
ActivitySpace: A Remembrance Framework to
Support Interapplication Information Needs

Lingfeng Bao1,2, Deheng Ye2, Zhenchang Xing2, Xin Xia1, and Xinyu Wang1

1College of Computer Science, Zhejiang University, Hangzhou, China
2School of Computer Engineering, Nanyang Technological University, Singapore

{lingfengbao, xxkidd, wangxinyu}@zju.edu.cn; {ye0014ng, zcxing}@ntu.edu.sg;

Abstract—Developers’ daily work produces, transforms, and
communicates cross-cutting information across applications, in-
cluding IDEs, emails, Q&A sites, Twitter, and many others.
However, these applications function independently of one an-
other. Even though each application has their own effective
information management mechanisms, cross-cutting information
across separate applications creates a problem of information
fragmentation, forcing developers to manually track, correlate,
and re-find cross-cutting information across applications. In this
paper, we present ActivitySpace, a remembrance framework that
unobtrusively tracks and analyze a developer’s daily work in
separate applications, and provides various semantic and episodic
UIs that help developers correlate and re-find cross-cutting
information across applications based on information content,
time and place of his/her activities. Through a user study of 8
participants, we demonstrate how ActivitySpace helps to tackle
information fragmentation problem in developers’ daily work.

Tool website:
http://baolingfeng.weebly.com/ase2015-demonstration.html

I. INTRODUCTION

Software development involves not only software devel-
opment tools but also many other software applications spe-
cializing in different tasks. Our study of developers’ daily
work [1] shows that developers can use 6 or more different
desktop and web applications in their daily work, and access
over 79±41 (mean±standarddeviation) distinct documents in
these applications everyday. Furthermore, the information as-
sociated with developers’ work is often cross-cutting across
applications. For example, while a developer was working
on a source code file, he was also accessing over 40 other
documents (e.g., web pages, text files, and office documents)
in other applications. Finally, developers frequently revisited
the previously used document in the following days. Although
most of the revisits occurred in 2-7 days, developers sometimes
revisited some documents even after 20 days.

Desktop and web applications that developers use in their
daily work function independently of one another. Even though
each application provides effective information management
mechanism, cross-cutting information associated with devel-
opers’ work creates a problem of information fragmentation,
forcing developers to manually correlate and re-find the dif-
ferent related information across separate applications. The
information fragmentation problem in developers’ daily work
calls for innovations to support interapplication information
needs in software development, going beyond tool integration
(e.g., IBM Jazz [2], SeaHawk [3]) and information manage-
ment within separate applications (e.g., Mylyn [4], Context

Web History [5]).

In this paper, we present a remembrance framework (called
ActivitySpace) that supports tracking, correlating, searching,
and interactively exploring cross-cutting information in de-
velopers’ daily work. The framework is composed of three
components as shown in Fig. 1: 1) Activity Tracker (green
color) collects low-level action records using operating-system
(OS) level instrumentation and computer vision techniques; 2)
Activity Analysis (blue color) infers action transcripts from
action records, aggregates action transcripts into activities,
and identifies correlated activities and documents based on
temporal locality [6]–[8]; and 3) Activity Interface (red color)
provides semantic and episodic user interfaces (UIs) to help
users view, search and explore cross-cutting activities and
information across applications.

We have implemented a prototype of the ActivitySpace
framework on Microsoft Windows platform. We invited 8
developers in a user study of the ActivitySpace prototype. We
collected 417 hours activity data in developers’ daily work.
Analyzing the collected activity data suggests that the Activ-
itySpace prototype provides effective mechanisms for track-
ing, correlating and re-find cross-cutting information across
applications. The ActivitySpace framework could provide an
enabling infrastructure for activity-centric interapplication vir-
tual workspace and community of practice.

II. THE ActivitySpace FRAMEWORK

In this section, we describe the implementation of the
ActivitySpace framework. We focus on Activity Interface in
this paper. Interested readers are referred to our technical paper
for the detailed discussion on the design of Activity Tracker
component and the data analysis steps of Activity Analysis
components.

