
1094 IEEE TRANSACTIONS ON RELIABILITY, VOL. 65, NO. 3, SEPTEMBER 2016

Automated Bug Report Field Reassignment and
Refinement Prediction

Xin Xia, Member, IEEE, David Lo, Member, IEEE, Emad Shihab, and Xinyu Wang

Abstract—Bug fixing is one of the most important activities
in software development and maintenance. Bugs are reported,
recorded, and managed in bug tracking systems such as Bugzilla.
In general, a bug report contains many fields, such as product,
component, severity, priority, fixer, operating system (OS), and
platform, which provide important information for the bug
triaging and fixing process. Our previous study finds that ap-
proximately 80% of bug reports have their fields reassigned and
refined at least once, and bugs with reassigned and refined fields
take more time to fix than bugs with no reassigned and refined
fields. Thus, automatically predicting which bug report fields get
reassigned and refined could help developers to save bug fixing
time. Considering that a bug report could have multiple field re-
assignments and refinements (e.g., the product, component, fixer,
and other fields of a bug report can get reassigned and refined), in
this paper, we propose a multi-label learning algorithm to predict
which bug report fields might be reassigned and refined. We note
that the number of bug reports with some types of reassignment
and refinement (e.g., bugs whose severity fields gets reassigned
and refined) is a small proportion of the whole bug report collec-
tion, indicating the class imbalance problem. Thus, we propose
imbalanced ML.KNN (Im-ML.KNN), which extends ML.KNN,
one of the state-of-the-art multi-label learning algorithms, to
achieve better performance. Im-ML.KNN is a composite model
that combines 3 multi-label classifiers built using different types
of features (i.e., meta, textual, and mixed features). We evaluate
our solution on 4 large bug report datasets including OpenOffice,
Netbeans, Eclipse, and Mozilla containing a total of 190,558
bug reports. We show that Im-ML.KNN can achieve an average
F-measure score of 0.56–0.62. We also compare Im-ML.KNN
with other state-of-art methods, such as the method proposed by
Lamkanfi et al., ML.KNN, and HOMER-NB. The results show
that Im-ML.KNN, on average, improves the average F-measure
scores of Lamkanfi et al.'s method,ML.KNN, and HOMER-NB by
119.69%, 9.11%, and 161.08%, respectively.
Index Terms—Bug report field reassignment and refinement

(BRFRR), composite model, imbalance learning, multi-label
learning.

Manuscript received August 30, 2014; revised December 27, 2014 andMarch
22, 2015; accepted September 18, 2015. Date of publication October 26, 2015;
date of current version August 30, 2016. This work was supported in part by
the National Basic Research Program of China (the 973 Program) under Grant
2015CB352201, the National Key Technology R&D Program of the Ministry
of Science and Technology of China under Grant 2014BAH24F02, and the Fun-
damental Research Funds for the Central Universities. Associate Editor: W. E.
Wong. (Corresponding author: Xinyu Wang.)
X. Xia and X. Wang are with the College of Computer Science and

Technology, Zhejiang University, Hangzhou 310000, China (e-mail:
xxia@zju.edu.cn; wangxinyu@zju.edu.cn).
D. Lo is with the School of Information Systems, Singapore Management

University, 188065 Singapore (e-mail: davidlo@smu.edu.sg).
E. Shihab is with the Department of Computer Science and Software Engi-

neering, Concordia University, Montreal, QC H4B 1R6, Canada (e-mail: es-
hihab@cse.concordia.ca).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TR.2015.2484074

ACRONYMS AND ABBREVIATIONS

BRFRR Bug report field reassignment and refinement.
Im-ML.KNN Imbalanced ML.KNN.
NB Naive Bayes.
KNN K-nearest neighbors.
LDS Longitudinal data setup.

NOTATION

Set of bug report collection.
th bug report.
Weight for th term in .
Set of labels.
Threshold for label .
Precision for label .
Recall for label .
Precision for label .
Average precision for labels in .
Average Recall for labels in
Average F-measure for labels in .
Sample size.
Meta features.
Textual features.
Mixed features.

I. INTRODUCTION

B UGS are inevitable in the whole lifecycle of software de-
velopment and maintenance, and bug fixing is a time-con-

suming and costly task. Previous studies from NIST show that
software bugs cost the US economy an estimated $59 billion
every year, which is around 0.6% of the gross domestic product
[1]. Bug tracking systems such as Bugzilla are used to report,
record, and manage these bugs. A typical bug report contains
many fields, e.g., the summary and description fields which pro-
vide the textual description of the observed bug, the status field
which shows the current status (e.g., closed or resolved), the
product and component fields where the bug is detected, the pri-
ority and severity fields which mark the importance of the bug,
the version, operating system (OS), and platform fields which
indicate the runtime environment affected by the bug, and the
reporter and fixer fields. These fields are vital for developers to
triage and fix the bug [2], [3].

