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ABSTRACT

Commit messages can be regarded as the documentation of soft-
ware changes. These messages describe the content and purposes
of changes, hence are useful for program comprehension and soft-
ware maintenance. However, due to the lack of time and direct
motivation, commit messages sometimes are neglected by develop-
ers. To address this problem, Jiang et al. proposed an approach (we
refer to it as NMT), which leverages a neural machine translation
algorithm to automatically generate short commit messages from
code. The reported performance of their approach is promising,
however, they did not explore why their approach performs well.
Thus, in this paper, we first perform an in-depth analysis of their
experimental results. We find that (1) Most of the test dif s from
which NMT can generate high-quality messages are similar to one
or more training diffs at the token level. (2) About 16% of the
commit messages in Jiang et al’s dataset are noisy due to being
automatically generated or due to them describing repetitive trivial
changes. (3) The performance of NMT declines by a large amount
after removing such noisy commit messages. In addition, NMT is
complicated and time-consuming. Inspired by our first finding, we
proposed a simpler and faster approach, named NNGen (Nearest
Neighbor Generator), to generate concise commit messages using
the nearest neighbor algorithm. Our experimental results show
that NNGen is over 2,600 times faster than NMT, and outperforms
NMT in terms of BLEU (an accuracy measure that is widely used
to evaluate machine translation systems) by 21%. Finally, we also
discuss some observations for the road ahead for automated commit
message generation to inspire other researchers.
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1 INTRODUCTION

In software projects, version control systems are widely used to
manage the evolving code base. While committing a change to a
version control system, developers document their changes using
a commit message. A commit message is a free-form textual de-
scription of its corresponding change. The message may summarize
what happened in the change and/or explain why the change was
made [13, 44]. There is empirical evidence that the use of commit
messages is commonplace in code that is managed with version
control systems [13, 30, 44].

Documentation plays an important role in program comprehen-
sion and software maintenance [17, 49]. As the documentation of
changes, commit messages can help developers understand the ra-
tionales behind changes before they dig into details [20, 23, 44, 64].
Commit messages also provide information to understand the evo-
lution of software [13, 32]. However, due to the lack of direct moti-
vation and time pressure, writing high-quality commit messages
remains a neglected issue. Dyer et al. report that around 14% of
the commit messages in 23K+ Java SourceForge projects were com-
pletely empty [18].

Many tools have been proposed to generate commit messages
automatically [13, 16, 30, 38]. The commit messages created by them
can assist developers in writing high-quality commit messages or
replace empty commit messages. Given the dif £ of a change, most
of these tools, e.g., DELTADoC [13] and ChangeScribe [16, 38], are
able to produce detailed messages which can answer what was
changed and where this change happened. But their generated
messages are verbose, and fail to reveal the rationale behind a
change.
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It is hard to automatically generate high-quality commit mes-
sages, since answering why a change happened usually requires syn-
thesis of different kinds of knowledge and context. However, recent
studies report that commit messages follow some patterns [31, 44],
and it is possible to learn patterns of software artifacts from large
datasets [25]. Based on these findings, Jiang et al. proposed the adap-
tion of a neural machine translation (NMT) technique to generate
commit messages from change dif fs [30]. In the remainder of the
paper, for simplicity sake, we refer to their approach as NMT. NMT
aims to learn how to write commit messages from prior changes and
their commit messages. Different from prior work, NMT focuses on
producing short messages which can reveal the rationales behind
changes. Jiang et al. reported the performance of their approach
using a dataset built from the top 1K Java projects in GitHub.

NMT has many advantages: (1) In contrast to existing commit
message generation methods, NMT produces short summaries in-
stead of exhaustive descriptions of changes. (2) NMT does not re-
quire manually defined templates, as needed by many prior tools,
e.g., DELTaDoc and ChangeScribe. (3) NMT can generate commit
messages for changes to many types of software artifacts, not only
source code changes.

However, Jiang et al. did not explore why NMT performs so
well in their paper. Understanding the applicable scenario of an
approach can help us apply it in practice. So in this paper, we first
investigate the rationale for NMT’s good performance.

Additionally, NMT is quite complex, and its training process is
very slow. Jiang et al. spent 38 hours training their NMT model
on an Nvidia GeForce GTX 1070 [30]. However, according to the
suggestions of Fu and Menzies [19], it is a good practice to explore
simple and fast techniques before applying deep learning methods
on SE tasks. Therefore, we wish to investigate the construction of
a much simpler and faster approach to address the same problem
that is solved by NMT.

Our study aims to answer the following research questions:
RQ1: Why does NMT perform so well?

We conduct an analysis of the generated commit messages by
NMT (using the data published on Jiang et al’s website [1]). We
randomly read 200 commits in Jiang et al.’s test results, and manually
identify those high-quality generated commit messages by NV'T
(we call them good messages). Then, those identified good messages
and their corresponding commits are further analyzed by us. From
the analysis, we find the code diffs of most of the good messages
are similar to one or more training diffs at the token level.

We also find that Jiang et al’s dataset contains noisy commit
messages, like messages that are automatically produced by other
development tools, e.g., a continuous integration (CI) bot named
liferay-continuous-integration, or messages that are written by hu-
man but contain little and redundant information, e.g., "update
readme.md". Such a message describes neither what was changed
in the readme file nor why the change happened, hence contains
little information. In addition, since the information can be obtained
easily by looking at the list of changed files, it is also redundant.
It makes little sense to train and test approaches (e.g., NMT) for
automated commit message generation on such noisy messages.
Therefore, we manually derive the patterns of such noisy commit
messages, and build a new dataset by deleting such noisy commit
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messages and their corresponding di f £'s from Jiang et al’s dataset.
We re-train NMT on this cleaned dataset and obtain a new model.
Compared to the model trained on the original dataset, the per-
formance of the new model declines by a large amount, and the
BLEU score [51] (an accuracy measure that is widely used to evalu-
ate machine translation systems) decreases by 55.5% from 31.92 to
14.19.

RQ2: Can a simpler and faster approach outperform NMT?