A. Activity Tracker

ActivityTracker runs on the user’s computer. It unobtru-
sively collects low-level Human-Computer Interaction (HCI)
data when the user interacts with software applications. Ac-
tivityTracker uses mouse and keyboard hook to monitor de-
veloper actions in different applications. It allows the user
to specify which application(s) to (not to) track and what
mouse/keyboard actions to (not to) monitor. Once an inter-
ested mouse or keyboard action occurs in a to-be-monitored
application, ActivityTracker generates an action record that
records the low-level HCI data, including window information,

2015 30th IEEE/ACM International Conference on Automated Software Engineering

978-1-5090-0025-8/15 $31.00 © 2015 IEEE

DOI 10.1109/ASE.2015.90

864

Action Records

Window Information

Focused UI Information

Screenshot

Software Applications

…
Users

Action Inference Action Transcripts

Digest Collecter Activity Aggregator

 Recent Activities
Digest

History Activities Web Server

Activity Analysis

Activity Interface

Recent Activity
Digest Viewer

Correlated Activity
Snippet Viewer

Activity History
Explorer

Timeline
Inspector

Topic
Summary

 Edit History
Inspector

OS APIs Accessibility APIs

Activity Tracker

Fig. 1: The Architecture of the ActivitySpace System

focused UI information, and a screenshot, using Windows APIs
and accessibility APIs. As the user interacts with software
applications, ActivityTracker generates a continuous stream
of actions records, i.e., a sequence of time-ordered actions
regarding when the user uses which application and access
what information. This stream of actions records is stored in
action records database (can be on individual user’s computer
or on a centralized server in team setting)

B. Activity Analysis

Activity Analysis components run on the server. These
activity analysis steps are time consuming, and thus cannot
be performed by the ActivityTracker. Otherwise, the Activity-
Tracker cannot be unobtrusive and efficient.

As new action records arrive, the ActionInference compo-
nent processes the new action record to infer application being
used, developer action, document involved, and document
content (if available) from window information, focused UI
information, and the screenshot. It produces a corresponding
action transcript stored in the action transcripts database.

The DigestCollector component updates application usage
and document usage statistics for the most recent action
transcripts within a fixed-length time window (30 minutes
by default). These usage statistics are referred to as recent
activities digest stored in the recent activities digest database.

The ActivityAggregator component periodically aggregates
archived action transcripts into history activities stored in the
history activities database. ActivityAggregator can be config-
ured to run at a given time interval (60 minutes by de-
fault). ActivityAggregator assumes that the information used
by the developer across separate applications exhibit temporal
locality [6]–[8], i.e., actions which occur at closer points
in time are more likely to be conceptually related. Thus,
ActivityAggregator regards as an activity all the actions on
a particular document within an application that occur within
the time interval threshold (30 minutes by default). If the time

(a) Recent Activity Digest Viewer (b) Correlated Activity Snippet Viewer

Focus Application Window

Fig. 2: DigestViewer and SnippetViewer

span of the two activities overlap, ActivityAggregator considers
the two activities as correlated activities, and the documents
involved in the two activities as correlated documents.

C. Activity Interface

The ActivitySpace framework implements several episodic
and semantic UIs that provide different information scents
for correlating and re-finding cross-cutting information across
applications. These UIs has been implemented as desktop and
web applications. Semantic UI enables the developer to find
information based on the content (i.e., what) he has used.
Episodic UI enables the developer to find information based
on the time (i.e., when) and place (i.e., where) of his actions.

1) Recent Activity Digest Viewer (DigestViewer): Di-
gestViewer provides a semantic UI that shows the most recently
used applications and documents. The view is an observer of
recent activities digest. It will be updated automatically once
recent activities digest has been updated by DigestCollector.
DigestViewer displays recent activity digest in a tree view

865

Context menu to
inspect activity

Documents ordered by
usage in one day

Fig. 3: Activity History Explorer

(Figure. 2(a) 1). The first level shows the applications, and the
second level shows the documents used in each application.
The applications and documents are ordered by the time spent
on them in the latest activity digest time window (30 minutes
by default). If a document has been used beyond the latest
activity digest time window, the document will be highlighted
in pink. This can remind the developer that he has used this
document in the past.