0018-9529 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

XIA et al.: AUTOMATED BUG REPORT FIELD REASSIGNMENT AND REFINEMENT PREDICTION 1095

However, Bug report fields often get reassigned and refined.
Various types of bug report field reassignments and refinements
have been investigated in the literature. Shihab et al. study re-
opened bugs, and they find that, for Eclipse Platform 3.0, the av-
erage time to resolve a reopened bug is more than twice the time
to resolve a non-reopened bug [4], [5]. Lamkanfi and Demeyer
studied component reassignments and found that, for Mozilla,
it takes a long time to reassign a bug report to the correct com-
ponent [6]. Jeong et al. studied fixer reassignments and refine-
ments in Eclipse and Mozilla and found that 37%–44% of bugs
have their fixer reassigned and refined [7]. Saha et al. found that
10% of long-lived bugs get their fixers reassigned and refined
five or more times [8]. In our previous work, we analyzed bug
reports from OpenOffice, Netbeans, Eclipse, and Mozilla and
found that approximately 80% of bug reports have their fields
reassigned [9]. Also, we found that bug reports with field re-
assignments have statistically significantly longer bug fix time
than those without reassignments.
The aforementioned studies indicate that bug reassignments

and refinements are associated to longer bug fixing times. Some
fields are wrongly assigned and this can result in a delay for a
bug to get resolved, while other fields are not inherently wrong,
but need to be adjusted with additional insights that bug triagers
have after they analyze the bugs [10]. For these cases, there
is a need for an approach that can help developers reduce the
amount of incorrect assignments or to suggest appropriate re-
finements that developers can consider to make in the future.
Such an approach can reduce the number of unnecessary reas-
signments and refinements. Admittedly, since many factors af-
fect bug fixing time (e.g., difficulty to reproduce and resolve a
bug [8]), such an approach is not a panacea to make bug fixing
time short. Nevertheless, it helps solve a problem that impacts
bug fix time.
To address the above-mentioned need, in this paper, we de-

velop a tool that leverages multi-label learning algorithms to
automatically predict which bug report fields will be reassigned
or refined. In the multilabel learning literature, one data instance
(i.e., a bug report) can be assigned to multiple labels (i.e., fields
that are predicted to be reassigned and refined) [11]. It is impor-
tant to note that our work complements previous studies such as
the work on reopened bug prediction [4], [5] and component re-
assignment and refinement prediction [6], [12], since our work
generalizes these studies by considering the reassignments and
refinements of many different fields in a bug report. Our pro-
posed multi-label learning algorithm can predict, not only the
reassignment and refinement of the status field or the compo-
nent field, but also all other fields simultaneously.1 To investi-
gate the usefulness of our tool, we have checked with several
experienced developers from OpenOffice and NetBeans Project
Management Committee, who have fixed hundreds of bugs and
managed the bug reports in OpenOffice and Netbeans. Some of
their comments are given here.

1In the machine learning literature, the problems of reopened bug prediction
and component prediction can be mapped to single-label learning problems.
Single-label learning is a classification problem where one instance (e.g., a bug
report) can only be assigned to one label (e.g., reopened or not reopened, and
reassigned and refined or not reassigned and refined.)

“Considering a lot of “raw” users would submit bug
reports in our community, there would be many errors
(wrongly assigned fields in the bug report), the tool would
be possible to evaluate a “raw” user submitted report and
predict what fields will be changed.”

“Although human thought was necessary here to decide
what the right component (fields) should be (during bug
fixing process), a tool which assists whether a fields would
get reassigned and refined still relief the workload for a
developer.”

“I think, a reassignment prediction can be useful, espe-
cially when non-developers create bug requests that are not
familiar with the development process and management.
Such users may fill out some fields incorrectly, which could
be detected more easily and help the developers to better
assess and organize the reports.”

