
Measuring Program Comprehension: A
Large-Scale Field Study with Professionals
Xin Xia , Lingfeng Bao, David Lo , Zhenchang Xing, Ahmed E. Hassan, and Shanping Li

Abstract—During software development and maintenance, developers spend a considerable amount of time on program

comprehension activities. Previous studies show that program comprehension takes up as much as half of a developer’s time.

However, most of these studies are performed in a controlled setting, or with a small number of participants, and investigate the

program comprehension activities only within the IDEs. However, developers’ program comprehension activities go well beyond their

IDE interactions. In this paper, we extend our ActivitySpace framework to collect and analyze Human-Computer Interaction (HCI) data

across many applications (not just the IDEs). We follow Minelli et al.’s approach to assign developers’ activities into four categories:

navigation, editing, comprehension, and other. We then measure the comprehension time by calculating the time that developers

spend on program comprehension, e.g., inspecting console and breakpoints in IDE, or reading and understanding tutorials in web

browsers. Using this approach, we can perform a more realistic investigation of program comprehension activities, through a field

study of program comprehension in practice across a total of seven real projects, on 78 professional developers, and amounting to

3,148 working hours. Our study leverages interaction data that is collected across many applications by the developers. Our study

finds that on average developers spend�58 percent of their time on program comprehension activities, and that they frequently use

web browsers and document editors to perform program comprehension activities. We also investigate the impact of programming

language, developers’ experience, and project phase on the time that is spent on program comprehension, and we find senior

developers spend significantly less percentages of time on program comprehension than junior developers. Our study also highlights

the importance of several research directions needed to reduce program comprehension time, e.g., building automatic detection and

improvement of low quality code and documentation, construction of software-engineering-specific search engines, designing better

IDEs that help developers navigate code and browse information more efficiently, etc.

Index Terms—Program comprehension, field study, inference model

Ç

1 INTRODUCTION

PROGRAM comprehension (aka., program understanding,
or source code comprehension) is a process where

developers actively acquire knowledge about a software
system by exploring and searching software artifacts, and
reading relevant source code and/or documentation. Such
acquired knowledge helps support other software engineer-
ing activities, such as bug fixing, enhancement, reuse, and
documentation.

Previous studies show that program comprehension is an
essential and time-consuming activity in software mainte-
nance [13], [15], [26], [36], [63]. Zelkowitz et al. claim that

program comprehension takes more than half of the time
spent on software maintenance [63]. A claim which is also
confirmed by Fjeldstad and Hamlen [15], and Corbi [13].
Ko et al. find through controlled experiments on two debug-
ging tasks and 10 participants, that understanding a program
occupies around 35 percent of the total time [26].Minelli et al.
study the IDE interactions of 18 developers over 700working
hours, and find that on average developers spend 70 percent
of their time performing program comprehension activi-
ties [36]. However, only seven of the participants are profes-
sionals andmore than 85 percent of the studied data is based
on the activities of three participants who are PhD students.
Moreover, the study only investigats program comprehen-
sion activities within the IDE.

Current empirical studies that examine the role of pro-
gram comprehension for software development have many
shortcomings, most notable are: (1) several conclusions are
based on anecdotal evidences [13], [15], [63], instead of
empirical experiments on developers; (2) most prior studies
are performed under controlled experiment with artificial
setting, making difficult to generalize the results, e.g., [26];
(3) most prior studies involve a small number of participants
(e.g., Ko et al.’s study has 10 participants [26], while Minelli
et al.’s study has 18 participants [36]), andmost of the partici-
pants are not professionals; (4) most prior studies only inves-
tigate program comprehension activities that occur within
IDEs [26], [36]. Our previous study shows that developers

� X. Xia, L. Bao, and S. Li are with the College of Computer Science and
Technology, Zhejiang University, Hangzhou 310027, China.
E-mail: {xxia, lingfengbao, shan}@zju.edu.cn.

� D. Lo is with the School of Information Systems, Singapore Management
University, Singapore 188065. E-mail: davidlo@smu.edu.sg.

� Z. Xing is with Research School of Computer Science, Australian National
University, Canberra, ACT 0200, Australia.
E-mail: zhenchang.xing@anu.edu.au.

� A.E. Hassan is with School of Computing, Queen’s University, Kingston,
ON K7L 3N6, Canada. E-mail: ahmed@cs.queensu.ca.

Manuscript received 10 June 2016; revised 13 July 2017; accepted 26 July
2017. Date of publication 30 July 2017; date of current version 23 Oct. 2018.
(Corresponding author: Lingfeng Bao.)
Recommended for acceptance by R. DeLine.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2017.2734091

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 10, OCTOBER 2018 951

0098-5589� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-6302-3256
https://orcid.org/0000-0002-6302-3256
https://orcid.org/0000-0002-6302-3256
https://orcid.org/0000-0002-6302-3256
https://orcid.org/0000-0002-6302-3256
https://orcid.org/0000-0002-4367-7201
https://orcid.org/0000-0002-4367-7201
https://orcid.org/0000-0002-4367-7201
https://orcid.org/0000-0002-4367-7201
https://orcid.org/0000-0002-4367-7201
mailto:
mailto:
mailto:
mailto:

use six or more different desktop and web applications in
their daily development work [5]. For example, to under-
stand a piece of source code, a developer may not only navi-
gate and search for the related source code inside the IDE,
but also search online resources, such as Stack Overflow.

In this paper, we perform a large-scale field study to
investigate program comprehension activities in a realistic
setting, while taking a more holistic approach that examines
activities across many applications that are used by develop-
ers instead of only using interaction data that is gathered
from IDEs. Similar to past studies [13], [15], [26], [36], [63],
our study tries to validate a well-known assumption (i.e.,
program comprehension takes much of the efficiency of
developer time) that drives the line of work on improving
program comprehension. It is important to evaluate the
assumption, because there is a large body of research on
improving program comprehension.

Relative to prior studies, our study is based on the analy-
sis of a large number of developer activity data from their
real working environment. Hence, we leverage the method-
ology of Minelli et al. [36] since their methodology can
automatically infer developers’ activities from developers’
low-level interaction data. Different from several other pre-
viously-proposed models of program comprehension, e.g.
[13], [58], our program comprehension model separates
navigation from other activities since we believe that navi-
gation is an important activity in software development and
we want to highlight it separately. Ko et al. found that
developers usually find the target information by navigat-
ing “information scents” [26], e.g., hyperlinks on a web
page. Their study leads to a model of program comprehen-
sion grounded in the theories of information foraging. How-
ever, current IDEs do not support navigation well. For
example, if a developer loses track of a relevant code frag-
ment within Eclipse as she switches to other tasks, she is
forced to find it again. Identifying navigation actions from
developers’ activities can give us deeper insight of devel-
oper’s behavior. For example, we can get the procedural
knowledge, which describes actions and manipulations that
are carried out to complete programming tasks. We not
only can know “what a developer codes”, but also know
“how a developer codes”. However, separating navigation
from other activities, e.g., coding and debugging, is very dif-
ficult, since developers interleave navigation and other
activities. Furthermore, the process used in many prior
studies has some limitations in a real working environment
and requires extensive manual analysis. For example, Ko
et al. use screen capturing techniques to record developers’
working process in which they perform two debugging
tasks and three enhancement tasks [26]. The collected
screen-capturing videos are transcribed into different devel-
oper actions (e.g., reading code, or editing code). Ko et al.’s
results are based on subjective interpretations of devel-
opers’ behaviors, but it is unrealistic to analyze our collected
data manually in our study because we collect developer’s
activity data for an extended period of time, i.e., two weeks
in this paper. Hence, we extend the work of Minelli
et al. [36] to investigate program comprehension activities.
The question whether or not navigation is part of compre-
hension is a controversial one. Our methodology which
reports both comprehension and navigation time allows

readers to interpret the results in both ways, i.e., readers
can simply sum up navigation and comprehension time if
they consider navigation as part of comprehension.

Following by Minelli et al. [36], we categorize developers’
activities into four categories: navigation, editing, compre-
hension, and other.1 Navigation time refers to the time that
developers spend in browsing through software [52], includ-
ing navigation using IDEs or web browsers, clicking a link,
and searching for particular program entities or code, etc.
Editing time refers to the time that developers spend on edit-
ing source code. Comprehension time refers to the time that
developers spend in program comprehension, including
inspection activities such as inspecting console and break-
point within the IDE, or reading through a piece of code
(identified by e.g., detecting mouse drifting actions). We
note that sometimes developers perform navigation activi-
ties to assist program comprehension activities, however,
the navigation activities only involve some quick keyboard/
mouse activities, such as rolling themouse, or clicking a link,
and in that short time, developers actually do not perform
comprehension activities.

Our study is conducted within two large IT companies
named Insigma Global Service2 and Hengtian3 in China,
which have more than 500 and 2,000 employees, respec-
tively. In total, we investigated the activities of 78 develop-
ers across 7 projects over 3,148 working hours in total.
Moreover, we interviewed 10 of these developers. Our
study finds that: (1) on average program comprehension
takes up �58 percent of developers’ time, (2) besides IDEs,
developers frequently use web browsers and document edi-
tors during their program comprehension activities, (3)
developers in Java projects spend a significantly higher per-
centage of time on program comprehension than developers
in .NET projects, (4) senior developers spend a significantly
less percentage of time on program comprehension than
junior developers, and (5) developers working on projects
that are in the maintenance phase spend significantly higher
percentage of time on program comprehension than those
working on projects that are in the development phase.

The following is our list of contributions:

1) We perform a large-scale field study on the role of
program comprehension during software develop-
ment. Our study includes a total of 78 developers
across 7 projects over 3,148 working hours. This
study represents the largest field study on program
comprehension to date. Different from prior studies,
our study is conducted in a realistic setting.

2) We investigate the impact of programming lan-
guage, developers’ experience, and project phase on
the time that is spent on program comprehension.

Paper Organization. The remainder of this paper is organized

as follows. Section 2 briefly reviews related work. Section 3

elaborates on the setup of our field study setup and our data

collection process. Section 4 presents our field study results.

Section 5 discusses the threats to validity. Section 6 draws the

conclusions and mentions future work.

1. For more details, please refer to Section 2.2.
2. http://www.insigmaservice.com/
3. http://www.hengtiansoft.com/en

952 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 10, OCTOBER 2018

http://www.insigmaservice.com/
http://www.hengtiansoft.com/en

2 RELATED WORK

Measuring Program Comprehension. A number of prior studies
measure program comprehension [13], [15], [26], [36], [63].
Zelkowitz et al. [63], Fjeldstad andHamlen [15], andCorbi [13]
all report that program comprehension activities take more
than half of the time spent on software maintenance based on
anecdotal evidences. Ko et al. perform controlled experiments
with two debugging tasks and 10 participants, and and they
find that program comprehension occupies around 35 percent
of the total development time [26]. Minelli et al. study the IDE
interactions of 18 participants over 700 working hours, and
they find developers spend 70 percent of their time perform-
ing program comprehension activities [36]. Most of the partic-
ipants in Ko et al.’s and Minelli et al.’s studies are students
rather than professional developers. Their studies also only
analyze developer activities in the IDEs.

Extending these previous studies, in this paper, we
investigated program comprehension activities performed
by 78 professionals working on 7 industrial projects in a realis-
tic setting. We collected a large amount of interaction data (a
total of 3,148 working hours) by monitoring developer
activities across many applications that they used during their
daily work. We also conducted interviews to confirm and
better interpret our quantitative findings.

Field Study on the Role of Program Comprehension for Soft-
ware Development. Roehm et al. perform a field study on the
role of program comprehension for software development
with 28 developers to understand: (1) what strategies do
developers follow to comprehend programs, (2) what sour-
ces of information do developers use, (3) what information
is missing, and (4) which tools do developers use and how
do they use them [48]. Our field study is different and com-
plements Roehm et al.’s study in several aspects: First,
Roehm et al.’s study does not measure program comprehen-
sion time which is the focus of our study. Second, Roehm
et al.’s study observes each participant for 45 minutes, while
our study observes each participant over two weeks. Third,
Roehm et al.’s study is more invasive to developer activities,
with each developer needing to comment on what they are
doing in a think-aloud fashion and several researchers
observing the participating developers. This procedure may
make developers change their behaviors substantially. Our
study involves a less invasive procedure. Fourth, we con-
sider many different RQs that Roehm et al.’s study does not
consider. Only one of our five RQs (i.e., RQ2: which applica-
tions do developers use during program comprehension
activities) overlaps. Even with this RQ, we consider a differ-
ent angle by measuring the amount of time that developers
spend inside these applications. Our paper also points to
web browsers as useful comprehension tools, which was
not part of Roehm et al.’s study.

In a later work, Maalej et al. further extended Roehm
et al.’s study by surveying 1,477 respondents, and they ana-
lyzed the importance of certain types of knowledge for pro-
gram comprehension, and the way that developers typically
access and share knowledge [34]. Different from Maalej
et al.’s study, our study did not involve an online survey.
We complement their study by tracking user interaction
data from 78 developers for two weeks, consisting a total of
3,148 working hours. Our study also highlights findings
which were not investigated in Maalej et al.’s study.

Identifying Factors Affecting Program Comprehension. A
number of prior studies investigate the impact of different
factors on program comprehension. Siegmund et al. inves-
tigate the relationships between programming experience
and program comprehension by performing short con-
trolled experiments (i.e., 40 minutes experiments) using
students as participants [51]. Teasley report that naming
style impacts on program comprehension [57]. Latoza et al.
identify working habit as a factor that impacts program
comprehension [29]. In our study (i.e., RQ4), similar to
Siegmund et al.’s work [51], we also investigate the impact
of programming experience on program comprehension.
However, different from their prior study, our study is
performed under a realistic setting by monitoring the activi-
ties of professional developers for two weeks. Also, different
from the above mentioned studies, we consider additional
factors, such as programming language (see RQ3) and proj-
ect phase (see RQ5).

3 FIELD STUDY SETUP

In this section, we present our field study setup which
includes three parts. We first present the criteria and details
of how the participants were selected. Next, we describe the
tool used to collect and organize developer interactions
across applications. Then, we present the details of our
qualitative interviews, which supplement our quantitative
findings. Finally, we present the five research questions
which are investigated in our study.

3.1 Participant Selection

One aim of our study is to investigate how professionals
(not students) perform program comprehension activities
in a realistic setting. We thus select participants in two IT
companies in China, named Insigma Global Service, and
Hengtian. Insigma Global Service is an outsourcing com-
pany which has more than 500 employees, and it mainly
does outsourcing projects for Chinese vendors. Hengtian is
also an outsourcing company which has more than 2,000
employees, and it mainly does outsourcing projects for US
and European corporations.

Note that in these two companies, around 50 percent of
the employees are developers (i.e., around 1,250 develop-
ers). Also, a number of projects (around 60 percent) need to
be done onsite (i.e., developers should work in the client’s
company) and many projects are constrained with strict
security policies. Unfortunately, we cannot collect data
from these onsite and secure projects. After removing devel-
opers that work on these projects, around 830 developers
remain as possible participants of our study. Our toolset for
collecting developer interactions works on the Windows
operating system and not all developers use Windows.
Thus, we further remove additional 205 candidate develop-
ers from our list of possible participants. As a result, we
have 625 developers left. These developers are involved in
25 different projects. Next, we select projects and developers
from this pool of 25 projects and 625 developers following
these steps:

� To reduce bias due to the project size, the selected
projects should have different sizes.

XIA ET AL.: MEASURING PROGRAM COMPREHENSION: A LARGE-SCALE FIELD STUDY WITH PROFESSIONALS 953

� To reduce bias due to the used programming lan-
guages, the selected projects should use different
programming languages. We choose projects which
use either Java or C# as their main programming
language. Java and C# are the two most popular pro-
gramming languages used inside these two compa-
nies. Eight projects use Python, Matlab, or C/C++ as
their main languages, and thus we exclude them
from our list of projects.

� To reduce bias due to new or inactive projects, we
exclude eight projects that are close to completion
and two new projects.