2) Correlated Activity Snippet Viewer (SnippetViewer):
When the developer works in an application, if he presses the
keyboard shortcut “Alt+X”, SnippetViewer first identifies the
document that the developer currently uses and generates a
request to the web-server component SnippetCollector. Then,
SnippetCollector searches the history activities for the time
when the current document has also been used before. By
default, the search is done for all the history activities. But the
user can specify a time limit for search. Next, SnippetCollector
retrieves the activities involving the current document and
other correlated activities. Finally, it generates an activity
snippet regarding application usage and document usage in
those correlated activities, in terms of applications being used
and the time spent on each application, and document being
used and the time spent on each document and the time a
document has been last used.

SnippetCollector displays the generated activity snippet in
the SnippetViewer (see Fig. 2(b)). SnippetViewer provides a
semantic UI that shows the documents that have been used
before together with the document the developer currently
uses. SnippetViewer displays the activity snippet in a tree

1Full size screenshots can be found at our tool website.

view similar to that of DigestViewer. The applications and
documents are ordered by the total time spent on them in the
past. In SnippetViewer, the older a document has been last
used, the brighter color the corresponding document item is.

3) Activity History Explorer (HistoryExplorer): History-
Explorer provides an episodic UI that allows the developer
to search, filter, and explore the documents he has used in
a calendar view (see Fig. 3). The calendar view allows the
developer to view the documents by month (week or day)
that provides an overview of the documents used in a month
(week, or day). The documents used in a particular day are
ordered by the total time spent on them in that day. The
documents with the longest usage time are shown in the
view. More documents can be shown by clicking “+xx more”
link. HistoryExplorer highlights documents used in different
applications using different colors. HistoryExplorer allows the
user to select date and move backward/forward in time.

HistoryExplorer provides three ways to filter the documents
shown in the calendar view. The developer can use any
combination of these three ways. First, the developer can filter
the documents by application(s). By checking or unchecking
an application, the documents used in the application will be
included or excluded in the view. Second, the developer can
search the documents using keywords. HistoryExplorer shows
only the documents whose window title and document content
(if any) contain the keywords. Third, the developer can double-
click a document in the calender view, and this document will
fill in the “Filter by Correlated Documents” search box. Then,
the developer can “Find Correlated Documents” which cause
HistoryExplorer show only the documents correlated to the
selected document. The developer can also select a document

866

in DigestViewer or SnipperViewer and then open HistoryEx-
plorer. This is equivalent to “Find Correlated Documents” by
the selected document.

4) Topic Summary: In HistoryExplorer, the developer can
click Topic Cluster button in the “Filter by Application” panel.
HistoryExplorer calls the web-server TopicSummarizer compo-
nent. TopicSummarizer uses a topic mining tool Carrot2 [9]
to mine the topics in the window title of the applications
involved in the history activities for a period of time (10
days by default). All the checked applications in the “Filter
by Application” panel are considered in topic mining. Topic-
Summarizer visualizes the mined topics in a foam tree using
Carrot2 FormTree 2. The foam tree provides a semantic UI
for the developer to recall some important topics for a period
of time. The developer can select topics in the foam tree as
keywords to filter the documents in the HistoryExplorer.

5) Timeline Inspector: The developer can select a docu-
ment in DigestViewer, SnipperViewer or HistoryExplorer (see
Fig. 3), and view the timeline details of activities involving
the selected document in the two timeline inspectors: Screen-
shotInspector and AccessbilityInspector. The two inspectors
are complementary. They provide episodic UIs for the de-
veloper to inspect and recall when and where he did what.
The developer can view the details of activities involving the
selected document in the current day or in the entire history.