To build our tool, we extract the values of important features
from the bug reports when they are initially submitted. The fea-
tures extracted from a training set of bug reports, along with
field reassignment and refinement information, are then used to
build a multi-label classifier. We extract field reassignment and
refinement information by analyzing the history of bug reports
to identify fields that are changed after the bug report was ini-
tially submitted. The resultant multi-label classifier serves as a
tool and will be used to predict the fields which would get reas-
signed and refined for a new submitted bug report. The output of
our tool is a list of bug report fields which would get reassigned
and refined. With our tool, developers will be better informed
on whether they have assigned the right field values when they
submit a bug report.
To assist in making accurate predictions, one possible solu-

tion is to use ML.KNN [13], one of the state-of-the-art algo-
rithms used to solve the multi-label learning problem. How-
ever, we find that for many fields, there is only a very small per-
centage of bug reports whose fields are reassigned and refined.
For example, in Eclipse, only 9.76%, 18.44%, 9.19%, and
8.14% of bug reports have their product, component, severity,
and status fields reassigned and refined [9]. We refer to this
phenomenon as the class imbalance phenomenon [14]. To im-
prove the overall performance of ML.KNN, we propose im-
balanced ML.KNN (Im-ML.KNN), which addresses the class
imbalance phenomenon experienced in the bug report field re-
assignment and refinement task. Im-ML.KNN is a composite
model, which combines three multilabel classifiers built using
different types of features (i.e., meta, textual, and mixed fea-
tures). In our paper, meta features refer to the nontextual fields
of a bug report, e.g., reporter, assignee, product, component,
etc, textual features refer to the proceed terms extracted from
the description and summary field, and mixed features refer to
the combination of both meta and textual features. Im-ML.KNN
automatically learns the best threshold value to predict which
fields will be reassigned and refined in the training data. By
default, we set the number of neighbors in Im-ML.KNN
as 10.
In our previous study, we perform an empirical study on bug

report field reassignment and refinement [9]. This paper com-

1096 IEEE TRANSACTIONS ON RELIABILITY, VOL. 65, NO. 3, SEPTEMBER 2016

plements our previous work, and our previous work serves as a
motivation to this work. In particular, in this paper, we propose
an automated tool to predict which bug report fields will get re-
assigned to help developers reduce bug fixing effort.
We evaluate our Im-ML.KNN algorithm on bug report

datasets from four large open source porjects namely—OpenOf-
fice, Netbeans, Eclipse, and Mozilla, containing a total
of 190 558 bug reports. The experiment results show that
Im-ML.KNN can achieve an average F-measure score be-
tween 0.52–0.67. We also compare Im-ML.KNN with other
state-of-the-art methods, such as the method proposed by
Lamkanfi et al., ML.KNN and HOMER-NB [15]. We address
the following research questions.
1) What is the F-measure of Im-ML.KNN? How much im-

provement can it achieve over the method proposed by
Lamkanfi et al. [6], ML.KNN [13], and HOMER-NB
[15]?
The results show that Im-ML.KNN, on average, im-
proves the F-measure score of Lamkanfi et al.'s method,
ML.KNN, and HOMER-NB by 119.69%, 9.11%, and
161.08%, respectively.

2) Can the F-measure of Im-ML.KNN outperform those
of its constituent components (i.e., meta classifier, text
classifier, and mixed classifier)?
Yes, Im-ML.KNN improves the average F-measure scores
of meta classifier, text classifier, and mixed classifier by
8.91%, 164.31%, and 9.11%, respectively. The results
show that it is beneficial to combine the 3 classifiers.

3) Dodifferent numbers of neighbors affect the F-measure
of Im-ML.KNN?
No, across the four projects, Im-ML.KNN achieves a
relatively stable performance when different numbers of
neighbors are used.

4) What are good predictors of bug report field reassign-
ments and refinements? Do the predictors differ for dif-
ferent fields?
Meta features (e.g., product, component, assignee) make
up most of the top-10 features. Among the four projects,
product, component, reporter, and assignee are the four
most important meta features related to various types of
field reassignment.

5) What is the effect of varying the amount of training
data on the effectiveness of Im-ML.KNN?
To reduce the amount of training data, we perform ten
times K-fold cross validation, with K varied from 2 to 10.
When we vary K from 10 to 2, the F-measures for Eclipse,
Mozilla, and Firefox remains relatively stable (it fluctuates
less than 5.68% from the original value). For OpenOffice,
the F-measure reduces by 26.81% when we vary k from 10
to 2.

6) How much time does it take for Im-ML.KNN to run?
The average model building time and the average predic-
tion time of Im-ML.KNN is 0.0265 and 0.0158 s per bug
report, respectively.