At the end, seven projects remain, and there are a total of
410 developers who work on these seven projects. We send
emails to these developers inviting them to join our study.
Eighty three developers allow us to install our tool and col-
lect their interactions for two weeks (i.e., 10 working days
in total, excluding weekends). Among the 83 developers,
22 percent (18) have more than 5 years of professional expe-
rience, 42 percent (35) have 3 to 5 years of professional
experience, and 36 percent (30) have less than 3 years of pro-
fessional experience.

For each developer, we compute his/her effective working
hours across the two weeks. Effective working hours refers to
the time when a developer stays in front of the computer,
doing things which are related to the project. We exclude idle
periods during which a developer usually performs personal
activities (e.g., eating lunch/dinner) or attends meetings.
Fig. 1 presents the distribution of the effective working hours.
The median effective working hours recorded by our tool is
37.4 hours, the minimumworking hours is 1.4 hours, and the
maximum working hours is 96 hours. We found four partici-
pants who worked less than 5 hours during the two weeks,
two of themwere project managers and they needed to attend
manymeetings at that time, one of themmoved to the client’s
site to work, and another needed to fly to another country to
attend an industrial conference. Also, we notice that one par-
ticipant worked for more than 90 hours (i.e., 96 hours) during
two weeks, and the participant informed us that since he is
new to the project team, and he worked many hours per day
to become familiar with the project. We removed the data col-
lected from these five participants to reduce the noise, so in
total we analyze data from 78 participants.

Table 1 presents the statistics of the seven studied proj-
ects.4 The columns correspond to the name of the projects
(Project), the start time of the projects (Start.), the number of
the developers (# D.), the number of developers who partici-
pate in our study (# S.), the number of lines of code (LOC),

the main programming language (Pro.), the size of the proj-
ects (Size) (L = large, M = medium, and S = small), and the
project phase (P.) (M = Maintenance and D = Development).

Among the seven projects, projects A, E, and G contain
more than 5M LOCs, and more than 50 developers; consid-
ering the size of LOCs, number of developers, developer
inputs,5 and the two companies’ definition,6 in this study,
we consider these three projects as large-size projects. Also,
projects B, C, and F contain 1 M to 3 M LOCs, and 12-45
developers, we label them as medium-sized projects. More-
over, project D only has 0.3M LOCs, and 10 developers, and
we label it as a small-sized project. Among the seven proj-
ects, three are large-sized projects (A, E, and G), three are
medium-sized projects (B, C, and F), and one is a small-
sized project (D). Four projects use Java (A, C, D, and F),
and three projects use C# (B, E, and G) as their main pro-
gramming language. We also asked developers to catego-
rize each project into either maintenance or development
phase depending on whether the corresponding software
product has been released or not. Four projects are in the
development phase (C, D, E, and G), and three projects are
in the maintenance phases (A, B, and F).

3.2 HCI Data Collection and Analysis

In this study, we extend our ActivitySpace framework [5], [6]
to collect and analyze Human-Computer Interaction (HCI)
data in developers’ daily work. Fig. 2 shows our data collec-
tion and analysis process: First, we use the ActivitySpace
framework to collect time-ordered events while a developer
is interacting with applications. Then we divide a sequence
of time-ordered events into working sessions by identifying
idle periods and we divide each working session into sprees
by the reaction time. Next, we classify these sprees by the
information that is provided by the collected events. Finally,
we compute the time for each of the different activities.

3.2.1 Tracking Events

As a developer interacts with an application, ActivitySpace
generates time-ordered events (see Fig. 3 for an example).

Fig. 1. A violin plot of the distribution of effective working hours.

TABLE 1
Statistics of the Studied Projects

Project Start. # D. # S. LOC Pro. Size Phase

A 2010.10 118 18 10 M Java L M
B 2011.08 12 4 2 M C# M M
C 2013.07 30 5 1 M Java M D
D 2014.12 10 4 0.3 M Java S D
E 2012.04 80 17 5 M C# L D
F 2015.04 45 10 3 M Java M M
G 2014.08 115 21 11 M C# L D

Start. = Start Date, # D. = No. of Developers, # S. = No. of participants in our
study, Pro. = Programming Language.

4. Due to the security policies in these two companies, we anonym-
ize the project names.

5. From our interview, several developers mentioned that they con-
sider projects that have more than 50 developers, 10 - 50 developers,
and less than 10 developers as large, medium, and small projects
respectively.

6. The two companies define the size of a project according to the fee
a client company will pay in the contract, and they simply ranked the
top 25 percent projects with highest fee as large projects, followed by
the next 50 percent as medium size, and the lowest 25 percent as small
projects.

954 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 10, OCTOBER 2018

Each event has a time stamp down to milliseconds preci-
sion. Each event is composed of an event type, basic win-
dow information that is collected using OS window APIs,
and the focused UI information that the application exposes
to the operating system through accessibility APIs (avail-
able for mouse click event only). ActivitySpace monitors
three types of mouse events (namely mouse move, mouse
wheel, and mouse click) and two types of keyboard events
(namely normal keystrokes like alphabetic and numeric
keys and shortcut keystrokes like “Ctrl+F” (Search or Find)
and “Ctrl+O” (Eclipse shortcut for quick outline)).

Basic window information includes the position of a
mouse or cursor, the title and boundary of the focused
application window, the title of the root parent window of
the focused application window, and the process name of
the application. If the event type is a mouse click, Activity-
Space uses accessibility APIs to extract the following focused
UI information: UI Name, UI Type, UI Value and UI Boundary
of the focused UI component, and the UI Name and UI Type
of the root parent UI component. The accessibility information

is very helpful to infer the application context of a devel-
oper’s action. For example, if the developer selects an item
in “Project Explorer” of Eclipse or “Solution Explorer” of
Visual Studio, ActivitySpace will record both the selected
item and its root parent UI component (“Project Explorer”
or “Solution Explorer”). This contextual information allows
us to classify the event as a navigation event.

In Fig. 3, the first three events occur in an Eclipse applica-
tion window, and the last two events occur in a Firefox
application window. Each event has its own window infor-
mation. However, due to space limitation, we show only
window title, window boundary, root parent window title,
and process name for one of the first three events and one of
the last two events. The focused collected UI information
for the two mouse click events shows that the developer
selects a file in “Project Explorer” in Eclipse, and searches
java calendar on Google in Firefox.

In this study, we configure ActivitySpace to monitor
applications that are commonly used in developers’ daily
work, including web browsers (e.g., Firefox, Chrome, Internet

Fig. 2. Our data collection and analysis process.

Fig. 3. An example of low level events.

XIA ET AL.: MEASURING PROGRAM COMPREHENSION: A LARGE-SCALE FIELD STUDY WITH PROFESSIONALS 955

Explorer), document editors (and/or readers) (e.g., Word,
Excel, PowerPoint, Adobe Reader, Foxit Reader, Notepad, Note-
pad++), and IDEs (e.g., Eclipse, Visual Studio). We validated
the list of applications monitored with the developers and
they confirm that these are the ones that they typically use.
We did not monitor command line tools since we were
informed that developers in the two companies rarely use
them when they worked in the Windows environment.7

Furthermore, if developers use command line tools to exe-
cute one task, they usually switch to other applications and
do not need to wait for the results from the command line.
So, the spent tme on the command line tools is very small.
ActivitySpace generates a placeholder event of “unknown”
event type when a mouse or keyboard event occurs in other
applications. We analyse the proportion of time that devel-
opers spend on such “unknown” applications, and it is typi-
cally less than 2 percent.

3.2.2 Identifying Effective Working Sessions

Given a sequence of time-ordered events, ActivitySpace first
removes all the “unknown” events. That is, we do not con-
sider activities in unmonitored applications in the subse-
quent analysis. Then, ActivitySpace identifies idle periods
during which no mouse or keyboard events occur. In this
study, we set the threshold of idle period at one hour. We
acknowledge that there often short idle periods (fiveminutes
in this study) when developers could have a short break or
chat with other colleagues. We remove these short idle peri-
ods when calculating the comprehension time. Idle periods
split a sequence of time-ordered events into effective work-
ing sessions. For a developer, his effective work hours is the
sum of the time duration of all the effective sessions.

3.2.3 EventAnalyzer

Given an effective working session, the event segmentation
component (EventSegmentator) of ActivitySpace first splits
the sequence of events into application-window segments
by Process Name of basic window information, for example
Eclipse or Firefox. Then, for each application-window seg-
ment, EventSegmentator further splits the sequence of events
into view segments by Window Title of basic window infor-
mation or Parent UI Name or Parent UI Type of accessibility
information, for example, Project Explorer, Console and
Code Editor in Eclipse window, and Navigation Bar and
Web Page area in Firefox window.

Finally, for each view segment, EventSegmentator splits
the sequence of events into a sequence of sprees by the reac-
tion time (RT), which is defined as follow:

Definition 1 (Spree). A spree is a sequence of mouse/keyboard
events in which the interval between each pair of events is less
than reaction time (RT).

The time interval between the two consecutive sprees
must be larger than the RT, while the time interval between
the two consecutive events in a spree must be smaller than
or equal to the RT. The reaction time is the time that elapses
between the end of a physical action sequence (e.g., typing,

moving the mouse, etc.) and the beginning of concrete men-
tal processes (e.g., reflecting, or planning), which represent
the basic moments of program understanding. The RT is
also known as “Psychological Refractory Period”, which has
been used in many psychology studies (e.g., personality or
driving, and level of alcohol or caffeine). The term psycho-
logical refractory period refers to the period of time during
which the response to a second stimulus is significantly
slowed because a first stimulus is still being processed [42].
According to this theory, developers cannot perform differ-
ent activities (i.e., programming comprehension, naviga-
tion, or editing) at the same time. So, we use RT to split the
event sequence into sprees. For example, a developer is typ-
ing a piece of code in an editor. After some typing, the
developer pauses and thinks about the code he just wrote
and plans the next steps. Such pauses will split the event
sequence in a view segment into sprees. Note that a spree
might only contain a single action when an action happens
very slowly, for example, a slow navigation action (a scroll
or a menu click to view a call hierarchy). In such cases, the
intervals among actions are usually larger than RT, which
can be considered as the moment of program comprehen-
sion. The RT might vary depending on human factors (e.g.,
personality, or age) and the task at the hand. Different set-
tings of RT might generate different results, but Minelli
et al. [36] reported that the different RT values did not affect
their findings. So, in this study, we set RT at one second, fol-
lowing their RT setting. We also discuss the effect of differ-
ent RT values in Appendix.

3.2.4 Classifying Sprees

Given a spree, the event labeling component EventLabeler of
ActivitySpace classifies the spree as navigation, comprehension
or editing. Our classification scheme follows Minelli et al.’s
work [36]. Minelli et al. assign inspection activities (e.g.,
inspecting stacktrace in Eclipse Console) to Comprehension
category, and Browsing (e.g., selecting a package, method, or
class in Project Explorer of Eclipse), and Searching (e.g.,
Starting a search in a Finder UI) activities to navigation cate-
gory. Fig. 4 presents the process of spree categorization of
EventLabeler.

First, EventLabeler checks the window context (Window
Title, Parent UI component, sub-window) which usually
reflects developers’ activities directly to classify the spree as
navigation or comprehension. We identify the most com-
monly used UI components, sub-windows in our collected
data which are listed in the upper part of Fig. 4. For Eclipse
and Visual Studio which are used as main IDEs in our
study, if a developer is performing inspection activities (e.g.,
inspecting Console in Eclipse window or the Output in
Visual Studio window), the spree is classified as comprehen-
sion; if the developer is performing browsing or searching
activities (e.g., using the Project Explorer in Eclipse window
or the Solution Explorer in Visual Studio window), the spree
is classified as navigation. For browser, if the spree is in the
Navigation Bar or in a search engine’s web page, we regard
this spree as navigation. For all other applications, sprees in
the Search/Findwindows are classified as navigation.

If EventLabeler cannot determine the category of a spree
based on its window context, it will then try to label the
events in the spree in order to determine its category.

7. The developers also informed us that they frequently use com-
mand line when they worked in a Linux environment, however our
current tool can only capture interaction data in Windows.

956 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 10, OCTOBER 2018

The lower part of Fig. 4 presents how EventLabeler labels an
event. For a mouse click event, EventLabeler classifies the
event as a navigation or comprehension event based on the UI
type of the focused UI component where the mouse click
occurs, as summarized in partNavigation UI Type of Fig. 4.UI
Type may indicate the type of activities that developers per-
form, for example, if theUI Type is tree item or scroll bar, devel-
opers usually perform Browsing activities, then EventLabeler
classifies the event as navigation event. If the mouse click
event occurs in a non-navigation UI Type, the event is classi-
fied as comprehension event. For shortcut key event, EventLab-
eler labels the event according to its function. For example,
”Ctrl+F” is classified as a navigation event, while “F6” (step
over in Eclipse) is classified as comprehension. We identify the
most commonly used shortcut keys in our collected data, as
summarized in theNavigation Shortcut Key andComprehension
Shortcut Key part of Fig. 4. EventLabeler labels normal key-
stroke events as editing.

If all the events in a spree are mouse move and/or mouse
wheel events (aka. Mouse Drifting in Minelli et al.’s work),
EventLabeler classifies the spree as comprehension, for exam-
ple, the spree (3) in Fig. 2 in which a developer is browsing
a web page using a mouse. If the number of editing events
are more than 50 percent of the sum of editing, navigation
and comprehension events, EventLabeler classifies the spree
as editing, for example, spree (2) in Fig. 2. Finally, if the
number of navigation events is greater than that of compre-
hension events, EventLabeler classifies the spree as a naviga-
tion event, otherwise as a comprehension event. For example,
spree (1) in Fig. 2 has two navigation events (Ctrl+O to show
quick outline and selecting another editor in the tab), but no
comprehension events. Thus, the spree is classified as a navi-
gation event.

3.2.5 Computing Activity Statistics

The comprehension time is the sum of the duration of all the
comprehension sprees and all the time intervals between
sprees that are longer than the RT (1 second in our study)
and shorter than a threshold (5 minutes in our study). Based
on our observation and interview, time intervals longer than
5 minutes usually represent the time period during which
developers have short breaks or chat with their colleagues.

We do not consider these time intervals as idle periods
because a developer is still in a working mode on the com-
puter, unlike a long meeting or a lunch break. The navigation
and editing time are the sum of the duration of all the naviga-
tion and editing sprees respectively.

We aggregate the statistics of developers’ activities
according to different types of applications. In this study,
we classify the monitored applications into three types:
IDEs (Eclipse, Visual Studio), web browsers (e.g., Firefox,
Chrome, IE), and document editors (Word, Excel, Power-
Point, PDF reader, Notepad, Notepad++, etc.).

We filter activities in web browsers that are unlikely
related to software development tasks (e.g., visiting news or
shopping websites) using the keywords in the title of the
visited web pages (for example, “Sina”, one of the most
popular news websites in China, or “taobao”, the most pop-
ular online shopping website in China). We observe the col-
lected data and identify a set of keywords to filter non-
software-development activities in web browsers. We use a
long list of filters that were manually determined and fine
recorded to ignore websites that are unrelated to software
development. Table 2 shows some example keywords of
our used website filters. We divide the websites that are
unrelated to software development into seven categories:
News, Sports, Social Network, Shopping, Game, Video, Money.
Note that most of the example keywords in Table 2 are
translated from Chinese. Our filtering results in more accu-
rate statistics of developers’ work habits.

To understand program comprehension across different
applications,ActivitySpace identifies all application switching

Fig. 4. The process of spree categorization of EventLabeler.

TABLE 2
Examples of Website Filters

Website Category Example Keywords

News Sina, NetEase, Sohu, Tencent
Sports NBA, Basketball, Football
Social Network weibo, weixin, QQ
Shopping Taobao, Tmall, Jingdong
Game Game, Dota, LOL
Video Iqiyi, Youku, AcFun, Bilibili
Money stock, real estate

XIA ET AL.: MEASURING PROGRAM COMPREHENSION: A LARGE-SCALE FIELD STUDY WITH PROFESSIONALS 957

by identifying the difference between the process names of
two consecutive events. It can find all application switching,
e.g., IDE) Web Browser, IDE) Web Browser) IDE, of
length 2 to 4, and compute the duration of sequences that
have these application switching. For each sequence, Activi-
tySpace counts instances of such switching and computes the
total time spent. The total time carefully considers overlaps;
for example, IDE)Web Browser) IDE)Web Browser)
IDE has two instances of IDE)Web Browser) IDE, but the
two instances are overlapping. This overlapping part is only
considered once in the computation of total time.