In RQ1, we found that the code diffs of most of the good mes-
sages are lexically similar to one or more dif £s in the training set.
Inspired by this finding, we propose a simpler and faster approach,
named NNGen (Nearest Neighbor Generator), to automatically gen-
erate commit messages from dif f£s. Our approach is based on the
nearest neighbor algorithm, and does not require a training process.
To generate a commit message for a new di £ £, NNGen first finds
the di f £ which is most similar to the new diff, i.e., the nearest
neighbor, from the training set. Then it simply outputs the commit
message of the nearest neighbor as the generated commit message.

Our experimental results show that NNGen outperforms NMT
on Jiang et al’s dataset and the cleaned dataset in terms of BLEU
by a substantial margin. Moreover, it only takes 23 to 30 seconds to
run NNGen on a CPU instead of 24 to 38 hours on a GPU, which
means that NNGen is over 2,600 times faster than NMT. We also
perform a human evaluation to compare NNGen and NMT. Our
evaluation shows that NNGen performs better than NMT, and the
improvement is significant.

Finally, we conduct a further analysis of automated commit
message generation. We point out that only diffs and commit
messages are not enough for this task. By answering the above
research questions, we just move one step further, but there is still
a long way to go.

The main contributions of this work are as follows:

(1) We perform an in-depth analysis of the experimental results
in Jiang et al’s work, and analyze the reasons of NMT’s good
performance.

(2) We propose a simpler and faster approach called NNGen to
generate short commit messages. NNGen is over 2,600 times
faster than NMT, and significantly outperforms NMT.

The remainder of this paper is organized as follows. Section 2
introduces the background of our study. Section 3 describes our
experimental settings, including research questions and dataset.
Section 4-5 details our experiments and the experimental results of
each research question respectively. Section 6 discusses the reason
behind NNGen’s better performance, the cases where NMT out-
performs NNGen, the implications of our study and threats to the
validity of our reported findings. Section 7 discusses some observa-
tions for the road ahead for automated commit message generation.
Section 8 surveys the related work. Section 9 concludes the paper.

2 BACKGROUND
2.1 Commit, Diff, Commit Messages

Jiang et al’s dataset is extracted from Git repositories. Git [2] is one
of the most popular version control systems. Each time a developer
commits a change, Git will create a “commit” for this change and
allow the developer to write a textual message called a “commit
message” to describe the change. A commit in Git contains a change
and a commit message (which may be empty). A change can be
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represented by a di £ £, which captures the difference between two
program versions and can be generated using the git diff command
in Git. In this work, by mentioning a commit, we are referring to
the pair of a code diff and its corresponding commit message.
Given a commit, we refer to its original commit message, which
is extracted from the Git repository, as the reference message, the
produced commit message by NMT as the NMT message and the
produced commit message by NNGen as the NNGen message.

2.2 Jiang et al’s NMT Approach

The NMT model adapted by Jiang et al. is the attentional RNN
Encoder-Decoder model [11], which is an extension to the RNN
Encoder-Decoder model [14]. The RNN Encoder-Decoder model was
originally designed for translating between natural languages. There
are two parts in this model: the encoder and the decoder, each of
which is a Recurrent Neural Network (RNN). Given a source sen-
tence, i.e., a sentence written in the source language, the encoder
reads and encodes it into a fixed-length vector. This vector can be
regarded as the intermediate representation of the source sentence,
and contains the needed information for translation. The decoder
outputs the target sentence from the encoded vector. The encoder
and the decoder are jointly trained using a large number of pairs of
source sentences and target sentences. In the machine translation
community, this kind of dataset is referred to as a parallel corpora.
Compared to the RNN Encoder-Decoder model, the attentional RNN
Encoder-Decoder model introduces the attention mechanism to cope
with long source sentences.

In Jiang et als work, the source sentences are diffs, and the
target sentences are reference messages. The parallel corpora are
collected from GitHub, which contains pairs of historical diffs
and the corresponding reference messages. After training on the
special parallel corpora, Jiang et al’s model can “translate” a new
diff into a short textual description which may summarize the
corresponding change.

2.3 BLEU

To align with Jiang et al., we use the BLEU-4 score [51] to evaluate
the performance of NNGen. The BLEU score is an accuracy measure,
that is widely used to assess the quality of machine translation
systems [11, 14, 27, 29, 50]. The score first calculates the modified
n-gram (for BLEU-4, n=1,2,3,4) precisions of a candidate sequence
to the reference message, then measures the average modified n-
gram precision with a penalty for overly short sentences. In our
case, we regard a generated commit message (an NMT message or
an NNGen message) as a candidate. Considering the fact that BLEU
aims to match human judgment at a corpus level [51] and Jiang
et al. use a corpus-level BLEU-4 score to evaluate NMT, we also
calculate the BLEU-4 score at the corpus level.

In addition, NNGen leverages the BLEU-4 score internally to
measure the similarity between two dif fs. However, it calculates
BLEU-4 score at the sentence level.

3 EXPERIMENTAL SETUP
3.1 Research Questions

Jiang et al. did not investigate why their approach performs so
well. Understanding the reasons is important for applying NMT in
practice. So, first of all, we want to investigate:
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RQ1: Why does NMT perform so well?

Additionally, NMT is quite complicated and its training process
is very slow and costly (e.g., requiring specialized and dedicated
hardware). Simple and fast methods are usually easier to be adopted
in practice. Fu and Menzies also recommend the exploration of
simple methods first while dealing with SE tasks [19]. Therefore,
we would like to know:

RQ2: Can a simpler and faster approach outperform NMT?

3.2 Dataset

Since we wish to investigate the reason behind NMT’s good per-
formance and compare the performance of NNGen and NMT, we
simply use Jiang et al’s dataset to conduct our experiments. Jiang
et al. have gratefully published their dataset [1]. To make our paper
self-contained, we briefly describe the building process of Jiang et
al’s dataset in following paragraphs.

Collecting Data: Jiang et al. collected 2M commits from the most
starred 1K Java projects in GitHub.

Preprocessing: They first extracted the first sentence of each col-
lected commit message. Next, to reduce their vocabulary size and
improve the performance of NMT, they removed commit ids from
diffs, and removed issue ids from reference messages. Then, they
removed merge commits, rollback commits and commits with a
diff that is larger than 1MB. Finally, they broke reference mes-
sages and diffs into tokens. But they did not convert tokens
into lowercase, and nor did they split the CamelCase tokens. After
preprocessing, 1.8M commits remained.