One Screenshot

Screenshot Timeline

 Focused UI Component and
mouse position

Fig. 4: The Screenshots of Activities in One Day

ScreenshotInspector shows the screenshots of action
records in the activities involving the selected document in a
time line (see Fig. 4). The activities are listed in the left panel
by chronological order of their start time, and we also show
time span (minutes). The right panel shows the screenshots of
a selected activity. Each screenshot is represented as a circle
in the time line. For each screenshot, ScreenshotInspector
highlights the boundary of focused UI component and mouse
position on the screenshot. This can remind the developer of
his action in the screenshot. ScreenshotInspector can replay the
screenshots according to the recording time of the screenshots.
The developer can also select the screenshots in the time line.

AccessibilityInspector lists the focused UI information of
action records in the activities involving the selected document
in a table view (see Fig. 5). The activities are listed in the left
panel by chronological order of their start time and its time
span. Each row in the table view shows four pieces of focused
UI information: time stamp, name and type of UI and name
of parent UI. The table view can be sorted by one of the four

2http://download.carrotsearch.com/foamtree/demo/

Fig. 5: The Focused UI Information of Activities in One Day

columns. The developer can enter one or more keywords in
the top-right search box. AccessibilityInspector will show only
action records that contain the entered keywords.

By inspecting the screenshots in Fig. 4 and the accessibility
information in Fig. 5, the developer can recall that he was
debugging HistoryActivityManager.java in the evening of April
27, 2015 and what he actually did in this debugging activity.

Fig. 6: An Example of Code Edit History

6) Edit History Inspector: The developer can select a
source file in DigestViewer, SnipperViewer or HistoryExplorer
(see Fig. 6), and view the complete edit history of the file in
EditHistoryInspector. The system currently supports types of
source files commonly used in Eclipse and Visual Studio. But
it can be easily extended to support more types of source code
file, such as those of Text Editor if the content of source code
can be extracted from the focused editor UI component when
the developer works in the editor.

EditHistoryInspector provides an episodic UI that lists
all the activities in which the selected source file has been
used (see Figure 6). The left tree view shows the start time
of these activities in reverse-chronological order. For each
activity, EditHistoryInspector shows the content of the source
file at the end of this activity. It also computes the code
changes between the contents at the end of the two consecutive
activities. It uses the file differencing tool 3 that reports code
line changes, inserts and deletes. EditHistoryInspector shows
the code changes in chronological order in the right table. The
user can search code changes by keywords. If there is no code
change in an activity, there will be no corresponding “code
change” item under the activity.

III. USE SCENARIOS

We invited 8 volunteer graduate students in a user study
of the ActivitySpace prototype. The participants installed the
ActivitySpace prototype on their working computer. The sys-
tem was configured to track user activity in web browsers
(Firefox, Chrome, Internet Explorer), office software (Word,
Excel, PowerPoint), PDF reader (Adobe Reader, Foxit Reader),

3https://code.google.com/p/java-diff-utils/

867

text editors (Notepad, Notepad++), latex editor (WinEdt), and
IDEs (Eclipse, Visual Studio). Activity in all other applications
are categorized as others. In this section, we report the two use
scenarios from the user study. Detailed discussion on the study
results can be found in our technical paper [1].

A. Recalling Intermediate Code Changes

The participant S1 experimented gradient color scheme
for rendering tree items. During the process, he tried out the
Java class “java.awt.Font”. A few days later, he needed to use
“java.awt.Font” again. He wanted to find the code fragment
he experimented before. But he cannot find it in the latest
source code, because he did not commit the intermediate code
changes to the repository. He used HistoryExplorer to find the
source file “ActivityTree.java” that he worked on a few days
ago. The entry also reminded him that he searched “setfont
java” and read a web page about how to set font size. He
revisited the web page and found it useful for his current work.
Furthermore, he viewed edit history of “ActivityTree.java” on
that day which help him recall what he experimented with the
class. The re-found web page and the fine-grained code edit
history helped the participant S1 use “java.awt.Font” in his
current work.