3.2.6 Accuracy of Our Data Collection Tool

To investigate the accuracy of our data collection tool on
identifying program comprehension activities, we perform
a preliminary study on two developers. To do so, we install
our data collection tool and a video recording tool on these
two developers’ desktop. Next, we record 4 working hours
for each of these two developers by using both our data col-
lection tool and the video recording tool. Then, we invite
these two developers to join us to review the videos. We
split the collected data into many sprees using our proposed
approach and link these sprees to the corresponding time-
stamp of the screen-capturing video. Then we confirm the
categories of these sprees with the two developers. For the
two developers, there are 2,840 and 1,643 sprees in total,
respectively. Among these sprees, 1,051 and 343 sprees are
categorized as comprehension by our ActivitySpace tool.
For these ones, we ask the developers to tell us what they
did in the sprees, and categorize what they did into one of
the four activities (i.e., navigation, editing, comprehension,
and others). Although more than a thousand sprees need to
be analyzed by the two developers, a large number of con-
tinuous sprees belong to one activity. Thus, the developers
only need to recognize the boundaries of the activities, and
do not need to analyze the sprees one by one.

Table 3 presents the percentage of time that the two
developers spend on comprehension, navigation, editing,
and others computed by our data collection tool and devel-
oper manual labeling. The difference between our data col-
lection tool and manual labeling is relatively small (less
than 0.23 percent), thus our proposed tool achieves an
acceptable accuracy.

3.3 Interview

In addition to analyzing the collected data, we interviewed
10 out of the 78 participants, to confirm and interpret our
findings.We performed the interviews at the end of themon-
itoring process. We sent emails to all of the 78 participants to

inquire about their availability, and 10 participants indicated
their availability (seven worked on Java projects, and eight
worked on C# projects). Table 4 presents the working experi-
ence, programming languages, and project teams of the
10 interviewees. The participants have varying numbers of
years of professional experience.

The interviews are semi-structured and are divided into
three parts. In the first part, we ask each developer some
demographic questions, such as their working experience.
In the second part, we ask some open-ended questions,
such as the importance, challenges, and difficulties met dur-
ing the program comprehension process. We also ask inter-
viewees to recall some situations when they find program
comprehension particularly challenging. The purpose of
this part is to allow the interviewees to speak freely about
their program comprehension experience.

In the third part, we considered a list of topics related to
program comprehension, and asked the interviewees to dis-
cuss these topics, especially those that they have not discussed
during the secondpart of the interview. The topics include the
impact of different programming languages on program com-
prehension, and the impact of project phase (development
phase ormaintenance phase) on program comprehension.

After the interviews, we used a transcription service
namedLuyinBao8 provided by iFlyTek in China to transcribe
audio into text. We then read the text, and performed open
card sorting [53] to group the statements from the 10 inter-
viewees into different categories. To do so, we first removed
statements which are not related to program comprehension,
e.g., “I have experiences on legacy system reengineering”. Then,
we created one card for each of the statements, and the first
two authors worked together to group the statements into
different categories. For each statement, they first manually
extracted key phrases from it. Then they grouped the state-
ments with similar key phrases into the same category. The
process is repeated until all statements made by the inter-
viewees are mapped to at least one category. Furthermore,
since all of the 10 interviewees are Chinese, we used Chinese
as the main language to discuss with them. In the paper, we
translated all Chinese communications into English.

3.4 Research Questions

We would like to investigate the following five research
questions: (RQ1) How much of developers’ time is spent on

TABLE 3
Percentage of Time Two Developers Spend on Comprehension
(Compre.), Navigation, Editing, and Others as Computed by Our

Data Collection Tool and Manually Labeled by Developers

Dev Tool Compre. Navigation Editing Other

Dev 1
Our 58.26% 18.38% 15.25% 8.15%

Manual 58.31% 18.41% 15.11% 8.17%

Dev 2
Our 62.38% 22.45% 13.88% 1.29%

Manual 62.30% 22.47% 13.71% 1.52%

TABLE 4
Statistics of the 10 Interviewees

Interviewee Professional Exp. Program Lang. Project

P1 > 5 Years Java A
P2 > 5 Years Java A
P3 2-5 Years Java A
P4 2-5 Years Java C
P5 < 2 Years Java D
P6 > 5 Years C# E
P7 2-5 Years C# E
P8 2-5 Years C# E
P9 < 2 Years C# E
P10 < 2 Years C# E

Exp. = Experience, Lang = Language.

8. http://luyin.voicecloud.cn/

958 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 10, OCTOBER 2018

program comprehension? What are some common factors that
increase program comprehension time?

Previous studies show program comprehension can take
up as much as half of a developer’s time [13], [15], [26], [36],
[63]. However, some conclusions are based on anecdotal
evidence [13], [15], [63], instead of being derived from
empirical studies. Some studies are performed under con-
trolled experiment instead of real project settings [26]. Fur-
thermore, some studies only involve a small number of
participants [26], [36], and most of them are not professio-
nals. To address the limitations of prior works, in this work,
we revisit the same question by monitoring the time spent
on program comprehension activities of the 78 developers
working on 7 real world projects of 0.3-10 millions lines of
code over a period totalling of 3,148 working hours.

(RQ2) Which applications do developers use in their program
comprehension activities? How much time do they spend inside
these applications during their program comprehension activities?

Previous studies only investigate program comprehen-
sion activities performed inside IDEs [26], [36]. However, to
understand a piece of source code, a developer may not only
navigate and search for related source code inside the IDE,
but also search online resources, such as Stack Overflow.
Investigating program comprehension activities across mul-
tiple applications helps us better understand how develop-
ers perform program comprehension in practice.

Specially, in RQ2, we investigate the time that developers
spent when using IDEs, web browsers, and text editors to
perform program comprehension activities, keep in mind
that these three applications represent differentways for per-
forming program comprehension activities: in IDEs, devel-
opers mainly comprehend the source code; in web browsers,
developers mainly comprehend the searched content (e.g.,
bug fixing solutions, feature implementation suggestions, or
tool installation guides) returned by search engines; in text
editors (e.g., MSWord, MS Excel, and Notepad++), develop-
ers mainly comprehend technical/project documents (e.g.,
project requirement or design documents). Note that some
developers might use text editors to write/edit source code.
For such cases, since the text editor now serves as an IDE, we
count the time that they spent on text editors as program
comprehension time inside IDE. We use file extension to
identify whether participants edit/write/comprehend
source code or not, i.e., if a participant opened or edited a file
in a text editor with an extension such as “java“, “cs”, “c”,
“cpp”, “h”, “html”, “htm”, “js”, or “xml”, we count the time
spent on such files as program comprehension time inside
IDE. Moreover, three of our investigated projects (B, E, and
F) need to develop web portals, and developers sometimes
debug the web pages in web browsers. For such cases, since
the web browser now serves as an IDE, we count the time
that they spent on web browser as program comprehension
time inside IDE, i.e., if a developer opened a URL such as
“localhost:8080” or a specific IP address like “10.171.10.99”,
we still count the time spent on such web pages as program
comprehension time inside IDE.

(RQ3) Do different programming languages affect the percent-
age of time spent on program comprehension?

Anumber of factors (e.g., programming languages, devel-
oper experience, and project phase) would affect the time
that is spent on program comprehension, and investigating

the impact of programming languages on the percentage of
time that is spent on program comprehension could help
developers understand their program comprehension activi-
ties better. Our findings can help developers consider an
additional factor when deciding which programming lan-
guage to use, and help inform language and IDE designers
on areas for improvement. Here, we consider the effect of
two programming languages, i.e., Java and C#, on the time
that is spent on program comprehension. According to a
Stack Overflow survey 2017, Java and C# are twomost popu-
lar programming languages.9

(RQ4) Do the senior developers spend less time on program
comprehension?

The working experience of a developer may impact the
needed time for program comprehension activities. Senior
developers’ behaviors are different from junior developers’
behaviors, which might lead to varying time spent on pro-
gram comprehension activities. In this research question, we
investigate whether senior developers spend less time than
junior developers (e.g., novice or less experienced develop-
ers) on program comprehension. The answer of this RQ can
help identify the target beneficiary (e.g., senior or junior
developers) for automated tools to improve the efficiency of
program comprehension.

(RQ5) Do different project phases affect the percentage of time
spent on program comprehension?

Different project phases, such as the development and
maintenance phase, may affect the time spent on program
comprehension activities. In this research question, we inves-
tigate whether projects at different phases require different
amounts of program comprehension effort. Similar to RQ4,
the answer of this RQ can provide inputs to tool builders in
designing automated tools to improve the efficiency of pro-
gram comprehension by considering project phases.

4 FIELD STUDY RESULTS

In this section, we present the results of our case study with
respect to our five research questions.

4.1 (RQ1) How Much of Developers’ Time Is Spent
on Program Comprehension? What Are Some
Common Factors that Increase Program
Comprehension Time?

4.1.1 Results

Table 5 presents the average percentage of time that develop-
ers spent on comprehension, navigation, editing, and others

TABLE 5
The Average Percentage of Time Developers Spend on

Comprehension, Navigation, Editing, and Others

Project Comprehension Navigation Editing Others

Average 57.62% 23.96% 5.02% 13.40%
A 63.37% 19.31% 5.02% 12.30%
B 55.80% 24.83% 6.36% 13.02%
C 58.86% 27.62% 3.90% 9.62%
D 53.32% 28.36% 5.31% 13.01%
E 56.15% 23.59% 5.53% 14.73%
F 64.05% 20.30% 4.66% 10.99%
G 51.80% 28.02% 4.59% 15.41%

9. https://stackoverflow.com/insights/survey/2017

XIA ET AL.: MEASURING PROGRAM COMPREHENSION: A LARGE-SCALE FIELD STUDY WITH PROFESSIONALS 959

for the 5 projects. On average across the 5 projects, developers
spend 57.62 percent of their time on program comprehension activi-
ties, followed by navigation (23.96 percent), others (13.40 percent),
and editing (5.02 percent). Fig. 5 presents the percentage of pro-
gram comprehension time for the 5 projects. From the figure,
we observe that developers in different projects spend vary-
ing time on program comprehension activities, which vary
from 51.80 percent (G) - 64.05 percent (F). Our finding is con-
sistent with previous studies [13], [15], [26], [36], [63].

To further investigate why developers spent so much
time on program comprehension, we performed the follow-
ing two steps: (1) we invited 10 interviewees to speak freely
on other root causes of long program comprehension time,
and we came out with an initial set of causes; (2) we label
the 200 sessions based on these root causes, and we create
new root causes if the existing ones are not sufficient. Based
on the interviewee’s input, we identify nine root causes as
shown in Table 6, and we randomly choose from our col-
lected data 200 sessions where developers spent more than
20 minutes on program comprehension. By using the snap-
shots and the events that are provided by our ActivitySpace
tool, the first two authors can trace back and replay what
developers did during these sessions. We found that in the
200 long program comprehension sessions, developers
used IDEs, web browsers, and text editors in 144, 171, and
120 sessions, respectively. Next, the first two authors tried
to categorize these long sessions into the nine root causes

that we derived, and we categorize the sessions which do
not belong to any root causes as “others”. We observe that
some sessions can be assigned to multiple root causes, and
thus we assign multiple causes to these sessions as needed.
We use Fleiss Kappa [16] to measure the agreement
between the two labelers. The overall Kappa value between
the two labelers on the 200 sessions is 0.78, indicating a sub-
stantial agreement between the labelers. For the sessions
for which both labelers cannot reach an agreement, we
invited a Ph.D student (not one of the co-authors) who has
5 years of professional experience to make the judgement.
Finally, we reached agreement on all of the 200 sessions.
We find that all the 200 sessions can be put into eight out of
the nine root causes that we identified—no session belongs
to “unfamiliarity with business logic” category. Table 6 pre-
sents the nine root causes. Since a session can be mapped to
multiple root causes, the sum of the number of sessions for
the nine root causes is more than 200.

The following paragraphs describe the details of the nine
root causes and the 200 sessions:

1. No Comments or Insufficient Comments. A large amount
of the code that we inspected has no comment or insuffi-
cient comments among the 200 sessions. For example, in
Java projects, many comments that say “TODO Auto-gener-
ated method stub” (the default comments when automati-
cally generating a class/method in Eclipse), or “To be
added”. Moreover, in 30 sessions, developers finally added
comments to the class/method after they spent a long time
comprehending a piece of source code.

In our interview, all of the ten interviewees agree that
insufficient comments cause program comprehension diffi-
culties. Developers “cannot understand the source code if there
are insufficient comments, especially when the source code is a bit
complex” (P6). In practice, without comments, developers
have to look at the code and use bottom-up comprehension,
which causes difficulties in program comprehension. Previ-
ous studies highlighted the importance of comments in the
process of software maintenance [22], [38], [54], [55], [61].
Also, sometimes comments are not updated along with the
code, which in turn causes difficulties for program compre-
hension. This is especially true for projects with high turn-
over rates; P1 stated: “My project is in the maintenance phase,
developers always leave the team to work in other new projects.
Due to the lack of comments, whenever we are asked to implement
a new function or fix a bug, we have to read and understand the
relevant source code, which may take a long time”. Previous

Fig. 5. A violin plot of the percentage of program comprehension time.

TABLE 6
Nine Root Causes That Were Identified by Us

Root Cause Source Application # Sessions

No comments or insufficient comments Interview/Session

IDE

92 (46%)
Meaningless classes/methods/variables names Interview/Session 75 (38%)
Large number of LOC in a class/method Interview/Session 63 (32%)
Unconsistent coding styles Interview/Session 42 (21%)
Navigating inheritance hierarchies Interview/Session 38 (19%)

Query Refinement, and browsing a number of search results/links Interview/Session Web Browser 83 (42%)

Lack of documents, and ambiguous/incomplete document content Interview/Session
Text Editor

79 (40%)
Searching for the relavent documents Interview/Session 12 (6%)

Unfamiliarity with business logic Interview NA NA

960 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 10, OCTOBER 2018

studies reported that the turnover rate in IT companies
varies from 20 - 35 percent [17], [23], [47], [60].

2. Meaningless Classes/Methods/Variables Names. Developers
might need to spendmore time to understand the source code
if there are many meaningless classes/methods/variable
names. For example, in the 200 sessions that we analyzed,
we observe that one method called “readHistory” needs to
open 5 files, and the code simply names the needed 5
“BufferedReader” instances as “br1” to “br5”.When develop-
ers comprehended this method, we noticed that they fre-
quently traced back to the definition statement of “br1” to
“br5”whenever they saw operations on these fivemethods.

In our interview, nine out of the ten interviewees agree that
meaningless classes or methods or variables lead to program
comprehension difficulties, since it increases the difficulty of
understanding the semantic meanings of classes/methods/
variables, as P8 stated “Some developers name a variable casually,
such as int a, double b, which makes the program hard to understand
andmaintain”. De Lucia et al. highlighted that name of a class/
method/variable is a crucial element for program readabil-
ity [14]. Lawrie et al. found that the quality of class/method/
variable names affects the efficiency of program comprehen-
sion, and they recommended the use of full word identi-
fiers [30]. Thus, in practice, we recommend developers to pay
attention to the name of classes/methods/variables, and to
try to use meaningful words to describe the meaning of each
class/method/variable.

3. Large Number of LOC in a Class/Method. Some classes/
methods are extremely long, e.g., more than 500 LOCs. In our
interview, four out of ten interviewees note that large classes
or methods cause difficulty in understanding since the code
logic is often complex. For example, in the 200 sessions that
we analyzed, one class named “StockMarketOperation”,
which provides stock buying, selling, buying on margin, and
short selling functionalities, has more than 2,000 LOCs. A
developer spent 30minutes to comprehend this class when he
was trying to locate a bug. A large number of LOC in a class/
method is often a sign cause of an anti-patterns named god
class/method, where one class/method controls too many
processes in a software system [18]. One common practice to
resolve a large number of LOC in a class/method is to divide
the implemented functionalities in the class/method across
several focused sub-classes/methods [18], [46].