Filtering: To apply the NMT algorithm, Jiang et al. needed to filter
commits by length (i.e., the number of tokens in a sequence). They
only kept commits with a diff length of no more than 100 and
a reference message length of no more than 30. Only 75K commits
meet these length requirements. In addition, Jiang et al. introduced
the Verb-Direct Object (V-DO) filter for the reference messages. They
did so because the NMT algorithm performs better on such pattern
of messages. Their V-DO filter identifies the Verb-Direct Object
pattern, e.g., "delete a method", through the “dobj” dependency in
the Stanford CoreNLP library [40]. They removed the extracted
sentences which do not begin with a “dobj” dependency. Jiang et al.
only preserved 32K from the 75K messages that begin with a “dobj”
dependency.

After preprocessing and filtering, Jiang et al. randomly divided
the 32K commits into 3 sets, i.e., training set, validation set and test
set. The training set contains 26K commits. The validation set and
the test set each contain 3K commits.

4 RQ1: WHY DOES NMT PERFORM SO WELL?
4.1 Analyzing NMT Messages

To investigate RQ1, we closely analyze the generated commit mes-
sages by NMT, i.e., NMT messages. We first randomly select 200
commits from Jiang et al’s test set. Then, the first author and a
master student independently evaluate the NMT messages of these
200 commits.

In Jiang et al’s work, they conducted a human study to evaluate
the quality of NMT messages. Given a commit, human experts were
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Figure 1: Distribution of the scores of NMT messages

B py/testdir_single_jvm/test_players_NA.py

import unittest,
sys.path.extend(['.","..", 'py'])

+ import h2o_hosts
import h2o, h2o_cmd, h2o_import as h2i
class Basic(unittest.TestCase):

random, sys, time

Reference Message:
missing import
Message Generated by NMT:
Add h20_hosts
Figure 2: The commit of a good message

asked to read its reference message and NMT message, and give a
score between 0 to 7 to measure the semantic similarity between
the two messages. A score of 0 means that the two messages have
nothing in common, and a score of 7 means that they are identical
in meaning. To grade the 200 NMT messages, the two raters carefully
read the scoring examples provided by Jiang et al. [1], and rated
each NMT messages following Jiang et al’s evaluation criterion.
We find a high level of agreement between the two raters with a
Cohen’s Kappa coefficient [15] of 0.67, which shows a substantial
agreement among the different raters. After rating, the two raters
discussed their disagreements to reach consensus. Figure 1 shows
the final distribution of the scores.

Next, we identify those high-quality commit messages generated
by NMT. For simplicity sake, we refer to those messages as good
messages. To align with Jiang et al., we regard the NMT messages
that are scored 6 or 7 as good messages. We find 35.5% good messages
from the 200 NMT messages, which is close to the results of Jiang et
al’s human study (30.7% good messages) on a different test set.

After picking out good messages, we carefully read these mes-
sages and their corresponding commits again to try to recognize
some simple patterns in them. But we do not find any obvious tex-
tual patterns which are shared among all good messages. It appears
that NMT can produce various types of high-quality messages. Con-
sidering that machine learning methods learn from the training set
before predicting, we then search the training set to find similar
commit messages for each good messages through its keywords,
and try to gain some insights from these similar training commit
messages. We find that, for nearly every good messages (70 out
of 71), we can find out one or more training commit messages
that are nearly identical to the good message and the diffs of
these training messages are similar to that of the good message at
the token level. For example, Figure 2 presents a test commit, of
which the NMT message is a good message. We refer to this good
message as message; . Figure 3 shows a commit, which is found in
the training set by searching the reference messages that contain
“h20_hosts”. We call the reference message in Figure 3 messages. We
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B py/testdir_multi_jvm/test_parse_fs_schmoo.py

import os, json, unittest, time, shutil, sys
sys.path.extend(['.","..", 'py'])

— import h2o, h2o_cmd

+ import h2o, h2o_cmd, h2o_hosts
import h2o_browse as h2b

Reference Message:
add h2o_hosts

Figure 3: A similar training commit to Figure 2
can see that without considering the case, message; is identical to
messagey, and message;’s diff is similar to that of message, at
the token level. This finding is surprising since it means that even
using such a complicated NMT algorithm, NMT is still no better
than a nearest-neighbor-based recommender.

By reading the commits of these good messages, we also observe
that many (37%) of their reference messages are noisy. We identify
two categories for such noisy messages. One category is named
by us as bot messages, which refers to reference messages that are
automatically generated by other development tools. The other
category, which we call trivial messages, represents reference mes-
sages that are written by humans but contain little and redundant
information that one can easily infer, for example, by just looking
at the list of changed files.

B modules/apps/foundation/portal/.gitrepo

[subrepo]
cmdver = liferay
= commit = 2f03e545085c159d922fb9eac9Ibl66ee820a94c0
+ commit = c3d68dbcaaal8c18e76bb46697c52e4d8ec6ffad
mode = push
= parent = ab9bdb710f55453499286b0269f60effblc38e36
+ parent = alf@17cdfb2581a936418d58405863810262b47c

remote = git@github.com:liferay/com-liferay-portal.git

Reference Message:

ignore Update ' modules / apps / foundation / portal / .
Message Generated by NMT:

Ignore Update ' modules / apps / foundation / portal / .

Figure 4: An example of a bot message

B CHANGELOG.md

— # Changelog
- ## 0.1 (2014-02-20)
- Initial public release

- %
Reference Message:
update changelog
Message Generated by NMT:
Updated changelog
Figure 5: An example of a trivial message

Figure 4 shows an example of a bot message. The commit in
Figure 4 is collected from the repository of liferay-portal [6]. We
note that the NMT message is nearly the same as the reference
message. However, after searching in GitHub, we find that this com-
mit is pushed by a continuous integration (CI) bot named liferay-
continuous-integration, which in turn automatically generates this
reference message. Therefore, the reference message in Figure 4 is a
bot message.

An example of a trivial message is presented in Figure 5. NMT
also generates a nearly identical commit message to the reference
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Table 1: Our trivial message patterns

update changelog/gitignore/readme [md/file]
prepare version [version nhumber)

bump version [version number]

modify dockerfile/makefile

update submodule

*“[]” means optional, “/” refers to “or” and version number refers to the
version number introduced in a change.