B. Finding Correlated Documents

The participant S5 was working on a research project
involving web application development and paper writing.
When he worked on the “preliminarystudy.tex” in latex editor,
he activated the SnippetViewer to view the correlated doc-
uments during his previous work on “preliminarystudy.tex”.
This showed him not only the relevant latex source files,
but also the source files of his web application (e.g., “pre-
process.py”, “taskSolution.py”), the relevant web pages (e.g,
“STAR Laboratory: SRI Language Modeling Toolkit”) that he
visited, and the search queries (e.g., “srilm tutorial”, “vtk”,
“opencv”) that he used to search Google. He then opened
HistoryExplorer from SnippetViewer to get an overview of
when he used these correlated documents. ActivitySpace helped
S5 refresh his memory of his previous work in the project to
continue his work.

IV. RELATED WORK

IDEs have been designed to improve developer productivity
by integrating then-separate software development tools. In
addition to development tools, other applications have also
been integrated within the IDE to ease the access of relevant
tools and data in software development. For example IBM
Jazz [2] integrates messaging tools, SeaHawk [3] integrates
Stack Overflow. Other than tool integration, another direc-
tion is to support task-centric information management in
knowledge work. Mylyn [10] supports task-focused interface
for task management in the IDE. Other tools can analyze
user activity to recommend additional information or help
user re-find information, such as TaskPredictor [11], UMEA
system [12], Reverb [13]. Different from tool integration and
task management, ActivitySpace focuses on correlating and re-
finding cross-cutting information across separate applications
without application-specific support and tool integration.

The ActivitySpace framework is inspired by the activity
theory [14] and the recent development of activity-centric com-
puting tools [15]–[20]. Activity-centric computing has been

proposed as a computing paradigm that supports the users’
activities rather than the resources and tools used to perform
such activities. Existing activity-centric systems mainly focus
on activity construction and activity resumption. In contrast,
ActivitySpace unobtrusively tracks developer’s daily work and
automatically infers activities and their correlations.

V. IMPLICATIONS ON FUTURE RESEARCH

The ActivitySpace framework is the first step towards an
activity-centric interapplication virtual workspace that would
allow the developer to work in a shared information context
across application boundaries. For example, when the devel-
oper is editing the code in the IDE, the virtual workspace
may inject code snippets from the opened web pages into the
code auto-completion assistant. The developer may integrate
a code snippet from the web without switching between the
IDE and the web browser. Next time the developer visits the
web page, the virtual workspace could remind the developer
that he reused a code snippet from this web page, and inject
in the web page a summary of how he modified the code. It
can present warnings to the developer if the code snippet was
later removed, suggesting that the page may not be that useful
for the task.

The ActivitySpace framework could be deployed in a
development team or an online community. As a team or
community remembrance framework, the ActivitySpace sys-
tem could advance the paradigm of knowledge sharing from
community of knowledge (e.g., open source projects, Q&A
sites) to community of practice, where developers can share
not only their work products but also working process within
the team or community. The working process usually contains
valuable context-based experiences which are often considered
as tacit knowledge (i.e., know how), because they cannot easily
be captured, codified and stored [21].

VI. CONCLUSION AND FUTURE WORK

In this paper, we present the ActivitySpace framework and
its prototype for tackling information fragmentation problem
in developers’ daily work. ActivitySpace tracks and analyzes
cross-cutting information across separate applications in devel-
opers’ daily work. Its semantic and episodic UIs create interap-
plication information scents to ease the process of correlating
and re-finding cross-cutting information across applications
in developers’ daily work. A pilot study demonstrated the
usefulness of the ActivitySpace for supporting interapplication
information needs. In the future, we will investigate activity-
centric interapplication virtual workspace and community-of-
practice for more effectively supporting integrated knowledge
work in today’s software development practices, which re-
quires higher-level of information integration and management
than current focus on tool integration and within-application
information management.

ACKNOWLEDGMENT

This work was partially supported by the Major State
Basic Research Development Program of China (973 Pro-
gramNo.2015CB352201)and National Key Technology R&D
Program of the Ministry of Science and Technology of China
(No. 2013BAH01B01). This work is supported by NTU SUG
M4081029.020 and MOE AcRF Tier1 M4011165.020.

868

REFERENCES

[1] L. Bao, Z. Xing, X. Wang, and B. Zhou, “Activityspace: An interap-
plication remembrance agent for integrated knowledge work,” in Proc.
ASE, accepted.