4. Inconsistent Coding Styles. Due to the evolution of a
software system and lack of strict style guidelines, the cod-
ing styles of a project, a class, and even a method can be dif-
ferent. Among the 200 sessions that we analyzed, 21 percent
of the sessions needed long program comprehension time
due to inconsistent coding styles. For example, class
“EmailSending” has been revised by different developers to
add more functionalities, and different developers have
different coding styles, which cause a number of similar
variables, e.g., “user_name”, “UserName”, “userName”,
and “User_Name”. Some of these variables are defined as
public variables, and some are defined as local variables. A
developer needs to trace back multiple times to understand
the meaning of these similarly named variables.

In our interviewee, nine out of the ten interviewees agree
that inconsistent coding styles (e.g., camelCase or under_-
score) [8], [50] cause program comprehension difficulties. A
number of project teams do not have strict coding styles nor
naming conventions; for example, a developer can name a

method in the format of “helloWorld()”, while others use the
following formats: “Hello_World()” or “HelloWorld()”. If the
source code follows multiple naming conventions, the source code
is hard to understand (P4). Some prior program comprehen-
sion studies also argue whether camelCase is superior to
under_score in practice [8], [50]. For example, Binkley et al.
performed an eye tracking study on 135 programmers and
non-programmers to better understand the impact of identi-
fier style on code readability, and they found that camelCase
is superior to under_score [8]. Later, Sharif and Maletic per-
formed a replication study of Binkley et al.’s eye tracking
study, and the difference between these two studies were
that the participants were trained mainly in the underscore
style and were all programmers [50]. They found there is no
difference in accuracy between the two styles, participants
recognize identifiers in the under_score style more quickly.
Thus, in practice, we recommend project teams to strictly fol-
low a consistent coding style and naming convention.

5. Navigating Inheritance Hierarchies. Abstraction is one of
the most important features for object-oriented program-
ming languages. Sometimes abstraction causes additional
program comprehension time since developers might navi-
gate multiple times to find relevant source code. For exam-
ple, in our collected data, there is an abstract class named
StockExchange, and a number of classes inherit this abstract
class, such as “StockExchangeChina”, “StockExchangeUS”,
“StockExchangeIndia”, and “StockExchangeSingapore”.
Since the project used the factory design pattern to wrap the
implementation of detailed classes, to locate the buggy
method in one of the inherited classes, a developer needed
to comprehend the method in the abstract class, and to navi-
gate and comprehend each of the inherited methods in the
inherited classes, and finally located the buggy method. To
reduce the effort due to navigating inheritance hierarchy,
Lanza and Ducasse propose a lightweight view named
polymetric views which is based on the combination of soft-
ware visualization and software metrics [28].

In our interview, seven out of the ten interviewees men-
tion that high-level abstractions in source code might
increase navigation time. P7 stated: “Abstraction can help to
reuse the APIs in the source code, but it will also lead to difficulties
in understanding the behavior of source code. For example, if class
A and B are both inherited from the abstraction class C. When we
are asked to write a new class D which is also inherited from C, we
need to read the source code in A, B, and C to get hints on how to
write class D. The process can be extremely difficult if there are a
number of abstractions in the source code”. We note that all of
the seven developers who share this difficulty have only
worked less than 5 years. Experienced developers among
our interviewees (P1, P2, and P6), however mention that
they do not have this problem in understanding source code.

6.Query Refinement, and Browsing aNumber of Search Results/
Links. When developers perform online queries to compre-
hend an exception/error/bug or an API, they might need to
refine their queries multiple times to find desired results. For
example, in our collected data, a developer needed to compre-
hend an exception on a database connection, and since he has
limited experience on database connections, he performed
this Google query10 “how to connect a database using Java”.

10. Although Google is blocked in China, developers use VPN to
access Google.

XIA ET AL.: MEASURING PROGRAM COMPREHENSION: A LARGE-SCALE FIELD STUDY WITH PROFESSIONALS 961

After reading and comprehending several of the top results,
he found that none of them was relevant. But he noticed a
new word “JDBC”, and refined the query as “Java Database
Connection JDBC”, however again after reading and compre-
hending the source code of several of the top results, none of
them were considered relevant. Finally, he refined the query
as “Java Database Connection JDBC pool”, and found a rele-
vant answer on StackOverflow.

In our interview, only three out of ten interviewees agreed
that query refinement is one of the root causes for long pro-
gram comprehension time. All of these three interviewees
are junior developers who worked less than 2 years. As P1
stated: “I think with the increase of experience, it would be easy to
find the suitable queries when searching online”. Haiduc et al.
highlighted the importance of query refinement in the per-
formance of text retrieval in software engineering [21]. They
proposed Refoqus which refines a user query based on the
top-k (e.g., k ¼ 10) documents that are retrieved by an initial
query. Nie et al. expanded a query based on crowd knowl-
edge to improve the performance of code search [40]. The
effectiveness and efficiency of search can be improved if a
search engine could help refine queries intelligently.

7. Lack of Documents, and Ambiguous/Incomplete Document
Content. From our study, we observe that the contents of
some documents are either ambiguous or incomplete,
which causes developers to spend a considerable amount of
time to comprehend these documents. For example, in one
requirement documents, the description of the rules govern-
ing how a fund should be transferred are too short and not
clear. A developer spent more than two hours to compre-
hend this requirement.

In our interview, nine out of the ten interviewees agreed
that the lack of documentation, and ambiguous/Incomplete
document content often leads to long program comprehen-
sion time. In our study, documentation refers to the require-
ment, design, and API documents. P1 and P2 who have led
a project on reengineering of legacy systems told us that
“legacy systems always have no or limited documents; the first
step is to manually read and understand the source code to gener-
ate documentations. We find that this process is extremely hard
for the developers, and they need to spend more than 90 percent of
their time on program comprehension”.

Nowadays, agile software development methodology is
one of the most popular development methods. Paetsch
et al. found that it is infeasible to create complete and con-
sistent requirements documents, which might cause long-
term problems for agile teams [41]. And the Agile mani-
festo [7] also pointed out: Working software [is valued] over
comprehensive documentation. Unfortunately, a limited
focus on documentation in agile development increases the
program comprehension cost. P5 stated: “Agile can increase
the productivity of a developer, however, it will increase the pro-
gram comprehension time when new developers join the project
team since there are limited documents to which they can refer.”

In practice, developers prefer to write code more than
documents,11 thus the lack of documentation is problematic
in every development process, which causes difficulties in
program comprehension.

8. Searching for the Relevant Documents. In project C, we
noticed that they have different types of documents, e.g.,
requirement documents, design documents, API usage
documents, and test case documents. And each type of doc-
ument has multiple versions. We found that in 12 sessions,
developers spent long comprehension time on documenta-
tions since they needed to browse multiple versions of
documents to find the description of a specific function
implementation or a specific test case. In our interviews,
only one interviewee (P4) mentioned that too much docu-
ments hinders program comprehension activities.

Besides the 8 root causes, during the interviews, we also
uncovered one additional root cause for long program com-
prehension times, i.e., unfamiliarity with business logic.

9. Unfamiliarity with Business Logic. Five out of the ten
interviewees mention that unfamiliarity with business logic
also hinders program comprehension activities. P1 stated:
“unfamiliarity with the business logic is very common for developers
who just joined a project. For these developers, they need to read the
source code and relevant documents first to understand the whole
project”. Program comprehension difficulty due to unfamiliar-
ity with business logic is one of the common problems that a
newcomer faces, and it can be relieved when the newcomer
stays longer in the project team, or he/she gains more experi-
ence on software development.

4.1.2 Implications

In RQ1, we find that developers spend 58 percent of their
time on program comprehension, which validates the well-
known assumption (i.e., program comprehension takes
much of developer’s time) that drives the line of work on
supporting program comprehension [13], [15], [26], [36],
[63]. Our results also show that the efforts of previous stud-
ies on program comprehension are necessary, and we still
in need for more advanced program comprehension tools.
Here, we list some potential tools based on our analysis of
our collected data, and interviews:

Code and Documentation Quality Control. From our study
and interviews, we found no comments or insufficient com-
ments,meaningless classes/methods/variables names, large
number of LOC in a class/method, inconsistent coding
styles, lack of documentation, and ambiguous/Incomplete
document content are all important root causes which lead
to more time spent on program comprehension activities.
However, an automated tool which assess the quality of
code and documentation in a project could help reduce the
effort on program comprehension. In our interview, four out
of ten interviewees pointed out the need to assess the quality
of code and its documentation. P1 stated: “I spend a long time
on program comprehension just because the code quality is low. I
think if we have better code control, such as strict code review, then
I can save more time on program comprehension”. Currently, to
catch deadlines, project teams often do not pay much atten-
tion to documentation. There is a need for tools that can auto-
matically extract useful documentation, beyond simpleUML
diagrams or Javadocs, from source code, to substantially
reduce program comprehension effort.

Comments and Documentation Generation. In our study, we
found no comments or insufficient comments, and lack of
documentation are the two root causes which lead to more
time being spent on program comprehension activities. In
software engineering community, many studies proposed

11. http://discuss.fogcreek.com/joelonsoftware/default.asp?
cmd=show&ixPost=35336

962 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 10, OCTOBER 2018

http://discuss.fogcreek.com/joelonsoftware/default.asp?cmd=show&ixPost=35336
http://discuss.fogcreek.com/joelonsoftware/default.asp?cmd=show&ixPost=35336

the automated generation of comments [38], [54], [55], [61],
and documents [25], [35]. Our findings support these prior
research studies, it would be interesting to deploy these tools
in practice to improve the efficiency of program comprehen-
sion.Automated Generation and Refinement of Search Queries.
From our study, we observe that sometimes developers need
to refine their queries multiple times and browse a number
of search results/links to find the relevant results, which
leads to more time being spent on program comprehension
activities. Thus, automatically generating and refining search
queries based on the context in which a developer is working
(e.g., by monitoring the state of his/her IDE) would help
developers during program comprehension activities. Some
related research tools have been proposed in the literature to
reformulate search queries for text retrieval in software engi-
neering. For example, Haiduc et al proposed Refoqus which
refines a user query based on the top-k (e.g., k = 10) docu-
ments that are retrieved by an initial query [21]. However, in
practice, it is possible that all top-k documents are irrelevant
to the posed query, and for such cases, there is a need to
investigate other ways to refine user queries. Thus, we still
need more work to build a solution that can effectively help
developerswith online searching.

On average across the 7 projects, developers spend 57.62 percent
of their time on program comprehension activities.

4.2 (RQ2) Which Applications Do Developers Use
During Program Comprehension Activities?
How Much Time Do They Spend Inside These
Applications During Their Program
Comprehension Activities?

4.2.1 Results

In this RQ, we investigate program comprehension activi-
ties that are performed outside the IDE, the percentages of

time that developers spend inside various applications dur-
ing these activities, and how developers switch between
applications during program comprehension sessions. We
calculate the length of time that developers spent on various
applications during their program comprehension activi-
ties, and analyze the frequent sequences returned by our
ActivitySpace tool.

Table 7 presents the average percentages of time that
developers spent using IDEs, web browsers, and document
editors to perform program comprehension activities for
each of the seven projects. On average across the seven projects,
the percentages of the time that developers use IDEs, web browsers,
and document editors to do program comprehension activities are
19.95 percent, 27.26 percent, and 10.38 percent, respectively.
Since the distributions of percentage of time developers
spend when using IDEs, web browsers, and text editors dur-
ing their program comprehension activities are normally dis-
tributed as shown by the results of the Shapiro-Wilk test [49]
(i.e., p-value is larger than 0.05), we apply a one-way analysis
of variance (ANOVA) test to determine whether there are
any statistically significant differences between the means of
these groups [56]. Table 8 presents the results for a one-way
ANOVA test for the percentage of time that developers spent
when performing program comprehension activities using
IDEs,web browsers, and document editors. Since the F-value
of the one-way ANOVA is 32.4, and the P-value is less than
0.001, we conclude that the difference between the different
applications used to perform program comprehension activ-
ities is statistically significant.

Next, we also apply a pairwise t-test with a Bonferroni
correction [9] and we measure Cohen’s d [12]12 to determine
whether the difference between different groups is statisti-
cally significant and the effect sizes are substantial. Table 9
presents Cohen’s d and p-values for comparison of percent-
age of time that developers spend when using IDEs, web
browsers, and document editors to perform program com-
prehension activities. We have the following observations:

1) Developers spend least time on program compre-
hension activities when using text editors, and the
effect sizes are small and large when compared with
the time that they spend using IDEs and web brows-
ers, respectively.

2) Developers spend most time on program compre-
hension activities when using web browsers, and the
effect sizes are large when compared with the time
using IDEs and text editors.

TABLE 7
The Average Percentage of Time That Developers Spent
on Program Comprehension Activities When They Use

IDEs, Web Browsers, and Document Editors

Project IDEs Web Browsers Document Editors

Average 19.95% 27.26% 10.38%
A 36.76% 23.71% 2.91%
B 14.03% 31.26% 10.05%
C 14.04% 36.13% 8.68%
D 18.39% 34.23% 0.70%
E 16.08% 28.08% 10.45%
F 32.22% 24.13% 7.70%
G 8.58% 26.50% 16.72%

TABLE 8
One-Way ANOVA Test for Percentage of Time That
Developers Spent Using Different Applications to

Perform Program Comprehension Activities

Factor DF Sum Sq. Mean Sq. F Value P Value

Application 2 11,323 5,662 32.4 3.9e�13***
Residuals 234 40,940 175 – –

***p < 0.001, **p < 0.01, *p < 0.05.
DF = Degrees of Freedom. Sum Sq. = Sum of Square. Mean Sq. = Mean of
Square.

TABLE 9
Cohen’s D and P-Values for Comparison of Percentage of
Time That Developers Spent Using Different Applications

to Perform Program Comprehension Activities

Application IDE Web Browser

Web Browser �0.49 (Small)*** –
Text Editor 0.70 (Medium)** 1.55 (Large)***

***p< 0.001, **p< 0.01, *p< 0.05.

12. Cohen defines a D of between 0.01 to 0.20, between 0.20 and 0.50,
between 0.50 and 0.80, above 0.80 as negligible, small, medium, and
large effect size [12], respectively.

XIA ET AL.: MEASURING PROGRAM COMPREHENSION: A LARGE-SCALE FIELD STUDY WITH PROFESSIONALS 963

Table 10 presents the top-5 frequent sequences and the per-
centage of program comprehension time for each sequence.
We observe that developers frequently switch between IDEs and
web browsers. For example, the frequent sequence “IDE)
Web Browser” and “Web Browser) IDE” correspond to
10.55 and 9.15 percent of the total effective working time of
developers. Moreover, the frequency of switching between
IDEs and document editors is much lesser. Among the top-5
frequent sequences, only “Web Browser) IDE) Doc-
ument” captures the switching among web browsers, IDEs,
and document editors, which corresponds to 3.35 percent of
developers’ total effectiveworking time.

We also investigate what kinds of tasks lead to web
browser use (see Table 11). There are 20,678 web pages in
our collected data. So, we randomly sample 3,000 web pages
from the collected data and perform an open card sort to
group the tasks. Our card sort process consists of two
phases: In the preparation phase, we create one card for
each web page. In the execution phase, cards are sorted into
meaningful groups with a descriptive title. Our card sort
was open, meaning that we had no predefined groups;
instead, we let the groups emerge and evolve during the
sorting process. The first author and another two graduate

students of Zhejiang University (who are not co-authors of
this paper) jointly sorted the card. Finally, we categorize six
kinds of tasks that lead to web browser use: Communication,
Project/Company Management, Debugging/Testing, Learning,
Search for Solutions, and Others. We also count the number of
web pages that the developers open and calculate the per-
centage of web pages that belong to each task—see the last
column of Table 11. While reading their emails, developers
need to comprehend email contents (e.g., bug description
and solution proposal) to complete their work. Thus, the
comprehension time in a web browser also includes email
time. We group email and online forum under the same task
(i.e., communication) since both of them can be used for
communication.

We find that themost use of browser belongs to Searching
for Solution category. Developers often need to search online
when they encounter some problems during software devel-
opment. The search process is usually as follows: First, a
developer encounters a problem while working in the IDE,
e.g., an exception; then he/she switches to the browser,
opens the search engine and inputs a query; he/she visits
several web pages, e.g., a post on Stack Overflow, a technical
blog, etc; Finally, he/she finds a solution and switches back
to the IDE to fix the problem. During this process, developers
need to perform many comprehension activities to compre-
hend the knowledge on these web pages.