Table 2: Proportions of identified messages.

Dataset Bot Messages  trivial messages ~All

Original Training  12.6% 3.1% 15.6%
Original Validation 13.4% 2.9% 16.3%
Original Test 12.8% 3.2% 16.0%

message. However, both messages only mention that the changelog
file was updated, and fail to describe what was changed in detail nor
why this change occurred. Therefore, such a message contains little
information. Since a programmer with rudimentary knowledge of
version control systems is able to obtain the information by glancing
the name of the changed file, the information is of little value.
Moreover, this kind of messages can be automatically produced by
some rule-based tools. For example, we can write a script to parse
a new change. If the change only modified the changelog file of the
project, our script will first extract the filename of the changed file,
then simply output “update filename”.

From these examples we can see that there is little useful infor-
mation involved in these two categories of messages. Moreover,
both bot messages and trivial messages can be generated through
rule-based methods (e.g., liferay-continuous-integration or a simple
script). Therefore, it makes little sense to learn from or produce
these two kinds of messages through machine learning methods.

4.2 Evaluating NMT on the Cleaned Dataset

Based on the discovery of noisy messages, a question emerges in our
mind: if we deleted such noisy messages and their corresponding
diffs (i.e., the noisy commits) from Jiang et al’s dataset and re-
trained NMT on the new dataset, how much would the performance
of NMT be affected?

In order to answer the above question, we first build a new
dataset by removing the noisy commits from Jiang et al’s dataset.
To delete such noisy commits, we need to automatically identify bot
messages and trivial messages. For bot messages, we only find the
messages that are generated by liferay-continuous-integration. Since
all such messages follow the same pattern, which is “ignore update
filename”, it is easy to identify them through a regular expression.
However, there are more than one types of trivial messages. To
identify them, we manually derive some common patterns of trivial
messages by skimming the commits in Jiang et al’s dataset. Table 1
presents our trivial message patterns. The exact regular expressions
are available in our online appendix [3]. Table 2 shows the propor-
tions of our identified bot messages and trivial messages in Jiang et
al’s dataset. We can see that bot messages and trivial messages are
common in Jiang et al’s dataset.

After identifying bot messages and trivial messages, their corre-
sponding commits are regarded as noisy commits. We build the new
training set, validation set and test set by deleting noisy commits
from the training set, validation set and test set of Jiang et al’s
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Table 3: BLEU-4 scores of original and new NMT models

Dataset BLEU-4 p; P2 p3 Pa
Original 31.92 38.1 31.1 295 29.7
Cleaned 14.19 248 14.6 114 9.9

*“Original” refers to the original dataset provided by Jiang et al’s.
“Cleaned” refers to the cleaned dataset. The BLEU-4 scores are calculated
on the whole test set. py, (n = 1,2,3,4) refers to the modified n-gram pre-
cision.

dataset, respectively. Please note we do not claim that we have
found and deleted all noisy commits in Jiang et al’s dataset. Only
those commits of which the reference messages match our extracted
patterns are cleaned by us.

Then we re-train and test NMT on the cleaned dataset, the BLEU-
4 score is computed to evaluate the new model, just like Jiang et al.
The experimental results are shown in Table 3. Since the dataset,
the implementation of NMT and the training and test scripts used
by us are provided by Jiang et al., we simply use the results that are
reported in their work [30] for performance comparison. We can
see from Table 3 that the performance of the new model declines
by a large amount. The BLEU-4 score of the new model is 55.5%
lower than the original model. These results show that the good
performance of NMT mainly comes from those noisy commits in
Jiang et al’s dataset.

In summary, after an in-depth analysis of NMT messages, we find
that (1) The diffs of most (70 out of 71 in our randomly selected
test set) good messages are similar to one or more training diffs
at the token level. (2) About 16% of Jiang et al’s commits are noisy
commits. (3) The performance of NMT declines by a large amount
after removing such noisy commits.

5 RQ2: CAN A SIMPLER AND FASTER
APPROACH OUTPERFORM NMT?

NMT leverages the complex, slow and resource-consuming NMT
algorithm to generate commit messages. Inspired by our first finding
in RQ1, we propose a nearest-neighbor-based approach, named
NNGen, which is simpler and faster than NMT while outperforming
NMT in terms of BLEU-4 score on Jiang et al’s dataset and the
cleaned dataset.

5.1 NNGen

NNGen leverages the nearest neighbor (NN) algorithm to produce
commit messages. The NN algorithm is a lazy learning method
which is simple and does not require a training phase. Just like
NMT, our approach takes as input a new diff and a training set,
and outputs a one-sentence commit message for the new diff.
Our approach first extracts dif£s from the training set. Next, the
training di f £ s and the new di £ f are represented as vectors in the
form of “bags of words” [41]. In a bag-of-words model, the grammar
and the word order of a diff are ignored, only term frequencies
are kept. We refer to this kind of vector as a diff vector. Then, NNGen
calculates the cosine similarity between the new diff vector and
each training diff vector, and selects the top k training di f fs with
highest similarity scores. After that, the BLEU-4 score between the
new diff and each of the top-k training diffs are computed.
The training dif £ with the highest BLEU-4 score is regarded as
the nearest neighbor of the new di f £. Finally, our approach simply
outputs the reference message of the nearest neighbor as the final
result. In summary, given a new di £ £, our approach will first find



ASE ’18, September 3-7, 2018, Montpellier, France

Table 4: BLEU-4 scores of NMT and NNGen

Dataset  Approach BLEU-4 p; P2 p3 P4

Original NMT 31.92 38.1 311 295 297
NNGen 38.55 44.6 374 363 37.2

Cleaned NMT 14.19 248 146 114 99
NNGen 16.42 27.6 16.8 134 118

*The BLEU-4 scores are calculated on the test sets. pp (n = 1,2,3,4) refers to the modified
n-gram precision.

Table 5: Time costs of NMT and NNGen

Dataset ~ Approach Device Training Time  Testing Time
NMT GTX 1070 38 hours 4.5 mins

Original NMT GTX 1080 34 hours 17 mins
NNGen CPU N/A 30 secs

Cleaned NMT GTX 1080 24 hours 13 mins
NNGen CPU N/A 23 secs

*GTX 1070 and GTX 1080 refer to Nvidia GeForce GTX 1070 and 1080, respectively. CPU is
Intel Core i5 2.5GHz.

its nearest neighbor in the training set, then reuse the reference
message of the nearest neighbor as the generated message for the
new diff.

