparison, we
choose top-𝑘 code elements with greatest confidence values for each
connected component from the prediction results of our approach.
We used the same tie breaker as Suade.

5.2 Measurement
To measure the effectiveness of prediction, we use several com-
monly used metrics. For each context model 𝑟 ∈ 𝑅𝑇𝑒𝑠𝑡 , we use
actual code elements𝑉 and predicted code elements𝑉 ′ to compute
the metrics. 𝑉 are the code elements in the actual context model of
𝑟 . 𝑉 ′ are the code elements in the context model predicted based
on a portion of 𝑉 . We calculate precision 𝑃 and recall 𝑅 metrics as:

Precision 𝑃 =
|𝑉 ∩ 𝑉 ′ |

|𝑉 ′ | (1)

Recall 𝑅 =
|𝑉 ∩ 𝑉 ′ |

|𝑉 | (2)

To capture the trade-off between precision and recall, we compute
the harmonic mean F-measure from the averaged values of precision
and recall across code context models:

F-measure 𝐹 =
2 ∗ 𝑃 ∗ 𝑅
𝑃 + 𝑅

(3)

7https://github.com/zhiyuan-wan/ASE_2020_predicting_code_context

0

20

40

60

80

100

120

140

160

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

P
a

tt
e

rn
 N

u
m

b
e

r

MinSupp

Node 2

Node 3

Node 4

Node 5

Figure 6: Number of patterns with MinSupp in the range of
0.02 to 0.20.

5.3 Results
We describe the results for each experimental question in turn.

5.3.1 RQ1. Abstract Topological Patterns. The first research ques-
tion considers the kinds of patterns that can be learned from inter-
action histories. Figure 6 summarizes the number of patterns mined
from 𝑅𝑇𝑟𝑎𝑖𝑛 with various numbers of nodes in the pattern. As the
value of 𝑀𝑖𝑛𝑆𝑢𝑝𝑝 increases, the number of topological patterns
decreases sharply from 142 to 2. This result indicates that topologi-
cal patterns, even in terms of stereotype roles, are not frequently
occurring in the dataset.

Patterns with 2 nodes (node-2 pattern) account for more than
50% of the patterns across various 𝑀𝑖𝑛𝑆𝑢𝑝𝑝 values. Node-5 pat-
terns disappear when 𝑀𝑖𝑛𝑆𝑢𝑝𝑝 >= 0.04, while Node-4 patterns
disappear when𝑀𝑖𝑛𝑆𝑢𝑝𝑝 >= 0.06. Note that our proposed predic-
tion approach leverages node-𝑛 patterns to make 𝑑-step prediction
where 𝑛 > 𝑑 . To capture adequate topological patterns for predic-
tion, we use the topological patterns where𝑀𝑖𝑛𝑆𝑢𝑝𝑝 = 0.02 in the
experiments hereafter. The topological patterns with 𝑀𝑖𝑛𝑆𝑢𝑝𝑝 =
0.02 are distributed across 94% of the code context models in the
training set.

To give a sense of the kinds of patterns mined, Table 2 shows the
distribution of stereotype roles of the nodes in topological patterns
where𝑀𝑖𝑛𝑆𝑢𝑝𝑝 = 0.02. The Method and Class stereotypes involved
in the patterns account for 63% of Method stereotypes and 38%
of Class stereotypes that occur in the training set, respectively.
The distribution of stereotype roles involved in the patterns are
consistent with that in the training set.

5.3.2 RQ2. Prediction Performance. The second research question
considers the performance of our approach for code context model
prediction. Table 3 reports the numbers of code context models
(column 2) and connected components (column 3) in the test set
that can support 1-step, 2-step and 3-step predictions.
F-measure. Figure 7 presents the resulting F-measure for step-1,
step-2 and step-3 predictions. Each point represents the F-measure
of all the predictions across code context models with MinConf
ranging from 0.1 to 1.0.

The F-measure values of step-1 start from 0.34 and end with 0.26,
achieving the highest value 0.67 at MinConf = 0.3. The F-measure
values of step-2 start from 0.25 and end with 0.23, achieving the
highest value 0.33 at MinConf = 0.6. The F-measure values of step-3

https://github.com/zhiyuan-wan/ASE_2020_predicting_code_context

Predicting Code Context Models for Software Development Tasks ASE ’20, September 21–25, 2020, Virtual Event, Australia

Table 2: Stereotype roles in the topological patterns with
MinSupp = 0.02.