Another important reason that leads developers to use a
web browser is Debugging/Testing. There is at least oneweb
application in all the studied projects and developers usually
need to switch frequently between the IDE and the browser
when they are debugging or testing theweb application.

The aforementioned two tasks might cause very frequent
switchings between the IDE and the browser,which increases
program comprehension cost. The increased cost is due to the

TABLE 10
Top-5 Frequent Sequences and the Percentage of
Program Comprehension Time for Each Sequence

Frequent Sequence Percentage

IDE)Web Browser 10.55%
Web Browser) IDE 9.15%
IDE)Web Browser) IDE 5.35%
Web Browser) IDE)Web Browser 4.65%
Web Browser) IDE) Document 3.35%

TABLE 11
The Summary of Web Browser Use

Task Description Website Example Task Example Perc.

Communication Developers use some online tools in Web browser

to communicate with others

Email Developers read emails to comprehend reported bugs. 6.5%

Online Forum Developers discuss some interesting topics in company

forums.

Project/Company

Management

Currently, many project/company management

systems (e.g., task tracking system, code quality

management system) are web application

Intracompany

Website

Developers submit their monthly reports in a task

tracking system.

14.2%

Debugging/

Testing

If a developer works for a web application (e.g.,

J2EE), he usually need to visit the related web

page when he is testing/debugging one certain

function.

Project-related

Website

After developers receive a bug report, they open the

related webpage of the project to debug/test the related

function

24.3%

Learning Developers learn some kinds of knowledge from

online resources, such as technical tutorial, online

company documentation.

Tutorial Developers learn code skills through online turotials. 8.5%

Searching for

Solutions

Search engines
To solve some technical problems, developers usually use

Baidu/Bing to search for solutions.

42.8%

During software development, developers often

encounter many obstacle (e.g., runtime exceptions,

or configuration errors) or are required to imple-

ment some code. They usually use search engines

to get relevant anwsers.

Q&A websites
Developers often visit Stack Overflow to find some code

examples or solutions.

API

documentation

Developers often visit the official API documentation

(e.g., Java API) to know the usage of one certain API

Code hosting
Developers find some popular repositories in Github to

get a similar technical solution

Others Websites that are unrelated to developers’ work Entertainment When developers have a rest, they view news or visit

social network websites.

3.7%

964 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 10, OCTOBER 2018

developers working context changing fast and frequently
during the switchings across applications [4]. This suggests
that effective techniques are required to track the information
that flows implicitly during the context switching.

In addition to the two above mentioned tasks, developers
also need to learn programming skills and background
knowledge related to their project by reading online tutori-
als and accessing the company’s sharepoint site.

4.2.2 Interview Findings

From our interviews, all of the ten interviewees confirm that
they frequently use a web browser to perform program com-
prehension activities. P6 stated: “I will use a web browser to
search for something that I cannot understand from the source code.
For example, I just simply copy the piece of source code that I do not
understand into Bing13, and I will find something useful from the
search results. It really helps me and I think the time to use web
browser to do program comprehension takes half of my total time on
program comprehension.” From Table 7, we notice on average
across the seven projects, the percentages of time that devel-
opers use web browsers to perform program comprehension
activities is 27.26 percent, while the percentages of time that
developers use IDEs and document editors to perform pro-
gram comprehension activities is 30.33 percent. P6’s com-
ments are consistent with our findings listed in Table 7.

Also, eight out of the ten interviewees complain that the
frequent switching among web browsers, IDEs, and docu-
ment editors adversely impacts their productivity, since
they may forget what they really want to do after the switch, and
they need to spend some time to recall something (P1). P10
stated: “although web browser and documents can help to do pro-
gram comprehension, I still need to do the search process. Some-
times I cannot find the solutions that I want, so I keep on
searching. Then after several tries, I may forget what I really want
to do, and maybe go to read some news in the web browser”.

Notice that in Table 7, the time spent for program com-
prehension activities that are performed inside document
editors is much lower than time spent inside IDEs and web
browsers. We also check this observation with the inter-
viewees, and seven of them agree that suitable documents
are not always available or comprehensive enough. Thus,
they prefer to use IDEs and web browsers more frequently
during their program comprehension activities (P1, P3, P5,
P6, P7, P9, P10). P1 stated: “Due to the tight project schedule,
most of the projects do not leave enough documentation. The help
from the documentation is rather limited, reading the source code
more or searching from the Internet can be more helpful”.

4.2.3 Implications

Based on the findings of RQ2, we have the following
implications:

Integrating Multiple Applications into IDE. We notice that
developers frequently switch between their IDEs and web
browsers. Also, the percentage of time that a developer uses
a web browser to perform program comprehension activi-
ties is � 27 percent, which is more than the total percentage
of time spent on program comprehension activities that are
performed within IDEs and document editors. To reduce

the time wasted due to the switching among multiple appli-
cations, it will be interesting to integrate multiple relevant
applications into IDEs, e.g., integrate web search functions
into IDEs. In practice, Mylyn14 [24], can help reduce the side
effect due to task switching, and improve productivity by
reducing searching, scrolling, and navigation. Past studies
(e.g., [43], [45]) also investigate how to integrate search
engines or Stack Overflow into IDEs. Our findings support
these prior studies.

Search Engines. From RQ1, we found that query refine-
ment might cause more time being spent on program com-
prehension activities. From RQ2, in Table 11, we found that
developers frequently search for solutions online. Thus,
investigating what developers search and how they perform
search activities could help us better understand how devel-
opers perform program comprehension activities. In soft-
ware engineering research, many prior studies (e.g., [1], [2],
[3], [31], [32]) tried to develop domain-specific search
engines (e.g., code search engines) to help developers to
improve their search efficiency. However, it is still not clear
whether domain-specific search engines can help develop-
ers improve their performance on program comprehension.
Also, there are other open questions which are not
answered: What do developers search online? Are general
search engines such as Google good enough to solve soft-
ware engineering problems? Future studies are needed to
further investigate these questions.

Aside from IDEs, developers use web browsers and document
editors in their program comprehension activities. On average
across the five projects, the percentages of time that developers
use IDEs, web browsers, and document editors to do program
comprehension activities are 19.95, 27.26, and 10.38 percent.
Moreover, developers frequently switch between IDEs and web
browsers, and the help gained from reading documents is limited.

4.3 (RQ3) Do Different Programming Languages
Affect the Percentage of Time Spent on Program
Comprehension?

4.3.1 Results

In this research question, we investigate whether develop-
ers working on projects written in different programming
languages spend different percentages of time on program
comprehension. To address RQ3, we divide the seven proj-
ects into two groups, i.e., Java and C#. The Java group con-
sists of projects A, C, D, and F, and the C# group consists of
projects B, E, and G.

One-way ANOVA Analysis. Fig. 6 presents the percen-
tages of program comprehension time for Java and C# proj-
ects. We notice that on average, developers working in the
Java and C# projects spend 63.22 and 53.54 percent of their
time on program comprehension activities. Similar to RQ2,
since the distribution of percentage of time developers that
spent program comprehension is normally distributed as
shown by the results of the Shapiro-Wilk test [49] (i.e., p-
value is larger than 0.05), we apply a one-way analysis
of variance (ANOVA) to determine whether there are any
statistically significant differences between the means of the

13. In China, Google is blocked so developers use Bing more fre-
quently instead. 14. http://www.tasktop.com/mylyn/resources

XIA ET AL.: MEASURING PROGRAM COMPREHENSION: A LARGE-SCALE FIELD STUDY WITH PROFESSIONALS 965

http://www.tasktop.com/mylyn/resources

two groups [56]. Table 12 presents the results for a one-way
ANOVA test for percentage of time that developers spend
on program comprehension when working on Java and C#
projects. Since the F- value of the one-way ANOVA is 18.7,
and the P-value is less than 0.001, we conclude that there is
statistical significance difference for the time that develop-
ers spend on program comprehension in Java versus C#
projects.

Next, we alsomeasure Cohen’s d to test whether the effect
size between these two groups (Java and C#) is substantial.
The Cohen’s d is 0.97, which corresponds to large effect size.
Thus, we conclude that developers working on Java projects
spend more time on program comprehension than those
working on C# projects (at least for our studied projects).

Two-way ANOVAAnalysis. In RQ2, we investigate the per-
centages of time that developers spent on program compre-
hension activities when using IDEs, web browsers, and
document editors. Here, we investigate the interaction effects
of the programming language of projects and the applica-
tions (i.e., IDE, Web browser, or text editor) that are used for
program comprehension. For example, we would like to
investigate whether developers in C# projects spend more
time on comprehension in web browsers than those develop-
ers in Java projects. Since the distributions of percentage of
time that developers spent using IDEs, web browsers, and
text editors during their program comprehension activities
are normally distributed as shown by the results of the
Shapiro-Wilk test (i.e., p-value is larger than 0.05), we apply
a two-wayANOVA test [9]. A two-wayANOVA test extends
a one-way ANOVA by examining the influence of two

different categorical independent variables (in our case, pro-
gramming languages, and used applications) on one contin-
uous dependent variable (in our case, the percentage of time
that is spent on program comprehension). Table 14 presents
the results of our two-way ANOVA test for the interaction
effects of the programming language of projects and the
used applications for program comprehension. We find that
the programming language of a project, the used appli-
cations for program comprehension, and the interactions of
these two factors all have statistically significant impact on
the percentage of time spent on program comprehension.

Next, we also apply a pairwise t-test with a Bonferroni
correction and a Cohen’s d to test whether the difference
between these two factors (i.e., programming languages,
and used applications) are statistically significant and that
the effect sizes are substantial. Table 15 presents the Cohen’s
d and p-values for the interactions of programming lan-
guages of projects and used applications for program com-
prehension, we have the following observations:

1) Developers in C# projects spend more time on pro-
gram comprehension inside web browsers than
developers in C# projects using IDEs or text editors,
respectively, and the effect sizes are large. However,
there is a negligible effect size and non-statistical sig-
nificant difference when comparing the time spent
on program comprehension by using IDEs and text
editors in C# projects.

2) Developers in Java projects spend less time on pro-
gram comprehension inside text editors than devel-
opers in Java projects using IDEs or web browsers,
respectively, and the effect sizes are large. However,
there is a negligible effect size and non-statistically

TABLE 12
One-Way ANOVA Test for Percentage of Time That

Developers Spent on Program Comprehension
When Working on Java and C# Projects

Factor DF Sum Sq. Mean Sq. F Value P Value

Language 1 1,492 1,492 18.7 4.6e�5***
Residuals 77 6,158 80 – –

***p< 0.001, **p< 0.01, *p< 0.05.

TABLE 14
Two-Way ANOVA Test for the Interaction Effects of
the Programming Language of Projects and the
Applications Used for Program Comprehension

Factor DF Sum Sq. Mean Sq. F Value P Value

Language 1 497 497.4 3.3 0.0488*
Application 2 11,323 5661.6 38.0 5.2e�15***
Lang:Appl 2 6,066 3,033 20.4 7.1e�9***
Residuals 231 34,377 148.8 – –

***p< 0.001, **p< 0.01, *p< 0.05.

TABLE 13
Interaction Effect of Programming Languages of a Project and

Used Applications for Program Comprehension

" denotes the staticstically significant with a large positive effect size, while #
denotes statistically significant with a large negative effect size.

Fig. 6. A violin plot of the percentages of program comprehension time
for different programming languages.

966 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 10, OCTOBER 2018

significant difference when comparing the time
spent on program comprehension by using IDEs and
web browsers in Java projects.

3) Developers in Java projects spend more time on pro-
gram comprehension inside the IDEs than develop-
ers in C# projects using IDEs. However, there is no
statistically significant difference when comparing
the time on program comprehension using web
browsers or text editors in C# and Java projects.

To visualize the results, we plot the interaction effect
between programming languages of projects and used appli-
cations for program comprehension as shown in Table 13. "
denotes the staticstically significant with a large positive
effect size, while # denotes statistically significant with a
large negative effect size. From Table 15, we also find that the
main difference between the time spent on program compre-
hension in Java and C# projects is due to difference in the
time spent on program comprehension inside IDEs, and we
find that on average developers in Java projects spend a
higher percentage of their time performing program compre-
hension activities inside IDEs than their counterparts that
work on C# projects (28.72 versus 11.82 percent).

Furthermore, we analyze if the difference in program
comprehension time is correlated to the age of a project. We
first count the number of the months that passed from the
start date of the seven projects to the month when we per-
formed our study (i.e., June 2016); these are shown in
Table 16. We then use the Spearman correlation coefficient to
measure the strength of correlation between the two varia-
bles C- in our case, number of months that passed for each
of the seven projects, and program comprehension time. The
Spearman correlation coefficient ranges from �1 to 1, where
�1 and 1 correspond to perfect negative and positive rela-
tionships respectively, and 0 means that the variables are
independent of each other. Table 17 presents Spearman’s
rho and P-value for the number of months and program
comprehension time. The correlations between the number

of months, and the overall program comprehension time,
the time spent on program comprehension inside IDEs,
web browser, and text editors are all small. Thus, the age of
a project has a limited effect on the spent time spent on pro-
gram comprehension. Note that these correlations may
not be statistically significant, due to the small size of the
investigated data.

4.3.2 Interview Findings

We also interview developers to better understand why Java
projects need more program comprehension time. One possi-
ble reason is that Java projects often make extensive use of
third party libraries. P5 stated: “Different from C# projects, Java
projects often use a number of third party open source libraries.
These libraries lead quite often to an increased need for additional
program comprehension effort, since we need to understand what is
in these libraries”. To further analyze whether the number of
third party libraries affects the time spent on program com-
prehension, we count the number of third party libraries that
are used in these seven projects by analyzing their build files
(e.g., build.xml in Ant, pom.xml inMaven, orMSBuild in C#).
Table 16 presents the number of third party libraries to the
percentage of time spent on program comprehension. We
observe that Java projects use a larger number of third party
libraries than C# projects. We use the Spearman correlation
coefficient [62] to measure the correlation between the two

TABLE 15
Cohen’s d and p-Values for the Interactions of the Programming Languages of a Project

and Used Applications for Program Comprehension

Lang.(Appl.) C# (IDE) C# (Web) C# (Text) Java (IDE) Java (Web) Java (Text)

C# (IDE) – 1.20 (Large)*** 0.16 (Negligible) 1.14 (Large)*** 1.23 (Large)*** �0.46 (Small)
C# (Web) �1.20 (Large)*** – �1.21 (Large)*** 0.05(Negligible) �0.12(Negligible) �1.86 (Large)***
C# (Text) �0.16 (Negligible) 1.21 (Large)*** – 1.13 (Large)*** 1.29 (Large)*** �0.77 (Medium)
Java (IDE) �1.14 (Large)*** �0.05(Negligible) �1.13 (Large)*** – �0.16 (Negligible) �1.70 (Large)***
Java (Web) �1.23 (Large)*** 0.12(Negligible) �1.29 (Large)*** 0.16 (Negligible) – �2.12 (Large)***
Java (Text) 0.46 (Small) 1.86 (Large)*** 0.77 (Medium) 1.70 (Large)*** 2.12 (Large)*** –

***p< 0.001, **p< 0.01, *p< 0.05.

TABLE 16
Number of Third Party Libraries and Number of Months to the Percentage of Time Spent on Program Comprehension

Project Language #No. Libs #No. Months % Compre. % IDE %Web % Text

A Java 22 68 63.37% 36.76% 23.71% 2.91%
C Java 18 35 58.86% 14.04% 36.13% 8.68%
D Java 14 18 53.32% 18.39% 34.23% 0.70%
F Java 25 14 64.05% 32.22% 24.13% 7.70%
B C# 4 58 55.80% 14.03% 31.26% 10.05%
E C# 6 50 56.15% 16.08% 28.08% 10.45%
G C# 2 22 51.80% 8.58% 26.50% 16.72%

TABLE 17
Spearman’s Rho and p-Value for the Number of
Months and Program Comprehension Time

Factors Spearman’s rho p-value

Overall Compre. Time 0.09 0.85
IDE Compre. Time 0.04 0.94
Web Browser Compre. Time �0.04 0.94
Text Editor Compre. Time 0.16 0.73

Statistically significance is in bold.