As described in Section 2.3, BLEU score [51] is a popular and

automated metric for evaluating the quality of machine translation.
It can also be used to measure the similarity between two sentences.

Compared to cosine similarity, the BLEU score takes into account
the order of words. However, the computation of BLEU score is
relatively slow. To speed up our approach, we do not find the nearest

neighbor by calculating BLEU scores for all the training diffs.

Instead, we first use the cosine similarity between diff vectors to
find the k nearest neighbor candidates. Then, the best candidate is
selected according to BLEU scores. This strategy balances the time
cost and accuracy of NNGen. By default, we set k as 5.

5.2 Automatic Evaluation

We evaluate the NNGen on Jiang et al’s dataset and the cleaned
dataset (described in 4.2) using the corpus-level BLEU-4 score, and
compare the test results of NNGen with those of NMT. The test
results of NMT on Jiang et al’s dataset are reported in [30], and we
directly use them for performance comparison. To evaluate NMT
on the cleaned dataset, we use the implementation of NMT and
the training and test scripts which are provided on Jiang et al’s
website [1], then train and test NMT using an Nvidia GeForce GTX
1080 with 8GB memory.

Table 4 presents the evaluation results for NMT and NNGen, we
can see that our NNGen approach outperforms NMT in terms of
BLEU-4 score on each dataset. The BLEU improvements achieved
by our approach range from 16% to 21%. Moreover, All the modified
n-gram precisions (p; - p4 in Table 4) of our approach are higher
than those of NMT.

To investigate whether NNGen is faster than NMT, we measure
the time costs of NNGen on Jiang et al’s dataset and the cleaned
dataset, and compare them with the time costs of NMT. The time
costs of NMT on Jiang et al’s dataset is provided by Jiang et al.
in [30]. Jiang et al. conducted the training and test of NMT on an
Nvidia GeForce GTX 1070 GPU with 8GB memory. While evaluating
NMT, we conduct the training and testing processes on an Nvidia
GeForce GTX 1080 GPU with 8GB memory. However, NNGen is
evaluated on a CPU (Intel Core i5 2.5GHz) with 8GB RAM. Table 5
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B jOOQ/src/main/java/org/jooq/impl/CurrentUser.java

case DB2:
case DERBY:

+ case FIREBIRD:
case HSQLDB:
case INGRES:
case POSTGRES:

Reference Message:
Add support for the Firebird database - Fixed CURRENT_USER ()

Generated Message 1:
Add support for the Firebird database - Fixed multi - record INSERT
Generated Message 2:
Add @ Implementation to ShadowApplication . CheckPermission ()

Score of Generated Message 1:
Score of Generated Message 2:

Figure 6: A question in our survey

Score 2:

Definition: Two messages have some similar information, but each of them contains
some information which is not mentioned by the other.

Example:
reference message: "reduce the heap to 14 for jenkins"
generated message: "increased heap 5 - > 10"

ion: The two all talk about the modification of heap size, but one
mentions the decrease of heap size, the other mentions the increase.

Figure 7: A part of our scoring criterion

shows the time costs of NMT and NNGen. For comparison, we also
present the time costs of NMT on Jiang et al’s dataset using our
server. We can see that it takes 24 to 38 hours to train NMT and 4.5
to 17 minutes to test on the two datasets. Since NNGen does not
need training, its training time is marked as “N/A”. The time cost of
its testing processes is only 23 to 33 seconds. This means NNGen is
considerably (more than 2,600 times) faster than NMT on the two
datasets.

5.3 Human Evaluation

We also conduct a human evaluation to evaluate NNGen and com-
pare NNGen with NMT. We invite 6 Ph.D. students to participate
in our survey, all of whom are not co-authors, major in computer
science and have industrial experience in Java programming (rang-
ing from 1-4 years). Each participant is asked to read 100 commits
and assess the semantic similarities between reference messages and
each of commit messages generated by NNGen and NMT.

5.3.1  Procedure. We randomly select 200 commits from the cleaned
dataset (described in Section 4.2), divide them evenly into two
groups and make a questionnaire for each group. In our question-
naires, each question first presents the information of one commit,
ie, its diff, its reference message, its NMT message and its NNGen
message, then asks participants to give two scores between 0 to
4 to measure the semantic similarities between the reference mes-
sage and the two generated messages. Score 0 means there is no
similarity between the two messages, and score 4 means two mes-
sages are identical in meaning. Figure 6 shows one question in our
survey. Participants are told that the first message is the reference
message, but the order of the NMT message and the NNGen message
is randomly decided. So, participants do not know which message
is generated by which approach, and they are asked to enter to
score each generated message separately.
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Table 6: The results of our user study

Approach Low Medium High Mean Score
NMT 63.8% 8.8% 27.4% 1.34
NNGen 57.9% 14.3%  27.8% 1.46

*“Low”, “Medium” and “High” refer to low-quality, medium-quality and high-
quality messages, respectively.

Each commit group is evaluated by 3 participants. Our scoring
criterion is listed in the beginning of each questionnaire to guide
participants. Figure 7 presents a part of our scoring criterion. Our
complete scoring criterion can be found in our online appendix [3].
In addition, Participants are allowed to search the Internet for re-
lated information.

Different from Jiang et al’s human study, first, we select commits
from the cleaned dataset instead of Jiang et al’s dataset, since it is
meaningless to evaluate the commit messages generated for noisy
commits. Second, the score range of our survey is 0-4 instead of 0-7.
A large score range requires our participants to spend more efforts
distinguishing subtle semantic differences, but in this work, we
care more about the rough quality of generated messages instead
of subtle semantic differences. In addition, a 5-point scale is widely
used in prior software engineering studies[34, 35, 62, 63]. Third,
we also provide diffs in our questionnaires to help participants
make their judgments

5.3.2  Results. We obtain 600 pairs of scores from our human eval-
uation. Each pair contains a score for the NMT message and a score
for the corresponding NNGen message. We regard a score of 0 and 1
as low quality, a score of 2 as medium quality and a score of 3 and 4
as high quality. Table 6 presents the results of our user study. We can
see that the proportion of high-quality NNGen messages is slightly
higher than that of high-quality NMT messages. 14.3% of the NNGen
messages are of medium quality, while for NMT messages, the pro-
portion is only 8.8%. The number of low-quality NNGen messages
is smaller than that of low-quality NMT messages. Moreover, the
mean score of NNGen messages is higher than that of NMT messages.
These results show that NNGen outperforms NMT. We also use a
Wilcoxon signed-rank test [60] at a 95% significance level to check
whether the performance differences between NNGen and NMT
are significant. The p-value is 0.01, which means the improvement
achieved by NNGen is significant.