[2] R. Frost, “Jazz and the eclipse way of collaboration,” Software, IEEE,
vol. 24, no. 6, pp. 114–117, 2007.

[3] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Seahawk: Stack overflow
in the IDE,” in Proc. ICSE, pp. 1295–1298, 2013.

[4] M. Kersten and G. C. Murphy, “Mylar: a degree-of-interest model for
IDEs,” in Proc. AOSD, pp. 159–168, 2005.

[5] S. S. Won, J. Jin, and J. I. Hong, “Contextual web history: Using visual
and contextual cues to improve web browser history,” in Proc. CHI,
pp. 1457–1466, 2009.

[6] N. Oliver, G. Smith, C. Thakkar, and A. C. Surendran, “Swish: Semantic
analysis of window titles and switching history,” in Proc. IUI, pp. 194–
201, 2006.

[7] T. Rattenbury and J. Canny, “Caad: An automatic task support system,”
in Proc. CHI, pp. 687–696, 2007.

[8] C. A. N. Soules and G. R. Ganger, “Connections: Using context to
enhance file search,” in Proc. SOSP, pp. 119–132, 2005.

[9] J. Stefanowski and D. Weiss, “Carrot and language properties in
web search results clustering,” in Web Intelligence, First International
Atlantic Web Intelligence Conference (AWIC), pp. 240–249, 2003.

[10] M. Kersten and G. C. Murphy, “Using task context to improve pro-
grammer productivity,” in Proc. SIGSOFT ’06/FSE-14, pp. 1–11, 2006.

[11] J. Shen, L. Li, G. Dietterich, Thomas, and L. Herlocker, Jonathan, “A
hybrid learning system for recognizing user tasks from desktop activities
and email messages,” in Proc. IUI, pp. 86–92, 2006.

[12] V. Kaptelinin, “UMEA: Translating Interaction Histories into Project
Contexts,” in Proc. CHI, no. 5, p. 353, 2003.

[13] N. Sawadsky, G. C. Murphy, and R. Jiresal, “Reverb: Recommending
code-related web pages,” in Proc. ICSE, pp. 812–821, IEEE, 2013.

[14] Y. Engeström, R. Miettinen, and R.-L. Punamäki, Perspectives on
activity theory. Cambridge University Press, 1999.

[15] W. Geyer, M. J. Muller, M. T. Moore, E. Wilcox, L.-T. Cheng,
B. Brownholtz, C. Hill, and D. R. Millen, “Activity Explorer: Activity-
centric collaboration from research to product,” IBM Systems Journal,
vol. 45, no. 4, pp. 713–738, 2006.

[16] J. Bardram, J. Bunde-Pedersen, and M. Soegaard, “Support for activity-
based computing in a personal computing operating system,” in
Proc.CHI, pp. 211–220, 2006.

[17] S. Jeuris, S. Houben, and J. Bardram, “Laevo: A Temporal Desktop
Interface for Integrated KnowledgeWork,” in Proc. UIST, pp. 679–688,
2014.

[18] S. Houben, P. Tell, and J. E. Bardram, “ActivitySpace: Managing Device
Ecologies in an Activity-Centric Configuration Space,” in Proceedings
of the Ninth ACM International Conference on Interactive Tabletops
and Surfaces - ITS ’14, pp. 119–128, 2014.

[19] S. Houben, J. E. Bardram, J. Vermeulen, K. Luyten, and K. Coninx,
“Activity-centric support for ad hoc knowledge work: A case study of
co-activity manager,” in Proc. CHI, p. 2263, 2013.

[20] S. Houben, S. r. Nielsen, M. Esbensen, and J. E. Bardram, “Noo-
Sphere: An Activity-Centric Infrastructure for Distributed Interaction,”
in Proceedings of the 12th International Conference on Mobile and
Ubiquitous Multimedia - MUM ’13, pp. 1–10, 2013.

[21] T. H. Davenport and L. Prusak, Working knowledge: How organizations
manage what they know. Harvard Business Press, 1998.

869