Stereotype Count Percentage

Method
Collaborator 94 46.8%
Command-Collaborator 37 18.4%
Set-Collaborator 22 10.9%
Factory-Collaborator 13 6.5%
Set 10 5.0%
Constructor 7 3.5%
Non Void Command-Collaborator 5 2.5%
Get 5 2.5%
Abstract 3 1.5%
Local Controller 3 1.5%
Command 1 0.5%
Factory 1 0.5%

Class
Boundary-Commander 45 34.4%
Boundary 34 26.0%
Other 31 23.7%
Entity 12 9.2%
Commander 3 2.3%
Interface 2 1.5%
Minimal Entity 2 1.5%
Factory 1 0.8%
Boundary-Data Provider 1 0.8%

Field 49 -

start from 0.21 and end with 0.08, achieving the highest value 0.21
at MinConf = 0.1.

The average F-measure of 1-step prediction is 1.7 times higher
than that of 2-step prediction (0.48 vs. 0.28), and 3.4 times higher
than that of 3-step prediction (0.48 vs. 0.14). The F-measure values of
2-step prediction are slightly higher than those of 3-step predictions.
Thus, 1-step prediction significantly outperforms 2-step and 3-step
predictions.
Precision and Recall. Figure 8 presents the resulting precision
and recall graphs for 1-step, 2-step and 3-step predictions. Each
point in each curve represents the average precision and recall of
prediction results based on patterns with MinConf ranging from
0.1 to 1.0. The label for each point indicates the corresponding
MinConf.

1-step prediction achieves a maximum precision average of 0.91
where recall = 0.38 (MinConf = 0.6). 2-step prediction achieves a
maximum precision average of 0.82 where recall = 0.14 (MinConf
= 0.9). 3-step prediction achieves a maximum precision average of
0.58 where recall = 0.05 (MinConf = 0.9).

Figure 8 shows that the precision averages for step-d predictions
consistently increase and achieve the maximum values at the be-
ginning, and drops sharply as the recall averages increase. The
recall averages increase as MinConf values increase. Overall, we
observed that 1-step prediction significantly outperforms 2-step and

Table 3: Test set sizes for step-1, step-2 and step-3 predictions.

Code Context Model # Connected Component #

Step-1 231 527
Step-2 165 291
Step-3 92 112

Table 4: Comparison of performance with Suade.

Our Approach Suade

P R F P R F

k = 1 0.86 0.53 0.65 0.23 0.17 0.20
k = 3 0.50 0.69 0.58 0.20 0.32 0.25
k = 5 0.36 0.74 0.49 0.18 0.42 0.25

3-step predictions;MinConf can be used to make a tradeoff between
precision and recall for the predictions.

5.3.3 RQ3. Comparison with Suade. The third research question
asks how our approach compares to state-of-the-art, represented
by the Suade algorithm. Table 4 compares the precision, recall, and
F-measure values of our approach and Suade. Our approach shows
F-measure values of 0.65, 0.58. and 0.49 when 𝑘 = 1, 𝑘 = 3 and 𝑘 = 5,
respectively, significantly outperforming Suade (0.20, 0.25 and 0.25).
In addition, the performance metrics of our approach and Suade
show similar tendency: as the window size 𝑘 increases, precision
values decrease, but recall values increase.

6 DISCUSSION
We reflect on the performance of our approach, delving into why the
approach performs as it does and opportunities for improvement.
We also consider the limitations of roles as a generalization mecha-
nism and discuss how our approach differs from developer-oriented
recommendation tools.

6.1 Analysis of Approach
We consider how our approach performs by delving into the types
of patterns we find in the system and how those patterns affect the
performance of the approach.
Prediction Accuracy vs. Confidence. In Figure 7(a), the 1-step
prediction yields significant higher prediction accuracy when Min-
Conf = 0.4. To explore the reason, we analyzed the confidence values
of true positive and false positive code elements in the prediction
results. The true positive elements achieve an average confidence
of 0.44 (Min: 0.01, Max: 1, Median: 0.38, SD: 0.31), while the false
positive elements achieve an average confidence of 0.16 (Min: 0.01,
Max: 1, Median: 0.12, SD: 0.16). A Mann-Whitney test showed that
the distributions of confidence values are significantly different be-
tween true positive and false positive code elements in the prediction
results with p < 0.001 (U = 9289927.5).MinConf = 0.4 helps to exclude
52% code elements from the true positives, and 92% from the false
positives in prediction results.