The main contributions of this paper are given here.
• Propose a new algorithm that effectively deals with
the class imbalance problem. Considering the class im-
balance phenomenon, we propose a new algorithm named

imbalanced ML.KNN (Im-ML.KNN) to achieve better per-
formance when predicting reassigned and refined fields.

• Accurately predict which bug fields will be reassigned
and refined. We propose a multilabel learning algorithm
to accurately predict which bug fields will be reassigned
and refined. To the best of our knowledge, this is the first
study to usemulti-label learning to predict bug report field
reassignments and refinements.

• Perform an extensive empirical study to examine
the effectiveness of Im-ML.KNN in predicting which
bug fields will be reassigned and refined. We inves-
tigate the performance of Im-ML.KNN on four large
open-source projects, and the experiment results show that
our method improves existing state-of-the-art methods
such as Lamkanfi et al.'s method and ML.KNN.

The remainder of this paper is organized as follows. We
describe the preliminary materials in Section II. We outline
the overall framework of our bug report field reassignment
and refinement prediction solution in Section III. We elaborate
how the features and labels (i.e., various bug report field reas-
signments and refinements) are extracted from bug reports in
Section IV. We present our multi-label classification approach
Im-ML.KNN in Section V. We report the experiment results in
Section VI. We discuss and present the threats to validity of
our paper in Section VII and VIII. We describe related work in
Section IX. We conclude and mention future work in Section X.

II. PRELIMINARIES

Here, we first present the background of bug report field re-
assignment and refinement in Section II-A. Next, we describe
ML.KNN, which is the state-of-the-art multilabel classification
algorithm on which we build our approach, in Section II-B.

A. Background

A typical bug report contains many useful fields, such as
product, component, fixer, summary, and description. However,
in some cases, the fields in the bug report get reassigned and
refined. Fig. 1 shows a bug report from Eclipse with BugID
221068.2 We notice that the product, component, fixer, and
status fields of this bug report have been reassigned and re-
fined. The product was reassigned from WTP Incubator
to WTP Source Editing, and the component was reas-
signed from incubator to wtp.inc.xsl, and finally it
was reassigned to wst.xsl. The fixer was reassigned from
wtp.inc-inbox to doug.satchwell. Moreover, the bug
report in Fig. 1 was also a reopened bug, i.e., the bug report
was first resolved and fixed by doug.satchwell, and then
d_a_carver reopened it and changed the status to new. In
this paper, we only consider one type of status reassignment:
resolved or closed to reopen. This is the one of most impor-
tant reassignment and refinement. We ignore the other status
reassignments and refinements as in general a bug report status
would eventually get changed (e.g., from open to closed) as
developers are working to fix it.

2[Online]. Available: https://bugs.eclipse.org/bugs/show_bug.
cgi?id=221068

XIA et al.: AUTOMATED BUG REPORT FIELD REASSIGNMENT AND REFINEMENT PREDICTION 1097

Fig. 1. Reassigned and refined Bug Report of Eclipse Project with BugID
221068.

Observations and Implications. From the above bug report,
we make the following observations:
1) The bug report was created onMarch 2nd, 2008, and it was

fixed onApril 30th, 2009. This bug took approximately one
year to get fixed.

2) The component was reassigned from incubator to
wtp.inc.xsl on June 5th, 2008, by d_a_carver.
However, on March 31st, 2009, webmaster still reas-
signed its component and product fields. Thus, it seems
that even though nine months had passed, a suitable person
to fix the bug was still to be found.

B. Multilabel Learning

Multilabel learning refers to the task of assigning one or more
labels to a data instance. Traditional classification only assigns
one label to an instance. However, in many situations, one in-
stance could have more than one label. In our bug report field
reassignment and refinementprediction problem, one bug report
could have several of its fields reassigned and refined. For ex-
ample, in Fig. 1, the bug report has four types of field reas-
signments and refinements, i.e., product, component, fixer, and
status field reassignments and refinements.
Formally, multilabel learning is defined as follows. Let de-

notes the input space (i.e., bug report collection) and let de-
note the set of labels (i.e., eight types of bug report field reas-
signment and refinement). Given a multi-label training dataset

, where denotes a bug report, and
(indicates that the bug report is

assigned to the th label (i.e., one of the field reassignment and
refinement types) and indicates otherwise), the goal
of multi-label classification is to build a model ,
which is used to predict the proper label set for a new instance.
ML.KNN [13] is one of the state-of-the-art algorithms in the

multi-label learning literature. To infer the label set for a new
instance (i.e., bug report) , ML.KNN follows three steps:

the computation of membership counting scores, the computa-
tion of ML.KNN scores, and the assignment of labels. We de-
scribe each of these steps in the following subsections.
1) Membership Counting Score: ML.KNN first identifies the

k-nearest neighbors of the new instance from
the training dataset. For each label in the label set , we count
the number of instances assigned to label in . For-
mally, we denote membership counting score as the
number of instances assigned to label , i.e.,