In summary, NNGen is much simpler and faster than NMT. Our
experimental results show that NNGen outperforms NMT in terms
of BLEU-4 score on Jiang et al’s dataset and the cleaned dataset.
In addition, our human evaluation shows that NNGen outperforms
NMT, and the performance improvement is statistically significant.

6 DISCUSSION
6.1 Why Does NNGen Perform Better?

Given a new diff, NNGen first finds the diff which is most
similar to it at the token level from the training set, then simply
outputs the commit message of the training di £ £ as the generated
commit message. Hence, we speculate that the reason of NNGen’s
better performance is that given a test commit, there is a high
chance that there will always exist a very similar training commit
to it.

To verify our conjecture, we conduct an experiment on Jiang
et al’s dataset. We first convert all di £ £s in the training set and
the test set into diff vectors (described in Section 5.1). Then, we
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Figure 8: Distribution of the cosine similarities between test
diffs and their nearest neighbors

B build.gradle
toolVersion = '3.0.1'
effort = "max'
reportLevel = 'low'
+ sourceSets = [sourceSets.main]

}
findbugsMain {

Reference Message:
run Findbugs on main only

Message Generated by NMT:
Add ultimateandroiduicomponent project in demoofui

Message Generated by NNGen:
Only run findbugs for main

Figure 9: A test commit

B build.gradle
findbugs {
ignoreFailures = false
+ sourceSets = [sourceSets.main]

}
tasks.withType(FindBugs) {

Reference Message:
Only run findbugs for main

Figure 10: The nearest neighbor found by NNGen

compute the cosine similarities between each test diff vector and
each training diff vector. Finally, for each test dif f, we select the
training di f £ with the highest cosine similarity score, and record
this score. There are 3,000 commits in Jiang et al’s test set, hence
we obtain a set of 3,000 cosine similarity scores.

To reduce the potential variance caused by how Jiang et al’s
dataset is divided, we also perform a 10-fold cross-validation. Specif-
ically, we first shuffle the 32,208 commits in Jiang et al’s dataset
and divide these commits into 10 folds. Then we run the same pro-
cedure as the above experiment 10 times. Each time one fold of
3,220 (3,228 for the last run) commits is used as the test set, and
the remaining folds of 28,988 (28,980 for the last run) commits is
used as the training set. We obtain a set of 32,208 cosine similarity
scores from the 10-fold cross-validation.

We visualize the distribution of each set of cosine similarity
scores using a violin plot [26], as shown in Figure 8. The left plot is
the distribution of the scores of Jiang et al.’s test set, and the right
one is the distribution of the scores obtained from the 10-fold cross-
validation. The visualization results show that the distribution of
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each set of scores is highly skewed. Specifically, for each set, the
cosine similarities between most test dif £s and their most similar
training diffs are higher than 0.7. Hence, the majority of test
commits are very similar to another training commit at the token
level.

We also manual examine some examples from Jiang et al’s
dataset to explain the better performance of NNGen. Figure 9 and 10
show one of such examples. Figure 9 presents a test commit, its
NMT message and its NNGen message. Its nearest neighbor found
by NNGEN is shown in Figure 10. We can see that the diffs of
the two commits are similar at the token level, and their refer-
ence messages are identical in meaning. By finding out this nearest
neighbor, NNGen produces a high-quality commit message for this
test commit. However, the commit message generated by NMT is
not relevant to this test commit at all, which means NMT fails to
generate a good commit message.

In summary, we argue that given a test commit, there is a high
chance that there will exist a training commit which is very similar
to it, and for those test commits that are very similar to another
training commit, NNGen can generate better commit messages than
NMT.

6.2 Where Does NMT Perform Better?

Although the overall performance of NNGen is better than that
of NMT on the two datasets, in some cases, NVIT messages obtain
higher scores than their corresponding NNGen messages. To figure
out such cases, we compare the average scores of each NMT mes-
sage and its corresponding NNGen message, and find there are 30
commits where NMT performs better than NNGen.

We manually analyze these 30 commits and their generated
commit messages. We find that for 20 out of the 30 commits, the
NMT messages and NNGen messages are all of low quality (i.e.,
Score 0 or 1). In each case, the meanings of the reference message
and the two generated messages are different, but NMT generates
the right verb at the beginning of the NMT message. Therefore,
the average scores of the 20 NMT messages are all 1, and those
of the corresponding NNGen messages are all 0. For example, the
reference message of a test commit is “Add AbstractProcessingFil-
ter.getAuthenticationDetailsSource()”, its NMT message is “Added
getter for authoritiesPopulator”, and its NNGen message is “Properly
handle empty layout in getFirstVisiblePosition()”. We can see that
the meanings of the three messages are different, but NMTgenerates
the correct verb “add” at the beginning. Thus, this NMT message is
better than this NNGen message.

As for the other 10 commits, we find that without considering
the case, the NMT messages of 9 commits are identical to one or
more training commit messages. In these cases, the reason of NMIT’s
better performance may be that NMIT captures better nearest neigh-
bors than NNGen. Figure 11 shows an example. After comparing
the training diffs of the nearest neighbors captured by NMT
and NNGen with this test diff, we find that although the training
diff selected by NNGen is lexically more similar to this test diff,
the meaning and the writing style of this NMT message is closer
to this reference message. Thus, this NMT message obtains higher
average score.

There is also a special case where the NMT message can not be
found in the training set, as shown in Figure 12. The three messages
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B build/checkstyle.xml

<module name="ArrayTypeStyle"/>

<module name="MissingOverride"/>

<module name="EmptyStatement"/>

+ <module name="SuperFinalize"/>

</module>
Reference Message:
Add SuperFinalize checkstyle rule

Message Generated by NMT:
Added DefaultComesLast checkstyle rule

Message Generated by NNGen:
Removed DoubleCheckedLocking from checkstyle . xml .