To achieve an acceptable level of precision, the prediction ap-
proach should choose a MinConf value that helps to discriminate

ASE ’20, September 21–25, 2020, Virtual Event, Australia Zhiyuan Wan, Gail C. Murphy, and Xin Xia

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
MinConf

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F-
m

ea
su

re

(a) 1-step prediction

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
MinConf

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F-
m

ea
su

re

(b) 2-step prediction

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
MinConf

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F-
m

ea
su

re

(c) 3-step prediction

Figure 7: F-measure for 1-step, 2-step and 3-step predictions.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

is
io

n

 0.1

 0.2

 0.3

 0.4
 0.5 0.6

 0.7 0.8 0.9
 1.0

(a) 1-step prediction

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

is
io

n

 0.1 0.2 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1.0

(b) 2-step prediction

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

is
io

n

 0.5

 0.6

0.4
0.3 0.2

0.1

0.7
0.8

0.9

1.0

(c) 3-step prediction

Figure 8: Precision and recall graphs for 1-step, 2-step and 3-step predictions. Labels representMinConf values.

between relevant and irrelevant code elements in a code context
model.
Prediction Accuracy vs. Prediction Step. As found in our study,
step-1 prediction outperforms step-2 and step-3 predictions in terms
of both recall and precision. We further investigate the results for
step-2 and step-3 predictions.

On the one hand, the inadequacy of topological patterns in step-2
and step-3 predictions leads to low recall. The number of topologi-
cal patterns decreases sharply as the number of nodes in topological
patterns increases. Amongst the 142 discovered patterns, we ob-
served 73 2-node patterns, 45 3-node patterns, 20 4-node patterns,
and four 5-node patterns. As prediction step 𝑑 increases, the num-
ber of applicable patterns decreases (1-step: 142, 2-step: 69, 3-step:
24). The 69 applicable patterns for 2-step prediction covers 59% of 22
stereotype roles. The coverage of stereotype roles for 24 applicable
patterns for 3-step prediction is 32%.

On the other hand, longer step prediction involves fewer code
elements in the seed as for the identical topological pattern, which
leads to low precision. For instance, a 3-node pattern (as shown in
Figure 9) matches the subgraphs with two code elements as seed for
1-step prediction but matches the subgraph with one code element
as a seed for 2-step prediction. The precision of the pattern differs
significantly between 1-step and 2-step predictions (0.46 vs. 0.20).

To support the formation of code contextmodels with𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 >

2, future studies could explore whether applying multiple 1-step
predictions can achieve an applicable level of accuracy.

Collaborator
Method

Boundary
Class

Command-Collaborator
Method

declaresdeclares

Figure 9: 3-node pattern applicable for 1-step and 2-step pre-
dictions.

6.2 Roles as a Generalization Mechanism
Our approach relies on the assignment of roles to code context
models formed from previous tasks on the system. A limitation
of our experimentation is its application to one system, which
we discuss further in Section 7. Future work needs to consider
whether the topological patterns we identify and their frequency are
unique to a system or occur in similar distributions to other system
developments. If the patterns frequently occur across systems, it
may be possible to mine patterns on one system that can then be
used even in new developments that do not yet have a history
to learn from. Given that the stereotypes were developed for a
paradigm of programming—object-oriented programming—and the
patterns mined are relatively small (e.g., with 2.7 nodes on average),
there is reason to be optimistic that the use of patterns across system
developments is possible. Future experimentation is needed to test

Predicting Code Context Models for Software Development Tasks ASE ’20, September 21–25, 2020, Virtual Event, Australia

this hypothesis. In terms of 1-step prediction, our approach captures
“association rules” between structurally connected stereotype roles.

6.3 Developer-oriented Recommendations
Researchers have considered a variety of ways to make recom-
mendations related to navigation for developers. These recommen-
dation approaches suggest code often navigated to next from a
given location [10], pre-fetch information related to likely devel-
oper queries from a given point in the code [8], present other code
often changed with code currently being considered [39], amongst
other aids. There are many challenges with providing recommen-
dations directly to developers, including capturing the developer’s
attention to provide a recommendation, gaining the trust of the de-
veloper by providing good recommendations, and explaining why a
recommendation is being made [25]. Muslu et al. considered some
of these issues, suggesting that speculative analysis, which projects
a recommended action, could be used to help with developer ac-
ceptance of recommendations by explaining the consequence of
recommendations [26]. In trying to predict forward, our approach
is similar to speculative analysis. Similar to speculative analysis,
we focus on predicting information about actions yet to be taken to
help inform tools that might aid development, rather than trying
to provide a recommendation directly to a developer. By predicting
forward, we can suggest several possible alternatives, enabling tools
that might help a developer fast forward across a number of steps
at once that would otherwise be chosen one-by-one and potentially
eliminate paths that are not useful. In addition, the background of
developers (e.g., experience) may affect the interaction histories,
and thus future work could investigate this aspect. Future work
could also consider temporal information in the prediction.