(1)

2) ML.KNN Score: With the membership counting score
for each label , we consider two events: is the

event that is assigned to , and is the event is
not assigned to . Moreover, denotes the event that there
are exactly instances that are assigned to label , among the
nearest neighbors of . Then, the ML.KNN score for is

the probability that the event is assigned to , given that
exactly instances are assigned to label , i.e.,

(2)

From (2) and using the Bayes rule, we can derive

(3)
The parameters of , , , and

can be inferred from the training dataset. The
details of the inference process is available in [13].
3) Label Assignment: After the ML.KNN score for each

label is obtained, to decide whether a label should be assigned
to , ML.KNN uses the following heuristics: if

, then is as-
signed to .

III. OVERALL FRAMEWORK

Fig. 2 shows the overall framework of Im-ML.KNN. The
framework includes two phases: the model building phase and
the prediction phase. In the model building phase, our goal is
to build a composite model MLComposer, from historical bug
reports, which have known bug report field reassignment and
refinement information. In the prediction phase, this classifier
is used to predict the fields that will get reassigned and refined
for a new bug report.
Our framework first extracts features from the set of training

bug reports (i.e., bug reports with known field reassignments
and refinements) (Step 1). Features are various quantifiable
characteristics of bug reports that could potentially differentiate
reports for different fields reassignment. In this paper, we con-
sider two types of features: meta features and textual features.3
Next, we analyze the history of the training bug reports, and
extract the field reassignment and refinement information (Step
2). Each field corresponds to a label, and in total we have eight

3For more details, please refer to Section IV-A.

1098 IEEE TRANSACTIONS ON RELIABILITY, VOL. 65, NO. 3, SEPTEMBER 2016

Fig. 2. Overall framework of Im-ML.KNN.

labels which corresponds to eight types of bug report field reas-
signments and refinements (i.e., product, component, severity,
priority, OS, version, fixer, and status reassignment).4 The
training set is constructed after the feature and label extraction.
Next, our framework constructs three multilabel classifiers

based on labels and different features of the training set (Step 3).
In this paper, we use ML.KNN [13] to construct the three mul-
tilabel classifiers. The meta multi-label classifier is built based
on the meta features of bug reports. The text multi-label clas-
sifier is built based on the textual features of bug reports. The
mixed multilabel classifier is built based on the two types (i.e.,
meta features and textual features) of features of bug reports. A
multilabel classifier is a machine learning model, which assigns
a set of labels (in our case: bug report fields that would get re-
assigned and refined) to a data point (in our case: a bug report)
based on its features. We then combine the three classifiers to-
gether to construct a MLComposer classifier (Step 4).
After MLComposer is constructed, it is used in the predic-

tion phase to predict the fields that will get reassigned and re-
fined in a new bug report. For each such bug report, we first
extract features from it as we do in the model building phase
(Step 4). Then, we input the features to MLComposer (Step 5).
This step outputs the prediction results, which is a set of labels
corresponding to the bug report fields that get reassigned and
refined.

IV. FEATURE AND LABEL EXTRACTION
Here, we first describe the features we extracted from bug

reports in Section IV-A. Next, we present the way we extract
the labels from the training bug reports in Section IV-B.

A. Feature Extraction
A bug report contains a large amount of useful information,

such as its textual description, and the values of its many fields.
To predict which bug fields will be reassigned and refined, we
extract many features from bug reports.We divide them into two
categories: meta features and textual features.
1) Meta Features: Meta features refer to the non-textual

fields of a bug report, e.g., reporter, assignee, product, and com-
ponent. These fields are important for bug triaging and fixing
[2], [3], [16]. Table I presents the meta features which are used

4For more details, please refer to Section IV-B.