XIA ET AL.: MEASURING PROGRAM COMPREHENSION: A LARGE-SCALE FIELD STUDY WITH PROFESSIONALS 967

variables—in our case, number of used libraries in the seven
projects, and the program comprehension time. Table 18
presents Spearman’s rho and p-value for the number of librar-
ies and program comprehension time. Correlations between
the number of libraries, and the overall program comprehen-
sion time and the time spent on program comprehension
inside IDEs are high and statistically significant. Thus, an
increase in the number of libraries is associated with an
increase in the amount of time spent on program comprehen-
sion, especially the time spent on program comprehension
inside IDEs. Note that althoughwe getmedium to large corre-
lations between the number of libraries and time spent onpro-
gram comprehension insideweb browser and text editors, the
correlations may are not statistically be significant, due to the
small size of the investigated data.

We also investigate the interaction effects of the pro-
gramming language of a project and the number of used
libraries in these projects to the percentage of time spent on
program comprehension. We have a continuous indepen-
dent variable (i.e., the number of libraries) and a categorical
independent variable (i.e., the programming languages of a
project). Hence, while a two-way ANOVA only works
when the independent variables are of categorical type, we
use a two-way ANCOVA test [9] since a two-way ANOVA
only works when the independent variables are categorical.
to check whether the interaction effect of programming lan-
guage and the number of used libraries has a statistically
significant impact on the time spent on program compre-
hension. Table 19 presents the two-way ANCOVA test for
the interaction effects of the programming language of a
project and the number of used libraries for program com-
prehension. We find that the programming languages of a
project, and the number of used libraries have statistically
significant impact on the percentage of time that is spent on
program comprehension. However, the interaction of these
two factors does not have a statistically significant impact
on the percentage of time that is spent on program compre-
hension. Thus, the programming languages of a project,
and the number of used libraries impact the percentage of
time spent on program comprehension independently.

Another reason is that many developers find that Visual
Studio (IDE for C# projects) provides better support for pro-
gram comprehension activities than Eclipse (IDE for Java
projects). All ten interviewees agreed that the difference
between the IDEs plays a major role in the difference in pro-
gram comprehension time. Among the ten interviewees, six
of them have experience on both Java and C#, and used
Eclipse and Visual Studio, and we asked them whether they
think Visual Studio provides better search and navigation
functions in comparison to Eclipse. And all of them agreed

that the difference between the IDEs play a major role in the
difference in program comprehension time.

4.3.3 Implications

Based on the findings of RQ3, we have the following
implications:

Library Usage. One advantage of Java is that there are
many third-party libraries, and SE introductory book (e.g.,
[19], [44]) often encourage developers to reuse existing code
instead of writing new code, in order to reduce develop-
ment time. From our study, we find that using more third-
party libraries increases the time spent on program com-
prehension. Thus, it would be interesting to investigate
whether the decreased time on development is equal, larger,
or smaller than the increased time on program comprehen-
sion. Moreover, considering that there are a large number of
third party libraries, and some are of high quality, while
others are of low quality. Thus, recommending suitable
libraries for software development would be useful.

Better Design of IDE. In RQ1, we observed that navigating
inheritance hierarchies leads to more time spent on program
comprehension. And in RQ3, we observed that the main dif-
ference of spent time on program comprehension in Java ver-
sus C# projects is due to difference of time spent on program
comprehension inside IDEs. In our interviews, five out of ten
interviewees mentioned IDEs like Eclipse do not provide suf-
ficient support for developers to fully understand and navi-
gate through relationships (e.g., containment, inheritance,
and invocations) between code elements that are spread
across multiple source code files. Prior research proposed
several tools to improve IDEs according to developers’ typi-
cal behavior [10], [27]. Ko and Myers proposed a debugging
tool Whyline, which allows programmers to ask ”Why did”
and ”Why didn’t” questions about their program’s out-
put [27]. Bragdon et al. proposed Code Bubbles to help devel-
opers define and use working sets, where a working set refers
to the group of functions, documentation, notes, and other
information that a programmer needs for accomplishing a
particular programming task (e.g., feature implementation or
bug fixing) [10]. Moreover, from our interviews we observe
that the Eclipse community might also draw lessons from
some interesting design ideas and functionalities from Visual
Studio. Future studies are needed to better under the key dif-
ferences between Eclipse and Visual Studio, and the impact
of these differences on program comprehension activities.

Developers in the Java projects spend more percentages of their
time on program comprehension than developers in the C#
projects.

TABLE 18
Spearman’s Rho and P-Value for the Number of Libraries

and Program Comprehension Time

Factors Spearman’s rho p-value

Overall Compre. Time 0.88 0.008
IDE Compre. Time 0.81 0.027
Web Browser Compre. Time �0.31 0.504
Text Editor Compre. Time �0.74 0.058

Statistically significance is in bold.

TABLE 19
Two-way ANCOVA Test for the Interaction Effects of the

Programming Language of a Project and the Number of Used
Libraries for on the Time Spent on Program Comprehension

Factor DF Sum Sq. Mean Sq. F Value P Value

Language 1 1492.3 1492.3 19.4 3.5e�5***
Lib 1 377.1 377.1 4.9 0.03*
Lang:Lib 1 0.5 0.5 0.007 0.935
Residuals 75 5779.9 77.06 – –

***p< 0.001, **p< 0.01, *p< 0.05.

968 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 10, OCTOBER 2018

4.4 (RQ4) Do Senior Developers Spend Less Time
on Program Comprehension?

4.4.1 Results

In RQ4,we examinewhether there existsmajor differences for
participants with different professional experience, thus we
create buckets of participants according to their professional
experience. Specifically, we divide the developers into three
groups according to their number of years of professional
experience. We define those with low, high, and medium
experience as the 25 percentwith the least experience in years,
25 percent with the most experience in years, and the rest,
respectively. This grouping of participants follows prior
work, e.g., Carver et al. [11] and Lo et al. [33]. By using this
approach, participants who have less than 3 years of profes-
sional experience, 3 to 5 years of professional experience, and
more than 5 years of professional experience are categorized
into the low,medium, and high experience groups.

One-way ANOVA Analysis. Fig. 7 presents the percen-
tages of program comprehension time for developers with
different professional experience. On average, developers of
low, medium, and high experience spend 66.37, 55.97, and
44.43 percent of their time on program comprehension
activities. Similar to previous RQs, we apply a one-way
analysis of variance (ANOVA) to determine whether there
are any statistically significant differences between the
means of the three groups. Table 20 presents the results for
a one-way ANOVA test for the percentage of time that
developers with different professional experience spend on
program comprehension. Since the F value of the one-way

ANOVA is 79.4, and the p-value is less than 0.001, we
conclude that there is a statistical significant difference for
the time that developers with different professional experi-
ence spend on program comprehension. Table 21 presents
Cohen’s d and p-values for comparison of percentage of
time that developers with low, medium, and high profes-
sional experience spend on program comprehension activi-
ties. We have the following observations:

1) Developers of low professional experience spend
more time on program comprehension activities
compared to developers with medium and high pro-
fessional experience, and the effect sizes are large.

2) Developers of medium professional experience
spend more time on program comprehension activi-
ties compared to developers with high professional
experience, and the effect size is large.

Two-way ANOVA Analysis. Here, we want to investigate
the interaction effects of professional experience and the
used applications (i.e., IDE, Web browser, and text editor)
for program comprehension, and we apply a two-way
ANOVA test to check whether the interaction effect of pro-
fessional experience and the used applications has a statisti-
cally significant impact on the time spent on program
comprehension. Table 22 presents the results of a two-way
ANOVA test for the interaction effects of professional experi-
ence and the used applications for program comprehension.
We find that professional experience, used applications
for program comprehension, and the interactions of these
two factors all have statistically significant impact on the per-
centage of time that is spent on program comprehension.
Here, the interaction of these two factors has a statistically
significant impact on the percentage of time that is spent on
program comprehension, meaning that the simultaneous
influence of the two factors (in our case, professional experi-
ence and the used applications) on the dependent variable
(in our case, percentage of time that is spent on program
comprehension) is not additive.

Fig. 7. A violin plot of the percentages of program comprehension time
for developers with different professional experience.

TABLE 20
One-Way ANOVA Test for the Percentage of Time That

Developers with Different Professional Experience
Spent on Program Comprehension

Factor DF Sum Sq. Mean Sq. F Value P Value

Experience 2 5174 2587.1 79.4 < 2:2e�16***
Residuals 76 2476 32.6 – –

***p< 0.001, **p< 0.01, *p< 0.05.

TABLE 21
Cohen’s d and p-Values for Comparison of Percentage of

Time That Developers with Low, Medium, and High
Professional Experience Spent to Perform

Program Comprehension Activities

Exp Low Medium

Medium 1.80 (Large)*** –
High 3.99 (Large)*** 1.98 (Large)***

***p< 0.001, **p< 0.01, *p< 0.05.

TABLE 22
Two-Way ANOVA Test for the Interaction Effects of
Professional Experience and the Used Applications

for Program Comprehension

Factor DF Sum Sq. Mean Sq. F Value P Value

Experience 2 1,725 862.4 5.5 0.005**
Application 2 11,323 5661.6 36.2 2.3e�14***
Exp:Appl 4 3,523 880.7 5.6 0.0002***
Residuals 228 35,693 156.5 – –

***p< 0.001, **p< 0.01, *p< 0.05.

XIA ET AL.: MEASURING PROGRAM COMPREHENSION: A LARGE-SCALE FIELD STUDY WITH PROFESSIONALS 969

Next, we also apply a pairwise t-test with a Bonfer-
roni correction and we measure Cohen’s d to test
whether the difference between these two factors (i.e.,
professional experience, and used applications) are sta-
tistically significant and whether the effect sizes are sub-
stantial. Table 23 presents the Cohen’s d and p-values
for the interactions of professional experience and used
applications for program comprehension, we have the
following observations:

1) Developers of low and medium experience spend
less time on program comprehension inside text edi-
tors than inside IDEs or web browsers, and the effect
sizes are large.

2) Different from developers of low and medium expe-
rience, developers of high experience spend less
time on program comprehension inside IDEs than
inside text editors or web browsers, and the effect
sizes are large.

3) Developers of low and medium experience spend
more time on program comprehension inside IDEs
than developers with high experience, and the effect
size is large. However, there is no statistically signifi-
cant difference between developers of low experi-
ence and medium experience on the time spent on
program comprehension inside IDEs.

4) There is no statistically significant difference among
developers of low, medium, and high experience on
the time spent on program comprehension inside
web browsers or text editors, although the effect
sizes are small or medium.

4.4.2 Interview Findings

All of the ten interviewees agree that the more senior a
developer is the more likely he/she spends less time on
program comprehension. Senior developers accumulate
enough software development experience, and some of
them have done a number of similar projects before. In an
IT company, to better allocate human resources, typically
developers are required to do projects in the same domain.
For example, P6 has done five projects which are all
related to financial systems. The accumulated experience
helps to reduce the time spent on program comprehension
activities. P1 who is a senior developer stated: “I have
worked more than 7 years, and done more than 20 projects. Cur-
rently, given a requirement document, I can even know how the

source code will be written since most of these projects are simi-
lar. However, if I come to a new project which I have never done
before, such as a Matlab project, I will still spend a lot of time on
program comprehension”.

4.4.3 Implications

Based on the findings of RQ4, we have the following
implications:

Program Comprehension Behavior Learning. We manually
checked and compared the behavior of senior and junior
developers during program comprehension activities, and
we noted some interesting observations. For example, when
switching between an IDE and a web browser, some senior
developers will first copy some code from the web browser
to the IDE, then compare the differences between the copied
code and the original code in the IDE. In this way, they can
reduce the time to switch between IDE and web browser
multiple times. However, for some junior developers, they
just simply switched between IDE and web browser multi-
ple times, which required more time. Thus, it would be
interesting to develop a tool which can automatically moni-
tor developers’ behaviors when they perform program com-
prehension activities, and recommend best practices to
developers to help them reduce program comprehension
time. The best practices can possibly be learnt automatically
by mining the activities of senior developers.

As an example, in a project team, we can analyze how
senior developers navigate source code to acquire a good
program understanding to perform various maintenance
tasks (e.g., implementing newly requested features, fixing
newly reported bugs, etc.). Based on senior developers’
navigation patterns, we can build new behavior-driven
change impact analysis and bug localization techniques.
Given a particular source code file to change, we can rec-
ommend what other source code files and documentation
to inspect to get the needed information to perform the
change. Given a new feature request, we can highlight the
files that developers need to inspect to get a better under-
standing of relevant parts of the code base. Given a new
bug report, we can highlight the files that developers need
to inspect to get a better understanding as to what went
wrong and how to fix it. As another example, we can rec-
ommend sites that senior developers frequently visited to
get information that is needed during program comprehen-
sion phase, or to learn new technology and tips to improve
their skills.

TABLE 23
Cohen’s d and p-Values for the Interactions of Professional Experience and Used Applications for Program Comprehension

Exp(Appl) Low(IDE) Low(Web) Low(Text) Med(IDE) Med(Web) Med(Text) High(IDE) High(Web) High(Text)

Low(IDE) – 0.18 (Neg) �1.00(Lar)*** �0.36(Sma) 0.15(Neg) �1.37(Lar)*** �1.13(Lar)*** �0.31(Sma) �0.63(Med)
Low(Web) �0.18 (Neg) – �1.67(Lar)*** �0.68(Med) �0.05(Neg) �2.39(Lar)*** �1.95(Lar)*** �0.69(Med) �1.19(Lar)*
Low(Text) 1.00(Lar)*** 1.67(Lar)*** – 0.73(Med) 1.56(Lar)*** �0.45(Sma) �0.33(Sma) 0.91(Lar) �0.47(Sma)

Med(IDE) 0.36(Sma) 0.68(Med) �0.73(Med) – �0.06(Neg) �0.33(Sma)** �0.95(Lar)* 0.06(Neg) �0.33(Sma)
Med(Web) �0.15(Neg) 0.05(Neg) �1.56(Lar)*** 0.06(Neg) – �2.21(Lar)*** �1.82(Lar)*** �0.62(Med) �1.09(Lar)*
Med(Text) 1.37(Lar)*** 2.39(Lar)*** 0.45(Sma) 0.33(Sma)** 2.21(Lar)*** – �0.06(Neg) 1.58(Lar)* 1.1(Lar)

High(IDE) 1.13(Lar)*** 1.95(Lar)*** 0.33(Sma) 0.95(Lar)* 1.82(Lar)*** 0.06(Neg) – 1.18(Lar) �0.80(Med)
High(Web) 0.31(Sma) 0.69(Med) �0.91(Lar) �0.06(Neg) 0.62(Med) �1.58(Lar)* �1.18(Lar) – �0.45(Sma)
High(Text) 0.63(Med) 1.19(Lar)* �0.47(Sma) 0.33(Sma) 1.09(Lar)* �1.1(Lar) �0.80(Med) 0.45(Sma) –

***p< 0.001, **p< 0.01, *p< 0.05.

970 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 10, OCTOBER 2018

Senior developers spend less time on program comprehension
activities than novices/less experienced developers.

4.5 (RQ5) Do Different Project Phases Affect the
Percentage of Time Spend on Program
Comprehension?

4.5.1 Results

To address RQ5, we divide the seven projects into two
groups, i.e., projects in the new development phase and proj-
ect in the maintenance phase. The new development phase
group contains projects C, D, E, and G, and the maintenance
phase group contains projects A, B, and F.

One-wayANOVAAnalysis. Fig. 8 presents the percentage of
time that is spent on program comprehension activities for
projects in the development and maintenance phases. We
notice that on average, developers of projects in the new
development phase and those in the maintenance phase
spend 53.54 and 63.22 percent of their time on program com-
prehension activities. Table 24 presents the results for a one-
way ANOVA test for the percentage of time that developers
of projects in maintenance and new development phases
spend on program comprehension. Since the F value of the
one-way ANOVA is 23.7, and the p-value is less than 0.001,
we conclude that there is statistically significant difference for
the time that developers spent on program comprehension in
projects in themaintenance versus newdevelopment phase.