7 THREATS TO VALIDITY
To implement our approach, we used Doxygen8 to statically de-
rive structural dependencies between code elements. Doxygen’s
static analysis may overestimate these dependencies, In particular,
calling relationships may be overestimated because static analy-
sis overestimates the number of target methods for each call site.
The overestimation of dependencies could lead to the discovery
of potentially non-existent patterns in actual code contexts, and
further reduce the precision of prediction approach. We also relied
on JStereoCode [22] to assign stereotypes to code elements across
code context models. However, 2% of the code elements we pro-
cessed could not be assigned a stereotype due to compilation errors
in the source code. The missing stereotype roles would prevent us
from finding potential patterns and predicting code elements that
are with no stereotype roles assigned. This would reduce the recall
of prediction approach. The use of a more precise static analysis
tool and the ability to extract from git compliable code would have
reduced these errors.

A significant limitation to our exploration is the reliance on one
system development, Mylyn. The structure and interaction histories
stored for Mylyn may not be representative of other projects. For
instance, the distribution of stereotype roles relies on the system
design of a project, the topological patterns may vary across dif-
ferent software projects. Mylyn is unique in having a repository of
8https://www.doxygen.nl

stored interaction histories from many developers over many years.
However, no information is directly available about the experience
level or other background of the developers contributing to Mylyn.
To help understand the generalizability of the results, it would be
helpful to explore the interaction traces from other systems stored
by other tools, such as Blaze [34].

8 CONCLUSIONS
In this work, we have explored how developer interaction histories
can improve the proactive formation of code context models. Specif-
ically, we first learned abstract topological patterns from the code
context models in interaction histories. Based on the patterns, we
proposed an approach to predict the code context model for a new
task. The accessed code elements of the task are used as the seed
of the prediction. To evaluate our approach, we used a simulation-
based method to create seeds, bootstrap predictions with various
configurations, and collect prediction results. In this experiment,
we found that our approach can predict code context model effec-
tively, achieving maximum F-measures of 0.67, 0.33 and 0.21 for
1-step, 2-step and 3-step predictions, respectively. In comparison
with Suade, our approach achieves significantly higher F-measure
(0.57 over 0.23 on average). The results demonstrate that integrat-
ing interaction histories and structural information can benefit the
proactive formation of more accurate code context models.

9 ACKNOWLEDGEMENTS
This researchwas supported byNSERC (RGPIN-2106-03758) and the
Australian Research Council’s Discovery Early Career Researcher
Award (DECRA) (DE200100021).

REFERENCES
[1] Nahla J Abid, Natalia Dragan, Michael L Collard, and Jonathan I Maletic. 2015.

Using stereotypes in the automatic generation of natural language summaries
for C++ methods. In 2015 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 561–565.

[2] Nouh Alhindawi, Natalia Dragan, Michael L Collard, and Jonathan I Maletic. 2013.
Improving feature location by enhancing source code with stereotypes. In 2013
IEEE International Conference on Software Maintenance (ICSM). IEEE, 300–309.

[3] Vinay Augustine, Patrick Francis, Xiao Qu, David Shepherd, Will Snipes,
Christoph Braunlich, and Thomas Fritz. 2015. A field study on fostering structural
navigation with prodet. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Vol. 2. IEEE, 229–238.

[4] Benjamin Biegel, Sebastian Baltes, Ivan Scarpellini, and Stephan Diehl. 2015.
Code Basket: Making Developers’ Mental Model Visible and Explorable. In 2015
IEEE/ACM 2nd International Workshop on Context for Software Development. IEEE,
20–24.

[5] Andrew Bragdon, Robert Zeleznik, Steven P Reiss, Suman Karumuri, William
Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J LaVi-
ola Jr. 2010. Code bubbles: a working set-based interface for code understanding
and maintenance. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 2503–2512.

[6] Luis Fernando Cortés-Coy, Mario Linares-Vásquez, Jairo Aponte, and Denys
Poshyvanyk. 2014. On automatically generating commit messages via sum-
marization of source code changes. In 2014 IEEE 14th International Working
Conference on Source Code Analysis and Manipulation. IEEE, 275–284.