TABLE I
META FEATURES FOR BUG REPORT FIELD REASSIGNMENT

to predict which bug fields get reassigned and refined. We ex-
tract 9 fields, and we record the values of these fields when a
bug is reported—before any reassignments and refinements (if
any). Notice that the value of the reporter field is unchanged
for the whole life cycle of a bug report—there is no reassign-
ment and refinement for this field. In Table I, column Example
corresponds to the values of the fields of the example bug re-
port shown in Fig. 1. This bug report has product, component,
fixer, and status reassignments and refinements, so we trace the
mixed values of these four fields from its bug history. For the
other fields, we use the values recorded in the final bug report.
2) Textual Features: We extract the text in the summary and

description fields, and then we tokenize them, remove the stop
words, stem them (i.e., reduce them to their root form, e.g., write
and written are reduced to writ) using the Porter stemmer, and
represent them as TD-IDF (i.e., term frequency.inverse doc-
ument frequency) vectors [17]. Formally, we represent terms
in the th bug report as a vector of term weights denoted by

. The weight denotes the TD-IDF
score [17] for the th term in the th bug report, which is com-
puted as follows:

(4)

XIA et al.: AUTOMATED BUG REPORT FIELD REASSIGNMENT AND REFINEMENT PREDICTION 1099

where denotes the th bug report in the bug report collection,
denotes the term frequency of the th term in the th bug re-

port, denotes the document frequency of the th term. Term
frequency refers to the number of times the th term ap-
pears in the th bug report. The document frequency of the th
term refers to the number of bug reports in which the th term
appears in. To reduce noise, we remove terms which appear less
than ten times in the bug report collection.

B. Label Extraction
For the training bug reports, we need to extract the field re-

assignment and refinement information from the bug report his-
tory. Each field corresponds to a label, and in this paper, we
consider eight types of bug report field reassignments and re-
finements considered in our previous study [9], i.e., component,
product, severity, priority, OS, version, fixer, and status reas-
signment and refinement. For each of the training bug reports,
we parse its history, and check whether any of its 8 fields got
reassigned and refined. If a field was reassigned and refined, we
set the corresponding label of the field to be “1”; otherwise “0”.
For example, in Fig. 1, we notice its product, component, fixer,
and status fields get reassigned and refined. Thus, we set the cor-
responding labels of product, component, fixer, and status to be
“1”, and the remaining labels to be “0”.

V. MLCOMPOSER: A COMPOSITE METHOD

ML.KNN is used to construct a multilabel classifier to
predict the fields which would get reassigned and refined for
bug reports. However, as we noted, for each type of field re-
assignment and refinement (except for the fixer reassignment),
the number of bug reports whose fields have been reassigned
and refined is much smaller than the number of bug reports
without reassignment, i.e., the class imbalance phenomenon
[14] is observed. For example, in Eclipse, only 9.76%, 18.44%,
9.19%, and 8.14% of bug reports have their product, com-
ponent, severity and status fields reassigned and refined; in
Mozilla, only 19.27%, 24.68%, 7.23%, and 11.39% of bug
reports have their product, component, severity and status fields
reassigned and refined [9]. To adapt ML.KNN to work well in
imbalanced multi-label data (i.e., having much less bug reports
with reassigned and refined fields than bugs without reassigned
and refined fields), and also considering that we have multiple
types of features, i.e., meta features and textual features, in
this section, we propose MLComposer which combines three
multilabel classifiers (ML.KNN classifiers) built on different
types of features and considers the imbalance phenomenon. In
this section, we first define three sets of scores outputted by
the three classifiers. Next, we describe how we combine these
scores together to construct the MLComposer classifier.

A. Feature Scores
As illustrated in Fig. 2, our proposed framework has three

different multi-label classifiers (i.e., ML.KNN classifiers built
using each of the three feature types). Let us refer to them as

, , and . Given
an unknown bug report, , , and

output the following meta scores, text scores,
and mixed scores, respectively:

Definition 1: (Meta Scores.) Consider a set of training bug
reports , its corresponding set of meta feature values ,
and its corresponding set of labels . We build a ML.KNN clas-
sifier trained on . For a new bug report ,
for each label , we use to get the likeli-
hood that will be assigned to the label (i.e., the field corre-
sponds to label would get reassigned and refined). We refer to
the likelihood score as the meta score for label , and denote it
as .
Definition 2: (Text Scores.) Consider a set of training bug re-

ports , its corresponding set of text feature values , and
its corresponding set of labels . We build a ML.KNN classi-
fier trained on . For a new bug report ,
for each label , we use to get the like-
lihood that will be assigned to the label . We refer to the
likelihood score as the text score for label , and denote it as

.
Definition 3: (Mixed Scores.) Consider a set of training

bug reports , its corresponding set of meta and text feature
values , and its corresponding set of labels . We build
a ML.KNN classifier trained on . For a
new bug report , for each label , we use
to get the likelihood that will be assigned to the label . We
refer to the likelihood score as the mixed score for label and
denote it as .