Next, we also apply a pairwise t-test with a Bonferroni
correction and we measure Cohen’s d to test whether the
difference between these two groups (maintenance and

development) are statistically significant and the effect sizes
are substantial. The p-value is less than 0.001, and Cohen’s
d is 1.11, which corresponds to large effect size. Thus, we
conclude that developers working on maintenance projects
spend more time on program comprehension than develop-
ers working on new development projects.

Two-way ANOVA Analysis. Here, we would like to
investigate the interaction effect of the project phase and the
used applications for program comprehension, and we
apply a two-way ANOVA to test the statistical significant.
Table 25 presents the results of a two-way ANOVA test for
the interaction effect of project phase and the used applica-
tions for program comprehension. We find that the project
phase, used applications for program comprehension, and
the interaction of these two factors all has a statistically sig-
nificant impact on the percentage of time that is spent on
program comprehension.

Next,we also apply a pairwise t-testwith a Bonferroni cor-
rection and measure Cohen’s d to test whether the difference
between these two factors (i.e., project phases and used appli-
cations) are statistically significant and the effect sizes are
substantial. Table 26 presents Cohen’s d and p-values for the
interaction of project phases and used applications for pro-
gram comprehension, we have the following observations:

1) Developers in development projects spendmore time
on program comprehension inside the web browsers
than developers in new development projects using
IDEs or text editors, respectively, and the effect size is
large. However, there is a small effect size and a non-
statistically significant difference when comparing
the time on program comprehension by using IDEs
and text editors in development projects.

2) Developers in maintenance projects spend less time
on program comprehension inside the text editors
than those in maintenance projects using IDEs or
web browsers, respectively, and the effect size is
large. However, there is a small effect size and a
non-statistical significance when comparing the time
on program comprehension by using IDEs and web
browsers in maintenance projects.

3) Developers in maintenance projects spend more time
on program comprehension inside the IDEs than
developers in new development projects using IDEs
(28.72 percent versus 11.46 percent). And developers
in maintenance projects spend less time on program
comprehension inside the text editors than develop-
ers in new development projects using text editors
(5.71 versus 13.72 percent). However, there is a
small effect size and a non-statistically significant

Fig. 8. A violin plot of the percentages of program comprehension time
for projects in different phases.

TABLE 24
One-Way ANOVA Test for the Percentage of Time That

Developers in Projects of Maintenance and New Development
Phases Spent on Program Comprehension

Factor DF Sum Sq. Mean Sq. F Value P Value

Phase 1 1,802 1,802 23.7 5.8e�6***
Residuals 77 5,847 75.9 – –

***p< 0.001, **p< 0.01, *p< 0.05.

TABLE 25
Two-Way ANOVA Test for the Interaction Effects of the Project
Phases and the Used Applications for Program Comprehension

Factor DF Sum Sq. Mean Sq. F Value P Value

Phase 1 601 601 4.4 0.0372*
Application 2 11,323 5661.6 41.3 4.5e�16***
Phase:Appl 2 8,701 4354.8 31.8 6.3e�13***
Residuals 231 31,630 136.9 – –

***p< 0.001, **p< 0.01, *p< 0.05.

XIA ET AL.: MEASURING PROGRAM COMPREHENSION: A LARGE-SCALE FIELD STUDY WITH PROFESSIONALS 971

difference when comparing the time on program
comprehension using web browsers in maintenance
versus new development projects.

4.5.2 Interview Findings

There are several reasons for the difference in the percentages
of program comprehension time for developers of projects in
new development phase andmaintenance phase. First, in the
new development phase, the project team is relatively stable,
but in the maintenance phase, some developers will leave
and some new developers will join the project team. P6
stated: “The high turnover rate for project in the maintenance
phase causes the long program comprehension time. Sometimes,
even 50 percent of the developers will leave my team. The new-
comers need to spend more time to understand the source code”.

Second, in the new development phase, developers are
more likely to focus on understanding requirements; while
in the maintenance phase, developers are more likely to
focus on understanding the source code. P3 stated: “In the
new development phase, we spend more time on understanding
the requirements but less time on the source code. Understanding
requirements is high level, while understanding code is low level,
which will take much more time”.

Third, the lines of code (LOCs) of projects in the new
development phase are much less than the LOCs in the
maintenance phase. Thus, the workload to understand the
source code in the new development phase is much less
than that in the maintenance phase. P9 stated: “the search
space for projects in the new development phase and maintenance
phase is different. The larger number of LOCs for projects in the
maintenance phase translates to the need to put more effort on
searching for relevant source code, and hence lead to more time on
program comprehension activities.”.

4.5.3 Implications

Based on the findings of RQ5, we have the following
implications:

Code Search. In RQ5, we found one important reason that
developers in maintenance projects spend more time on
program comprehension, namely the large size of the source
code and relevant documentation. So, an effective code
search tool can help developers find the target information
quickly. Furthermore, if such code search tool can link the
source code to other materials during new development
and maintenance phases, such a tool will make developers
understand source code more effectively.

Developer Turnover Management. We also found that the
high developer turnover rate in the maintenance phase is
associated with developer spending more time on program

comprehension. Many researchers have studied developer
turnover. For example, Mockus finds that developers leav-
ing a project had a negative impact on quality but that new-
comers had no effect on it due to the loss of knowledge and
experience [37]. On the contrary, Foucault et al. find that
newcomers have an impact on quality while project leavers
do not have such an effect [17]. Understanding and prevent-
ing developer turnover can help a company retain talented
developers and reduce the loss due to developers’ depar-
ture. The talented developers who remain in the project can
spend less time on program comprehension.

Developers of projects in the maintenance phase on average
spend a higher percentage of their time on program comprehen-
sion activities than developers of projects in the new development
phase.

5 DISCUSSION

5.1 Cross-Company Analysis

Our study collects data from two companies Hengtian and
IGS. Projects A and G are from IGS, and projects B to F are
from Hengtian. Here, we would like to investigate whether
developers across both companies spend similar time on pro-
gram comprehension. The answer to this question will affect
the generalizability of our study, e.g., if we find that develop-
ers in different companies spend different amount of time on
program comprehension, then future studies should consider
this aspect in the design of their experiments.

One-way ANOVA Analysis. Fig. 9 presents the percentage
of time spent on program comprehension activities for devel-
opers in Hengtian and IGS. On average, developers in Heng-
tian and IGS spend 57.49 and 57.68 percent of their time on
program comprehension activities. Table 27 presents the
results for a one-way ANOVA test for the percentage of time
that developers in maintenance and development phases
spend on program comprehension. Since the p–value is
larger than 0.05, we conclude that there is no statistically sig-
nificant difference in the time, that developers across both
companies, spent on program comprehension.

Two-way ANOVA Analysis. We now investigate the inter-
action effect of the company and the applications that
are used for program comprehension. Hence we apply
a two-way ANOVA to test the statistical significance.
Table 28 presents the results of a two-way ANOVA test for
the interaction effect of company and the applications that
are used for program comprehension. We find that the
interaction of these two factors has a non-statistically signifi-
cant impact on the percentage of time spent on program
comprehension.

TABLE 26
Cohen’s d and p-Values for the Interaction of Project Phase and Used Applications for Program Comprehension

Lang (Appl) Dev (IDE) Dev(Web) Dev(Text) Main (IDE) Main (Web) Main (Text)

Dev(IDE) – 1.28 (Large)*** 0.20 (Small) 1.48 (Large)*** 1.21 (Large)*** �0.53 (Medium)
Dev(Web) �1.28 (Large)*** – �1.27 (Large)*** 0.24(Small) �0.21(Small) �1.98 (Large)***
Dev(Text) �0.20 (Small) 1.27 (Large)*** – 1.52 (Large)*** 1.25 (Large)*** �0.94 (Large)*
Main (IDE) �1.48 (Large)*** �0.24(Small) �1.52 (Large)*** – �0.47 (Small) �2.20 (Large)***
Main (Web) �1.21 (Large)*** 0.21(Small) �1.25 (Large)*** 0.47 (Small) – �2.24 (Large)***
Main (Text) 0.53 (Medium) 1.98 (Large)*** 0.94 (Large)* 2.20 (Large)*** 2.24 (Large)*** –

972 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 10, OCTOBER 2018

From the above analysis, we conclude that developers in
these two companies spend similar time on program com-
prehension, thus our results are more likely to generalize to
other companies. Nevertheless, future studies are needed to
further examine the generality of our findings.

5.2 Feedback from Participants

After completing our paper, we sent the results section
along with the abstract and introduction to the ten inter-
viewees, and asked them for feedback about our findings,
i.e., we asked them whether they agree, disagree or have no
comments (unknown) on the results of each RQ. Fig. 10
presents the survey results for the ten interviewees. In gen-
eral, most of the respondents agreed with the results of the
five RQs. For RQ1 and RQ2, all of the ten respondents
agreed with our findings. For RQ3, two of the respondents
(P9 and P10) choose the option “neutral”, since they only
worked in C# projects, and they never joined any Java proj-
ect. For RQ4, two of the respondents disagreed with our
findings; one commented that “the results in RQ4 are

surprising. In my experience, senior developers need to spend
more time on program comprehension, since they have to do more
advanced things (e.g., code reviews, and architecture design),
which require them to understand source code and the implemen-
tation of systems more” (P1). For RQ5, we have two respond-
ents who disagreed with our findings; one commented that
“I think developers spend similar time on program comprehension
activities in different projects phases, since in any phase develop-
ers need to read code, search online, and reuse third-party librar-
ies. Maybe I am wrong, but I have to admit that it is an
interesting” (P6). Some of the received comments which sup-
port our results are as follows:

� I really like the (nine) root causes concluded by the
authors. I will ask my team members to write com-
ments in source code, to reduce the difficulty of pro-
gram comprehension.

� It is interesting to note (that) developers spendmost of
the time on program comprehension inside Web
browser. Although I know I useweb search frequently,
I never notice that I even spent more time inside web
browsers than inside IDEs. Yes, I agree context switch
increases the time spent on program comprehension.

� Java and C# are the two most popular programming
languages, and I have experience on both of the
two programming languages. From my experience,
when I develop Java projects, I spend more time on
code understanding, since we would use a large
amount of external code. I also agree that third-party
library usage might be the cause of the difference of
the time spent on program comprehension between
Java and C#.

� As an outsourcing company, there are many projects
in themaintenance phases. Sometimes, the boss thinks
maintaining a project ismuch easier than developing a
project from scatch, and thus we should deliver a
maintenance project on time. However, we (develop-
ers) do not agree with that. The finding of the paper
provides us the evidence, and we will use it to argue
with our boss next time.

5.3 Limitations

Threats to Construct Validity. One of the threats to construct
validity relates to the ability of our ActivitySpace tool to
accurately infer program comprehension activities. There
could be activities that are wrongly labelled. Still, we have

TABLE 27
One-Way ANOVA Test for Percentage of Time That Developers

Hengtian and IGS Spend on Program Comprehension

Factor DF Sum Sq. Mean Sq. F Value P Value

Company 1 0.7 0.7 0.007 0.9338
Residuals 77 7649 99.3 – –

***p< 0.001, **p< 0.01, *p< 0.05.

TABLE 28
Two-Way ANOVA Test for the Interaction Effect of Company

and the Used Applications for Program Comprehension

Factor DF Sum Sq. Mean Sq. F Value P Value

Company 1 0 0.2 0.0001 0.9711
Appl 2 11,323 5661.6 37.4 4.0e�16***
Comp:Appl 2 547 273 1.6 0.2117
Residuals 231 40,393 174.9 – –

***p< 0.001, **p< 0.01, *p< 0.05.

Fig. 10. Survey results.

Fig. 9. A violin plot of the percentages of program comprehension time
for developers in Hengtian and IGS.

XIA ET AL.: MEASURING PROGRAM COMPREHENSION: A LARGE-SCALE FIELD STUDY WITH PROFESSIONALS 973

done many steps to minimize errors, e.g., detecting and
removing idle time, and ignoring accesses to websites
which are irrelevant to software development. We also per-
form a preliminary study on two developers to verify the
correctness of our data collection tool on inferring program-
ming comprehension activities. Since the two developers
need to analyze many sprees, it is possible that they make
some mistakes. Still, we believe that the developers are cor-
rect for most of the sprees.

Another threat relates to wrong conclusions that we draw
about participant’s perceptions from their comments. To
minimize this threat, we recorded our interviews and listened
to them several times. Also, the first two authors worked
together to ensure that the results are accurate. After complet-
ing our paper, we also sent it to the interviewees, and asked
them for feedbacks on our findings. All of them agree that our
findings are consistent with their interviews.

Threats on External Validity. The number of participants
that we monitor and interview is limited. In total, we moni-
tor 78 developers for a total of 3,148 working hours and
interview 10 of them. All these developers come from 2
companies. Due to the limited availability of the partici-
pants, we only interviewed ten participants, which might
impact the generalizability of our results. Although these
numbers may limit the generalizability of our study, the
number of developers that we interviewed is on par with
other interview-based studies [20], [39], and the number of
developers that we monitored are more than other studies
that also monitor developers, e.g., [26], [36]. Furthermore,
many of our participants have worked in many other com-
panies before, and have experience with developing proj-
ects of various programming languages and sizes.

We only study two companies and both are from China.
Time spent on program comprehension may be different if
we investigate projects from other companies, especially
those outside China. Additionally, developers participat-
ing in our study may use different search engines, e.g.,
Bing or Google (via VPN). The usage of different search
engines may affect the time spent on program comprehen-
sion. Moreover, the company strategy on open source
projects usage might affect the time spent on program
comprehension, since developers are likely to do more
web searching for projects that make heavy use of open
source components. Future studies are needed to further
examine these points.

Moreover, in this paper, we only consider two pro-
gramming languages, i.e., Java and C#. The time spent on
programming languages might be vary when we consider
more programming languages. In the future, we plan to
reduce these threats further by monitoring and interview-
ing an even larger number of developers across more
companies over a longer period of time, and investigating
projects written in a more diverse set of programming
languages.

6 CONCLUSION AND FUTURE WORK

In this paper, we present a large-scale field study on how
program comprehension is performed in practice. We record
the activities of 78 developers working on 7 real industrial
projects spanning a period totaling of 3,148 working hours.
We analyze this recorded data, and we find that on average,

developers spend up to � 58 percent of their time on pro-
gram comprehension, and they frequently use web browsers
and document editors to perform program comprehension
activities. Through relatively extensive empirical data, our
work revisits long-held assumptions about program com-
prehension, including that senior developers spend less time
on program comprehension, that more time on program
comprehension is required in the maintenance phase, and
that program comprehension activities occupy a non-trivial
amount of a developer’s day. We encourage future work to
use our findings to construct in-depth surveys that can be
distributed to a much wider audience so we can get a much
wider understanding.

A replication package for this paper can be downloaded
from: https://goo.gl/nz3CTU

APPENDIX

1. Different Settings of Reaction Time (RT). In this study, by
default, we set the reaction time (RT) value to 1 second
when computing program comprehension time. This might
be a threat to validity. The range of RT value is usually from
0.5 to 1.5 seconds, which depends on different human fac-
tors (e.g., personality, age, etc.) and the task on hand [59].
Hence, we also try different RT values (i.e., in {0.5, 0.8, 1,
1.2, 1.5}) to investigate the effect of choosing different RT
values on our findings.

Table 29 shows the average percentage of time that
developers spend on comprehension, navigation, editing,
and others when using different RT values. We find that the
larger the RT value is, the less the percentage of comprehen-
sion time is. On the other hand, the percentage of navigation
time becomes larger as the RT value increases. This result
makes sense because all intervals that are larger than RT
among developers’ interactions are computed as compre-
hension in our study.

However, these variations in the results when using dif-
ferent RT values do not affect our findings. In all results,
comprehension activities take more than half of developers’
working time, which is consistent with prior studies [13],
[15], [26], [36], [63]. Furthermore, the results of all individual
developers in our study is consistent with the average
results in Table 29. So, the different RT values do not affect
our findings about the effect of programming language,
developer experience, and project phase on program com-
prehension. Moreover, as we show in Section 3.2.6, that
when we set RT to be 1 second, our approach shows similar
results as manual annotations. Thus, in this paper, we set
RT to 1 second.