[7] Davor Cubranic and Gail C Murphy. 2003. Hipikat: Recommending pertinent
software development artifacts. In 25th International Conference on Software
Engineering. IEEE, 408–418.

[8] Brian de Alwis and Gail C. Murphy. 2008. Answering conceptual queries with
Ferret. In 30th International Conference on Software Engineering (ICSE 2008). ACM,
21–30.

[9] Michael J Decker, Christian D Newman, Natalia Dragan, Michael L Collard,
Jonathan I Maletic, and Nicholas A Kraft. 2018. Which Method-Stereotype
Changes are Indicators of Code Smells?. In 2018 IEEE 18th International Working
Conference on Source Code Analysis and Manipulation (SCAM). IEEE, 82–91.

https://www.doxygen.nl

ASE ’20, September 21–25, 2020, Virtual Event, Australia Zhiyuan Wan, Gail C. Murphy, and Xin Xia

[10] Robert DeLine, Amir Khella, Mary Czerwinski, and George Robertson. 2005.
Towards understanding programs through wear-based filtering. In Proceedings of
the 2005 ACM symposium on Software visualization. 183–192.

[11] Natalia Dragan, Michael L Collard, and Jonathan I Maletic. 2009. Using method
stereotype distribution as a signature descriptor for software systems. In 2009
IEEE International Conference on Software Maintenance. IEEE, 567–570.

[12] Thomas Fritz, David C. Shepherd, Katja Kevic, Will Snipes, and Christoph
Bräunlich. 2014. Developers’ Code Context Models for Change Tasks. In Pro-
ceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE 2014). ACM, New York, NY, USA, 7–18. https:
//doi.org/10.1145/2635868.2635905

[13] Mik Kersten and Gail C. Murphy. 2006. Using Task Context to Improve Pro-
grammer Productivity. In Proceedings of the 14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (SIGSOFT ’06/FSE-14). ACM,
New York, NY, USA, 1–11. https://doi.org/10.1145/1181775.1181777

[14] Thomas D LaToza and Brad A Myers. 2011. Visualizing call graphs. In 2011 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE,
117–124.

[15] Joseph Lawrance, Rachel Bellamy, and Margaret Burnett. 2007. Scents in pro-
grams: Does information foraging theory apply to program maintenance?. In
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC
2007). IEEE, 15–22.

[16] S. Lee, S. Kang, S. Kim, and M. Staats. 2015. The Impact of View Histories on Edit
Recommendations. IEEE Transactions on Software Engineering 41, 3 (March 2015),
314–330. https://doi.org/10.1109/TSE.2014.2362138

[17] Boyang Li, Christopher Vendome, Mario Linares-Vásquez, and Denys Poshy-
vanyk. 2018. Aiding comprehension of unit test cases and test suites with
stereotype-based tagging. In Proceedings of the 26th Conference on Program Com-
prehension. 52–63.

[18] Mario Linares-Vásquez, Luis Fernando Cortés-Coy, Jairo Aponte, and Denys
Poshyvanyk. 2015. Changescribe: A tool for automatically generating commit
messages. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, Vol. 2. IEEE, 709–712.

[19] Collin Mcmillan, Denys Poshyvanyk, Mark Grechanik, Qing Xie, and Chen Fu.
2013. Portfolio: Searching for relevant functions and their usages in millions
of lines of code. ACM Transactions on Software Engineering and Methodology
(TOSEM) 22, 4 (2013), 1–30.

[20] Roberto Minelli, Andrea Mocci, and Michele Lanza. 2015. I know what you did
last summer-an investigation of how developers spend their time. In 2015 IEEE
23rd International Conference on Program Comprehension. IEEE, 25–35.

[21] Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori Pollock,
and K Vijay-Shanker. 2013. Automatic generation of natural language summaries
for java classes. In 2013 21st International Conference on Program Comprehension
(ICPC). IEEE, 23–32.

[22] Laura Moreno and AndrianMarcus. 2012. JStereoCode: Automatically Identifying
Method and Class Stereotypes in Java Code. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering (ASE 2012). ACM,
New York, NY, USA, 358–361. https://doi.org/10.1145/2351676.2351747

[23] Laura Moreno, Andrian Marcus, Lori Pollock, and K Vijay-Shanker. 2013. Jsum-
marizer: An automatic generator of natural language summaries for java classes.
In 2013 21st International Conference on Program Comprehension (ICPC). IEEE,
230–232.