Figure 11: An example where NMT performs better
B pom.xml

<groupId>com.zaxxer</groupId>
<artifactId>HikariCP</artifactId>
- <version>1.3.8-SNAPSHOT</version>
+ <version>1.3.8</version>
<packaging>bundle</packaging>
<name>HikariCP</name>

Reference Message:
prepare release HikariCP -1.3.8

Message Generated by NMT:
Prepare release HikariCP-1.3.9

Message Generated by NNGen:
prepare for next development iteration

Figure 12: Another example where NMT performs better

are similar in the meaning, while compared to this NNGen message,
this NMT message is more specific and accurate. Therefore, NV'T
performs better in this case. After further searching in the training
set, we find that there exist some training commit messages which
share the same pattern as this NMT message. For example, a training
commit message is “prepare release HikariCP-1.3.2”. This means
NMT has the ability to generalize, but its generalization ability is
very limited so that its overall performance is worse than our simple
approach, i.e., NNGen.

Due to the space constraint, more details of the aforementioned
examples can be found in our online appendix [3].

6.3 Implications

From this work, we distill some general suggestions which is beyond
the specific task and approaches.

Clean up the data carefully. In software repositories, there may
exist some noisy data, e.g., the noisy commits in Jiang et al’s dataset.
It makes little sense to train and test our models on the noisy
data. Worse still, we may get misleading results if we conduct
experiments on dataset with noisy examples [21]. Therefore, we
recommend researchers to always clean up their datasets carefully
before training and testing their models.

Consider simple approaches first. Our study shows that it is
worth trying simple and fast methods before applying complicated
and time-consuming techniques on software engineering tasks.
This “try-with-simpler” practice is also recommended by Fu and
Menzies [19]. Implementing and applying simple methods only
costs a little effort, but may bring a deep understanding of the data.
Moreover, for some SE tasks, simple approaches are able to achieve
equal or even better performance in less time, e.g., NNGen vs NMT.
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6.4 Threats to Validity

One of the threats to validity is about the manual inspection in
Section 4. We ask two raters to evaluate the quality of 200 randomly
selected NMT messages according to Jiang et al’s criterion. We
cannot guarantee that our judgments are fully in line with the
results of Jiang et al’s human study. However, our scores are only
leveraged to identify high quality commit messages generated by
NMT, and are not used for performance comparison. Additionally,
the proportion of high quality commit messages found by us is
close to (a little higher than) that observed in Jiang et al’s human
evaluation on a different test set, which makes us more confident
about our judgments.

The second threat to validity is about the evaluation of NMT
on the cleaned dataset. To build the cleaned dataset, we remove
about 16% of commits from Jiang et al’s dataset. The reduction of
the dataset may be one of the reasons of the decrease of NVMT’s
BLEU score on the cleaned dataset.

Another threat to validity is that we only compare NNGen and
NMT on Jiang et al’s dataset and the cleaned dataset. On the two
datasets, NNGen outperforms NMT by a substantial margin. But
we do not claim that this finding can be generalized to all datasets.
We only stress that compared to NMT, the simplicity, the speed
and the effectiveness of NNGen make it a competitive baseline on
di f f-natural language translation task.

7 ROAD AHEAD FOR COMMIT MESSAGE
GENERATION

Based on our above mentioned findings, we now present some
observations about the road ahead for commit message generation.

Only diffs and historical commit messages are not enough
for commit message generation. Both NMIT and NNGen only
take di f £s and historical commit messages as input, so they can-
not generate tokens that are not contained in the training set and the
test diffs, but only appear in the test reference messages. We call
these tokens unique tokens, and refer to the test commits of which
the reference messages contain at least one unique token as unique
commits. To figure out the amount of unique tokens in Jiang et al’s
dataset, we first tokenize all the diffs and reference messages,
convert all tokens into lowercase, and remove the tokens which
are numbers. Then, we build two vocabularies, one of which is
constructed from the tokens in the training set and the test diffs,
and the other vocabulary is formed from only the tokens in the test
reference messages. Finally, we compare the two vocabularies. We
find that there are 296 unique tokens in Jiang et al’s dataset, and 6%
(180 out of 3,000) of the test commits are unique commits. Figure 13
and 14 show two unique commits in Jiang et al’s dataset.

Figure 13 presents a commit in the closure-compiler project [5].
The token “CompilerInput” is a unique token. After searching in
GitHub and reading more lines before the di f £, we find that “Com-
pilerInput” is the type of the variable “oldInput” (also the element
type of the list “inputs”). The token “CompilerInput” provides the
type information which is not contained in the dif £, yet it plays
an important role in describing this commit.

Figure 14 is extracted from the repository of ExoPlayer [4]. The
token “TsExtractor” is a unique token. By reading the documentation
of ExoPlayer, we find that TsExtractor is a class of Exoplayer, and
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B src/com/google/javascript/jscomp/Compiler.java

InputId inputIdOnAst = newInput.getAstRoot(this).getInputId();
Preconditions.checkState(newInput.getInputId().equals(inputIdOnAst));

+ inputs.remove(oldInput);
return true;

}

Reference Message:
Properly remove references to the original Compilerinput after the hot - swap is done .

Figure 13: An example of a unique commit.
B library/src/androidTest/assets/ts/sample.ts.0.dump

encoderPadding = -1
subsampleOffsetUs = 9223372036854775807
selectionFlags = 0
= language = null
+ language = und
drmInitData = -
initializationData:
sample count = 4

Reference Message:
Fix TsExtractor tests

Figure 14: Another example of a unique commit.

is used to extract data from the MPEG-2 TS container format [8].
This information is project-specific knowledge. Without the token
“TsExtractor”, the reference message would fail to reveal the specific
rationale behind this commit. Therefore, this token is essential.

These two examples highlight that there exists some information
which cannot be found in the dif£s and prior historical commit
messages, yet such information is essential for high-quality commit
messages. Hence, only diffs and historical commit messages are
not enough for commit messages generation. This task requires
synthesis of information from different data sources.