TABLE 29
The Average Percentage of Time That Developers Spend on

Comprehension (Compre.), Navigation, Editing,
and Others for Different RT Values

RT Compre. Navigation Editing Others

0.5 61.05% 17.01% 5.70% 16.24%
0.8 59.15% 21.38% 5.50% 13.97%
1.0 58.87% 24.83% 6.36% 9.94%
1.2 56.78% 25.85% 4.95% 12.42%
1.5 53.03% 31.28% 4.45% 11.23%

974 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 10, OCTOBER 2018

https://goo.gl/nz3CTU

ACKNOWLEDGMENTS

The authors thank all developers from Hengtian and
Insigma Global Service who participated in this study.
This work was partially supported by NSFC Program
(No. 61602403 and 61572426), and National Key Technology
R&D Program of the Ministry of Science and Technology
of China (No. 2015BAH17F01).

REFERENCES

[1] Krugle, Mar. 2014. [Online]. Available: http://opensearch.krugle.
org/projects/

[2] Koders, Mar. 2016. [Online]. Available: http://www.koders.com
[3] S. Bajracharya, et al., “Sourcerer: A search engine for open source

code supporting structure-based search,” in Proc. 21st ACM
SIGPLAN Symp. Object-Oriented Program. Syst. Languages Appl.,
2006, pp. 681–682.

[4] L. Bao, J. Li, Z. Xing, X. Wang, X. Xia, and B. Zhou, “Extracting
and analyzing time-series HCI data from screen-captured task
videos,” Empirical Softw. Eng., vol. 22, pp. 1–41, 2016.

[5] L. Bao, Z. Xing, X. Wang, and B. Zhou, “Tracking and analyzing
cross-cutting activities in developers’ daily work,” in Proc. 30th
IEEE/ACM Int. Conf. Autom. Softw. Eng., 2015, pp. 277–282.

[6] L. Bao, D. Ye, Z. Xing, and X. Xia, “Activityspace: A remembrance
framework to support interapplication information needs,” in Proc.
30th IEEE/ACM Int. Conf. Autom. Softw. Eng., 2015, pp. 864–869.

[7] K. Beck, et al., “Manifesto for agile software development,” 2001.
[Online]. Available: http://agilemanifesto.org/.

[8] D. Binkley, M. Davis, D. Lawrie, and C. Morrell, “To camelcase or
under_score,” in Proc. IEEE 17th Int. Conf. Program Comprehension,
2009, pp. 158–167.

[9] S. Boslaugh, Statistics in a Nutshell. Newton, MA, USA: O’Reilly
Media, Inc., 2012.

[10] A. Bragdon, et al., “Code bubbles: Rethinking the user interface
paradigm of integrated development environments,” in Proc.
32nd ACM/IEEE Int. Conf. Softw. Eng.-Vol. 1, 2010, pp. 455–464.

[11] J. C. Carver, O. Dieste, N. A. Kraft, D. Lo, and T. Zimmermann,
“How practitioners perceive the relevance of ESEM research,” in
Proc. 10th ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas., 2016,
Art. no. 56.

[12] J. Cohen, Statistical PowerAnalysis for the Behavioral Sciences.Hillsdale,
NJ, USA: Lawrence ErlbaumAssociates, 1988, pp. 20–26.

[13] T. A. Corbi, “Program understanding: Challenge for the 1990s,”
IBM Syst. J., vol. 28, no. 2, pp. 294–306, 1989.

[14] A.DeLucia,M.Di Penta, R.Oliveto, A. Panichella, and S. Panichella,
“Using ir methods for labeling source code artifacts: Is it
worthwhile?” in Proc. IEEE 20th Int. Conf. Program Comprehension,
2012, pp. 193–202.

[15] R. K. Fjeldstad and W. T. Hamlen, “Application program mainte-
nance study: Report to our respondents,” in Proc. Guide, 1983,
Art. no. 48.

[16] J. L. Fleiss, “Measuring nominal scale agreement among many
raters,” Psychological Bulletin, vol. 76, no. 5, 1971, Art. no. 378.

[17] M. Foucault, M. Palyart, X. Blanc, G. C. Murphy, and J.-R. Falleri,
“Impact of developer turnover on quality in open-source software,”
inProc. 10th JointMeet. Found. Softw. Eng., 2015, pp. 829–841.

[18] M. Fowler and K. Beck, Refactoring: Improving the Design of Existing
Code. Boston, MA, USA: Addison-Wesley Professional, 1999.

[19] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software
Engineering. Upper Saddle River, NJ, USA: Prentice Hall PTR,
2002.

[20] M. Greiler, A. van Deursen, and M. Storey, “Test confessions:
A study of testing practices for plug-in systems,” in Proc. 34th Int.
Conf. Softw. Eng., 2012, pp. 244–254.

[21] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and
T. Menzies, “Automatic query reformulations for text retrieval in
software engineering,” in Proc. 35th Int. Conf. Softw. Eng., 2013,
pp. 842–851.

[22] W. M. Ibrahim, N. Bettenburg, B. Adams, and A. E. Hassan, “On
the relationship between comment update practices and software
bugs,” J. Syst. Softw., vol. 85, no. 10, pp. 2293–2304, 2012.

[23] J. J. Jiang and G. Klein, “Supervisor support and career anchor
impact on the career satisfaction of the entry-level information
systems professional,” J. Manage. Inf. Syst., vol. 16, no. 3, pp. 219–
240, 1999.

[24] M. Kersten and G. C. Murphy, “Using task context to improve
programmer productivity,” in Proc. 14th ACM SIGSOFT Int. Symp.
Found. Softw. Eng., 2006, pp. 1–11.

[25] J. Kim, S. Lee, S.-W. Hwang, and S. Kim, “Enriching documents
with examples: A corpus mining approach,” ACM Trans. Inform.
Syst., vol. 31, no. 1, 2013, Art. no. 1.

[26] A. J. Ko, et al., “An exploratory study of how developers seek,
relate, and collect relevant information during software mainte-
nance tasks,” IEEE Trans. Softw. Eng., vol. 32, no. 12, pp. 971–987,
Dec. 2006.

[27] A. J. Ko and B. A. Myers, “Designing the whyline: A debugging
interface for asking questions about program behavior,” in Proc.
SIGCHI Conf. Human Factors Comput. Syst., 2004, pp. 151–158.

[28] M. Lanza and S. Ducasse, “Polymetric views—a lightweight
visual approach to reverse engineering,” IEEE Trans. Softw. Eng.,
vol. 29, no. 9, pp. 782–795, Sep. 2003.

[29] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental
models: A study of developer work habits,” in Proc. 28th Int. Conf.
Softw. Eng., 2006, pp. 492–501.

[30] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “Whats in a name?
a study of identifiers,” in Proc. 14th IEEE Int. Conf. Program Com-
prehension, 2006, pp. 3–12.

[31] O. A. L. Lemos, et al., “Codegenie: Using test-cases to search and
reuse source code,” in Proc. 22nd IEEE/ACM Int. Conf. Autom.
Softw. Eng., 2007, pp. 525–526.

[32] E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, and
P. Baldi, “Sourcerer: Mining and searching internet-scale software
repositories,” Data Mining Knowl. Discovery, vol. 18, no. 2, pp. 300–
336, 2009.

[33] D. Lo, N. Nagappan, and T. Zimmermann, “How practitioners
perceive the relevance of software engineering research,” in Proc.
10th Joint Meet. Found. Softw. Eng., 2015, pp. 415–425.

[34] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On the compre-
hension of program comprehension,” ACM Trans. Softw. Eng.
Methodology, vol. 23, no. 4, 2014, Art. no. 31.

[35] P. W. McBurney and C. McMillan, “Automatic documentation
generation via source code summarization of method context,” in
Proc. 22nd Int. Conf. Program Comprehension, 2014, pp. 279–290.

[36] R.Minelli, A.Mocci, andM. Lanza, “I knowwhat you did last sum-
mer—an investigation of how developers spend their time,” in
Proc. 23rd IEEE Int. Conf. Program Comprehension, 2015, pp. 25–35.

[37] A. Mockus, “Succession: Measuring transfer of code and devel-
oper productivity,” in Proc. 31st Int. Conf. Softw. Eng., 2009,
pp. 67–77.

[38] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and
K. Vijay-Shanker, “Automatic generation of natural language
summaries for Java classes,” in Proc. IEEE 21st Int. Conf. Program
Comprehension, 2013, pp. 23–32.

[39] E. R. Murphy-Hill, T. Zimmermann, and N. Nagappan,
“Cowboys, ankle sprains, and keepers of quality: How is video
game development different from software development?” in
Proc. 36th Int. Conf. Softw. Eng., 2014, pp. 1–11.

[40] L. Nie, H. Jiang, Z. Ren, Z. Sun, and X. Li, “Query expansion
based on crowd knowledge for code search,” IEEE Trans. Serv.
Comput., vol. 9, no. 5, pp. 771–783, Sep.–Oct. 2016.

[41] F. Paetsch, A. Eberlein, and F. Maurer, “Requirements engineer-
ing and agile software development,” in Proc. 12th IEEE Int. Work-
shops Enabling Technol. Infrastructure Collaborative Enterprises, 2003,
pp. 308–313.

[42] H. Pashler, “Dual-task interference in simple tasks: Data and the-
ory,” Psychological Bulletin, vol. 116, no. 2, pp. 220–44, 1994.

[43] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Seahawk: Stack over-
flow in the IDE,” in Proc. Int. Conf. Softw. Eng., 2013, pp. 1295–
1298.

[44] R. S. Pressman, Software Engineering: A Practitioner’s Approach.
Basingstoke, U.K.: Palgrave Macmillan, 2005.

[45] M. M. Rahman, S. Yeasmin, and C. K. Roy, “Towards a context-
aware IDE-based meta search engine for recommendation about
programming errors and exceptions,” in Proc. Softw. Evol. Week-
IEEE Conf. Softw. Maintenance Reengineering Reverse Eng., 2014,
pp. 194–203.

[46] A. J. Riel, Object-Oriented Design Heuristics, vol. 335. Boston, MA,
USA: Addison-Wesley Reading, 1996.

[47] P. C. Rigby, Y. C. Zhu, S. M. Donadelli, and A. Mockus,
“Quantifying and mitigating turnover-induced knowledge loss:
Case studies of chrome and a project at avaya,” in Proc. 38th Int.
Conf. Softw. Eng., 2016, pp. 1006–1016.

XIA ET AL.: MEASURING PROGRAM COMPREHENSION: A LARGE-SCALE FIELD STUDY WITH PROFESSIONALS 975

http://opensearch.krugle.org/projects/
http://opensearch.krugle.org/projects/
http://www.koders.com
http://agilemanifesto.org/

[48] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do profes-
sional developers comprehend software?” in Proc. 34th Int. Conf.
Softw. Eng., 2012, pp. 255–265.

[49] S. Shaphiro and M. Wilk, “An analysis of variance test for normal-
ity,” Biometrika, vol. 52, no. 3, pp. 591–611, 1965.

[50] B. Sharif and J. I. Maletic, “An eye tracking study on camelcase
and under_score identifier styles,” in Proc. IEEE 18th Int. Conf.
Program Comprehension, 2010, pp. 196–205.

[51] J. Siegmund, C. K€astner, J. Liebig, S. Apel, and S. Hanenberg,
“Measuring and modeling programming experience,” Empirical
Softw. Eng., vol. 19, no. 5, pp. 1299–1334, 2014.

[52] J. Singer, R. Elves, and M.-A. Storey, “Navtracks: Supporting navi-
gation in software,” in Proc.. 13th Int. Workshop Program Compre-
hension, 2005, pp. 173–175.

[53] D. Spencer, Card sorting: Designing Usable Categories. Brooklyn,
NY, USA: Rosenfeld Media, 2009.

[54] G. Sridhara, E.Hill, D.Muppaneni, L. Pollock, andK.Vijay-Shanker,
“Towards automatically generating summary comments for java
methods,” in Proc. IEEE/ACM Int. Conf. Autom. Softw. Eng., 2010,
pp. 43–52.

[55] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically
detecting and describing high level actions within methods,” in
Proc. 33rd Int. Conf. Softw. Eng., 2011, pp. 101–110.

[56] B. G. Tabachnick, L. S. Fidell, and S. J. Osterlind, Using Multivari-
ate Statistics. New York, NY, USA: HarperCollins College Publish-
ing, 2001.

[57] B. E. Teasley, “The effects of naming style and expertise on pro-
gram comprehension,” Int. J. Human-Comput. Stud., vol. 40, no. 5,
pp. 757–770, 1994.

[58] A. Von Mayrhauser and A. M. Vans, “Program comprehension
during software maintenance and evolution,” IEEE Comput.,
vol. 28, no. 8, pp. 44–55, 1995.

[59] G. M. Weinberg, The Psychology of Computer Programming. New
York, NY, USA: Van Nostrand Reinhold, 1998.

[60] A. Whitaker, “What causes IT workers to leave,” Manag. Rev.,
vol. 88, no. 9, p. 8, 1999.

[61] E. Wong, J. Yang, and L. Tan, “Autocomment: Mining question
and answer sites for automatic comment generation,” in Proc.
IEEE/ACM 28th Int. Conf. Autom. Softw. Eng., 2013, pp. 562–567.

[62] J. H. Zar, “Significance testing of the Spearman rank correlation
coefficient,” J. Amer. Stat. Assoc., vol. 67, no. 339, pp. 578–580, 1972.

[63] M. V. Zelkowitz, A. C. Shaw, and J. D. Gannon, Principles of
Software Engineering and Design. Englewood Cliffs, NJ, USA:
Prentice-Hall, 1979.

Xin Xia received the PhD degree in computer sci-
ence from the College of Computer Science and
Technology, Zhejiang University, China, in 2014.
He is currently a postdoctoral research fellow in
the Software Practices Lab at the University of
British Columbia, Canada. His research interests
include software analytic, empirical study, and
mining software repository.

Lingfeng Bao received the BE and PhD degrees
from theCollege of Software Engineering, Zhejiang
University, in 2010 and 2016, respectively. He is
currently a postdoctoral research fellow in the
College of Computer Science and Technology,
Zhejiang University. His research interests include
software analytics, behavioral research methods,
data mining techniques, and human computer
interaction.

David Lo received the PhD degree from the
School of Computing, National University of
Singapore, in 2008. He is currently an associate
professor in the School of Information Systems,
Singapore Management University. He has close
to 10 years of experience in software engineering
and data mining research and has more than 200
publications in these areas. He received the Lee
Foundation fellow for Research Excellence from
the Singapore Management University in 2009,
and a number of international research awards

including several ACM distinguished paper awards for his work on soft-
ware analytics. He has served as general and program co-chair of sev-
eral prestigious international conferences (e.g., IEEE/ACM International
Conference on Automated Software Engineering), and editorial board
member of a number of high-quality journals (e.g., the Empirical Soft-
ware Engineering).

Zhenchang Xing is the senior lecturer in the
Research School of Computer Science, Australian
NationalUniversity, Australia. his research interests
include software engineering and human-computer
interaction. His work combines software analytics,
behavioral research methods, data mining techni-
ques, and interaction design to understand how
developers work, and then build recommendation
or exploratory search systems for the timely or ser-
endipitous discovery of the needed information

Ahmed E. Hassan received the PhD degree in
computer science from the University of Waterloo.
He is the Canada research chair (CRC) in software
analytics, and the NSERC/BlackBerry Software
Engineering chair in the School of Computing,
Queen’s University, Canada. His research inter-
ests includemining software repositories, empirical
software engineering, load testing, and log mining.
He spearheaded the creation of the Mining Soft-
ware Repositories (MSR) conference and its rese-
arch community. He also serves on the editorial

boards of the IEEE Transactions on Software Engineering, the Springer
Journal of Empirical Software Engineering, and the PeerJ Computer
Science. More information at: http://sail.cs.queensu.ca/

Shanping Li received the PhD degree from the
College of Computer Science and Technology,
Zhejiang University, in 1993. He is currently a
professor in the College of Computer Science and
Technology, Zhejiang University. His research
interests include software engineering, distributed
computing, and the Linux operating system.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

976 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 10, OCTOBER 2018

http://sail.cs.queensu.ca/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