B. MLComposer
Here, we propose MLComposer, a composite method which

uses all of these three scores and considers the imbalance phe-
nomenon in bug report field reassignments and refinements. A
linear combination of meta scores, text scores, and mixed scores
is used to compute the final MLComposer scores.
Definition 4: (MLComposer Score.) Consider a training bug

report collection , and its corresponding multi-label classi-
fiers for meta, description, and mixed features (,

, and), respectively. For a new
bug report , for each label we compute its corre-
sponding meta, text and mixed scores, then its MLComposer
score, denoted as , which is a linear com-
bination of the three scores, is defined as follows:

(5)

In the above equations, , , and ,
and .
To deal with imbalanced data, MLComposer introduces a

threshold for every label. Each threshold is independently fine
tuned based on a sample of a training data so that the bias
introduced by the imbalanced data can be offset. For each label

, we define a threshold . To decide whether a
label is assigned to a new bug report (aka an instance) , we
follow the following equation:

if
otherwise.

(6)
The value of for each label can be trained from

the training bug report collection. To automatically produce

1100 IEEE TRANSACTIONS ON RELIABILITY, VOL. 65, NO. 3, SEPTEMBER 2016

good , , , and values for MLComposer,
we propose a greedy algorithm.
Fig. 1 presents the detailed steps to estimate good , , ,

and values. We input a bug report collection ,
label set (i.e., various types of bug report field reassignment),
sample size , meta features , textual features ,
mixed features , and the number of neighbors . We
first sample a small bug report collection according
to the sample size (Line 12). Next, we initialize ,
, , and values to 0 at Line 13. Then,

we build the classifiers (i.e., , , and
) for meta features, textual features, and mixed

features using , and compute their corresponding meta, text,
and mixed scores of bug reports in at Lines 14, 15,
and 16, respectively. Next, we incrementally increase , , ,
and values (Lines 17 to 21). We increase from 0
to 1, and from 0 to , in 0.1 increments. The value
of is set as . We increase the for each
label in from 0 to 1, in 0.01 increments. We use a finer gran-
ularity step to tune since it directly decides whether
a bug report will be assigned to label . We use a coarser granu-
larity step to tune , , and values to reduce the computational
cost in the tuning process. For each configuration of , , , and

values, we build a composite model and compute the
resultant F-measure score using bug reports in (Lines
20 to 26). Finally, Algorithm 1 returns , , , and
values resulting in the best average F-measure scores across all
the labels in (Line 32).

Algorithm 1 Estimation of Good , , , and
values in MLComposer.

1: Estimatevalue

2: Input:

3: : Training bug report collection and their labels

4: : Label set

5: : Sample size (default value: 10% of)

6: : Meta features

7: : Textual features

8: : Mixed features

9: : Number of neighbors for ML.KNN

10: Output: , , , and

11: Method:

12: Sample a bug report collection of size
from ;

13: , , , ;

14: Build for and , compute meta
scores for each bug report in ;

15: Build for and , compute text scores
for each bug report in ;

16: Build for and , compute mixed
scores for each bug report in ;

17: for all from 0 to 1, every time increase by 0.1 do

18: for all from 0 to , every time increase by
0.1 do

19: ;

20: for all labels do

21: for all from 0 to 1, every time increase
by 0.01 do

22: for all Bug report in do

23: Compute MLComposer score according to
Definition 4;

24: Decide whether is assigned to label using
Equation (6);

25: end for

26: Compute the F-measure score of the th label;

27: end for

28: end for

29: Compute the average F-measure score across all the
labels in .

30: end for

31: end for

32: Return , , , and , which maximize
average F-measure score across all of the labels in .

VI. EXPERIMENTS AND RESULTS

In this section, we evaluate Im-ML.KNN. The experimental
environment is aWindows 7, 64-bit, Intel(R) Xeon(R) 2.53 GHz
server with 24 GB RAM. We first present our experiment setup
and 6 research questions.We then present our experiment results
that answer each of the 6 research questions.

A. Experiment Setup

Table II shows the statistics of the four projects we use to
evaluate the performance Im-ML.KNN which are also used in
our previous empirical study [9]. All of the bug reports and data
are downloaded from their corresponding bug tracking systems.
We collect all bug reports with the status “resolved”, “closed”,
and “fixed” following previous studies [5]–[7], [12], [18]. In
Table II, columns Time and # Report correspond to the time
periods the collected bug reports are reported and the number of
collected reports, respectively. In total, we collect 190 558 bug
reports. Columns # reporter, # fixer, # product, # component,
version, # OS, and # platform correspond to the number of
unique values of the different fields. Notice that the values of
these fields are recorded at the time the bug report is submitted,
i.e., the values of all of these fields are recorded before the fields
of the bug report are reassigned and refined.