Take more types of information into consideration. Accord-
ing to the above finding, we recommend the inclusion of other types
of information when designing new approaches for commit mes-
sage generation. We have showed two types of information which
is useful for commit message generation, i.e., context information
of diffs (Figure 13) and project-specific knowledge (Figure 14).
To capture the former one, we can simply extend diffs to con-
tain more lines of code, or leverage program analysis (for code
changes) and semantic analysis techniques to extract data depen-
dencies and type information from context of diffs (e.g., the lines
before and after diffs, the code which diffs are dependent on,
etc.) and add extracted information into our dataset. To capture
project-specific knowledge, other types of documents in software
repositories can be used while training and generating. For example,
if a new commit aims to fix a bug, the corresponding bug report
may provide important context information of the bug. In addition,
We can also build a knowledge base (e.g., Knowledge Graph) for
each project and incorporate these knowledge bases with machine
learning methods.

We still have a long way to go. We showed that if an approach
only takes diffs and prior historical commit messages as input,
it cannot generate perfect commit messages for unique commits.
Assume that there was an approach, which performed perfectly
on the test commits that are not unique commits, and performed
like NMT on the unique commits. Specifically, for the test commits
without unique tokens, this perfect approach would generate the
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same messages as their reference messages. For unique commits,
this perfect approach would generate messages that are identical
to their NMT messages. The BLEU score of this perfect approach
on Jiang et al’s dataset would be 92.94. But now, the BLEU scores
of NMT and NNGen are only 31.92 and 38.55, respectively. The
performance differences between this perfect approach and NMT
and NNGen are considerable. Moreover, after deleting the noisy
commits in Jiang et al’s dataset, the performance of both NMT and
NNGen declines, which shows that the two approaches are still not
powerful enough. In addition, it is worth mentioning that Jiang et
al’s dataset represents only 1.75% out of 2 million commits that are
collected from GitHub. The performance of NMT and NNGen on
big-scale datasets is still an open question. Therefore, there is still
a long way to go to automatically generate commit messages.

8 RELATED WORK
8.1 Commit Message Generation

A number of techniques have been proposed to automatically gen-
erate commit messages. Some of them take source code changes
as input. For instance, DELTADOC [13] obtains path predicates by
symbolically executing source code changes, then generates com-
mit messages using a set of predefined rules and transformations.
ChangeScribe [16, 38] first extracts the stereotype, the type and the
impact set of a commit by analyzing corresponding source code
changes and the abstract syntax trees. Then it fills predefined tem-
plates with the extracted information to document this commit.
The approach proposed by Shen et al. is similar to ChangeScribe,
but it constrains the length of the generated message by remov-
ing repeated information in the change [55]. Le et al. proposed a
framework to infer the semantic differences between two versions
of a code base through dynamic analysis [36]. Commit messages
that are generated by these tools are usually verbose, and cannot
describe the intent of commits concisely.

Several approaches make use of various documents in software
repositories to produce commit messages. For example, to answer
why a change happened, Rastkar and Murphy proposed an approach
to extract motivational information of commits from multiple rel-
evant documents [53]. Moreno et al. have built ARENA [46, 47],
a tool which combines multiple kinds of changes, i.e., changes to
source code, libraries, documentation and licenses, with issues from
software repositories to generate release notes. Hassan and Holt
proposed an approach, named Source Sticky Notes, to better ex-
plain the static dependencies of a software system using historical
modification records [24].

In addition, Huang et al. proposed an approach to produce com-
mit messages for code changes by reusing the commit messages of
similar existing commits [28]. The similarity between two commits
is measured by syntactic similarity and semantic similarity between
their changed code fragments. Their approach only focuses on code
changes. However, we aims to generate commit messages from
diffs, which includes both code changes and non-code changes.
We cannot analyze the code syntax of non-code changes. Moreover,
we find that in Jiang et al’s dataset, over 70% of the changes are
non-code changes. Hence, Huang et al’s approach only solves part
of this problem.
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8.2 Source Code Summarization

Source code summarization techniques may also be used to gen-
erate commit messages. Most of the techniques adapt a two phase
framework to summarize source code. Specifically, they first se-
lect important content from source code, then transform the se-
lected content into natural language descriptions through prede-
fined rules. For example, to summarize Java method, the framework
proposed by Sridhara et al. first identifies significant statements of
a Java method according to structural and linguistic clues, then ex-
presses extracted content in natural language using predefined text
templates [56]. This framework has been extended to summarize
high-level actions within methods [57], crosscutting source code
concern [54], Java classes [45, 48], C++ methods [9], context of Java
methods [42, 43] and object-related statement sequences [59]. Some
studies also leverage this framework to generate explanation or
summarization for special types of code, e.g., exceptions [12], failed
tests [65], parameters of Java methods [58], unit test cases [33, 37]
and database usages and constrains [39].

Some work leverages information retrieval techniques to summa-
rize source code [10, 22, 61, 62]. For example, Wong et al. proposed
a method which mines code-description mappings from StackOver-
flow [7] and automatically generates code comments by reusing the
descriptions of similar code snippets in the extracted database [62].

In addition, machine translation techniques are also applied to
produce source code summaries [29, 52]. CODE-NN [29], proposed
by Iyer et al., leverages an NMT algorithm to generate descriptions
for C# and SQL code. Phan et al. adapted phrase-based statisti-
cal machine translation to translate between behavioral exception
documentation and source code of API methods [52].

9 CONCLUSION

Automatically generating high-quality commit messages is a chal-
lenging task. Recently, Jiang et al. proposed leveraging an NMT
algorithm to generate one-sentence commit messages from diffs.
Their approach (NMT) learns from historical data, summarizes com-
mits using one-sentence messages and shows promising results.
However, they do not investigate why NMT performs so well, and
NMT is quite complicated and time-consuming.

In this paper, we first analyze Jiang et al’s experimental results.
We find that there are noisy commit messages in their dataset,
and that the good performance of NMT benefits from those noisy
commit messages. Then, inspired by our findings, we propose a
simple, nearest-neighbor-based approach, named NNGen, to gener-
ate short commit messages from diffs. Our experimental results
show that NNGen is much faster and performs better than NMT
on Jiang et al’s dataset and the cleaned dataset. Finally, we con-
duct a further analysis of commit message generation, and discuss
some challenges in the road ahead for this task to inspire other
researchers.
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