[24] Gail C Murphy. 2019. Beyond integrated development environments: adding
context to software development. In 2019 IEEE/ACM 41st International Conference
on Software Engineering: New Ideas and Emerging Results (ICSE-NIER). IEEE, 73–
76.

[25] Emerson Murphy-Hill and Gail C. Murphy. 2014. Recommendation delivery:
Getting the user interface just right. Springer, 223–242.

[26] KivançMuslu, Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. 2012.
Speculative analysis of integrated development environment recommendations.
In Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2012. ACM, 669–
682.

[27] Christian D Newman, Reem S AlSuhaibani, Michael L Collard, and Jonathan I
Maletic. 2017. Lexical categories for source code identifiers. In 2017 IEEE 24th In-
ternational Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 228–239.

[28] David Piorkowski, Scott Fleming, Christopher Scaffidi, Christopher Bogart, Mar-
garet Burnett, Bonnie John, Rachel Bellamy, and Calvin Swart. 2012. Reactive
information foraging: An empirical investigation of theory-based recommender
systems for programmers. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 1471–1480.

[29] Romain Robbes and Michele Lanza. 2010. Improving code completion with
program history. Automated Software Engineering 17, 2 (2010), 181–212.

[30] Martin P Robillard. 2008. Topology analysis of software dependencies. ACM
Transactions on Software Engineering and Methodology (TOSEM) 17, 4 (2008),
1–36.

[31] Martin P. Robillard. 2008. Topology Analysis of Software Dependencies. ACM
Trans. Softw. Eng. Methodol. 17, 4, Article Article 18 (Aug. 2008), 36 pages. https:
//doi.org/10.1145/13487689.13487691

[32] Martin P Robillard and Gail C Murphy. 2002. Concern graphs: finding and
describing concerns using structural program dependencies. In Proceedings of
the 24th International Conference on Software Engineering (ICSE). 406–416.

[33] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. 2006. Questions Program-
mers Ask during Software Evolution Tasks. In Proceedings of the 14th ACM
SIGSOFT International Symposium on Foundations of Software Engineering (SIG-
SOFT ’06/FSE-14). Association for Computing Machinery, New York, NY, USA,
23–34. https://doi.org/10.1145/1181775.1181779

[34] Will Snipes, Anil R Nair, and Emerson Murphy-Hill. 2014. Experiences gamifying
developer adoption of practices and tools. In Companion Proceedings of the 36th
International Conference on Software Engineering. 105–114.

[35] Dimitri Van Heesch. 2008. Doxygen: Source code documentation generator tool.
http://www.doxygen.org. Online; accessed April 2020.

[36] Anneliese Von Mayrhauser and A Marie Vans. 1995. Program comprehension
during software maintenance and evolution. Computer 28, 8 (1995), 44–55.

[37] Xifeng Yan and Jiawei Han. 2002. gSpan: graph-based substructure pattern
mining. In 2002 IEEE International Conference on Data Mining, 2002. Proceedings.
721–724. https://doi.org/10.1109/ICDM.2002.1184038

[38] Annie TT Ying, Gail C Murphy, Raymond Ng, and Mark C Chu-Carroll. 2004.
Predicting source code changes by mining change history. IEEE transactions on
Software Engineering 30, 9 (2004), 574–586.

[39] Thomas Zimmermann, Andreas Zeller, Peter Weissgerber, and Stephan Diehl.
2005. Mining version histories to guide software changes. IEEE Transactions on
Software Engineering 31, 6 (2005), 429–445.

https://doi.org/10.1145/2635868.2635905
https://doi.org/10.1145/2635868.2635905
https://doi.org/10.1145/1181775.1181777
https://doi.org/10.1109/TSE.2014.2362138
https://doi.org/10.1145/2351676.2351747
https://doi.org/10.1145/13487689.13487691
https://doi.org/10.1145/13487689.13487691
https://doi.org/10.1145/1181775.1181779
http://www.doxygen.org
https://doi.org/10.1109/ICDM.2002.1184038

	Abstract
	1 Introduction
	2 Related Work
	3 Code Context Model Dataset
	3.1 Data Extraction
	3.2 Code Context Model Formation

	4 Code Context Model Prediction
	4.1 Stereotype Role Assignment
	4.2 Prediction Approach

	5 Evaluation
	5.1 Experiment Design
	5.2 Measurement
	5.3 Results

	6 Discussion
	6.1 Analysis of Approach
	6.2 Roles as a Generalization Mechanism
	6.3 Developer-oriented Recommendations

	7 Threats to Validity
	8 Conclusions
	9 Acknowledgements
	References