XIA et al.: AUTOMATED BUG REPORT FIELD REASSIGNMENT AND REFINEMENT PREDICTION 1101

TABLE II
STATISTICS OF COLLECTED BUG REPORTS

We use ten times tenfold cross validation [19] to evaluate the
performance of Im-ML.KNN. We randomly divide the dataset
into ten folds. Of these ten folds, nine folds are used to train
the model, while the remaining one fold is used to evaluate the
performance. The whole process iterates ten times. The overall
performance score across the ten iterations is reported. Also,
we run tenfold cross validation ten times and record the average
performance to further reduce the bias due to training set selec-
tion. Cross validation is a standard evaluation setting, which is
widely used in software engineering studies, see [5], [20]–[24].
We implement Im-ML.KNN on top of Mulan [25], which is a

multilabel learning Java toolkit. By default, we set the number
of neighbors as [13], and the sample size to 10% of the
number of bug reports in the training dataset. For ML.KNN, we
directly use its implementation in Mulan, and we set
which is the same as Im-ML.KNN.
Lamkanfi et al. propose the usage of Naive Bayes to predict

whether a component field would be reassigned and refined [6].
The output of their method is only reassigned and refined or non-
reassigned and refined for the component field of a bug report,
which corresponds to the single-label learning problem in ma-
chine learning literature [26]–[28]. Different from their work,
our works focus on predicting the sets of bug report fields which
would get reassigned and refined, the output of our method is
multiple labels which represents the fields of bug reports, which
is a typical multi-label learning problem. To adapt Lamkanfi
et al.'s method, we use their method to predict the reassign-
ment and refinement of each field independently, and repeat the
process 8 times. In this way, we build 8 classifiers using Naive
Bayes, and each classifier predict one type of field reassign-
ment. For example, classifier 1 could correspond to the classi-
fier which predict whether the component field of a bug report
would get reassigned and refined, classifier 2 could correspond
to the classifier which predict whether the product field of a bug
report would get reassigned and refined.
In multilabel learning literature, Tsoumakas et al. propose

HOMER algorithm which also considers the class imbalance
problem [15]. HOMER builds a hierarchy of multi-label clas-
sifiers by leveraging a balanced clustering algorithm, each one
dealing with a much smaller set of labels compared to the total
labels, and a more balanced example distribution. Tsoumakas

et al. use Naive Bayes as the underlying classifier of HOMER
(referred to in this paper as HOMER-NB). In this paper, we also
compare Im-ML.KNN with HOMER-NB.

B. Evaluation Metrics
To measure the performance of Im-ML.KNN, we use preci-

sion, recall, and F-measure scores as our evaluation metrics. We
refer to this type of bug report field reassignment and refinement
as a label in multilabel learning literature. Give a label in the
label set , for an instance (aka a bug report), there are four

outcomes: an instance is assigned to the label when it is truly
assigned to (true positive,); it assigned to label when it is
not actually assigned to (false positive,); it is not assigned
to label when it is actually assigned to (false negative,);
or it is not assigned to label when it actually is not assigned to
(true negative,). Based on these possible outcomes, we

compute its own F-measure, precision, and recall, i.e., we have
eight F-measures, precisions, and recalls, one for each label :.

Precision for : the proportion of bug reports (instances)
that are correctly labeled as among those labeled as :

(7)

Recall for : the proportion of bug reports labeled as that
are correctly labeled:

(8)

F-measure for : a summary measure that combines both
precision and recall for label —it evaluates whether an in-
crease in precision (recall) outweighs a reduction in recall
(precision):

(9)

In addition to the eight precision, recall, and F-measure
scores, we also compute in the average precision, recall, and
F-measure scores over the eight precision, recall, and F-mea-
sure scores as

(10)

Notice that the average precision, recall, and F-measure mea-
sure the prediction performance across all of the labels,
which are also used in previous software engineering studies
[20], [29], and many multilabel learning studies [26]–[28].

C. Research Questions
We would like to answer the following research questions.
1) What is the F-measure of Im-ML.KNN? How much im-

provement can it achieve over the method proposed by
Lamkanfi et al. [6], ML.KNN [13], and HOMER-NB
[15]?

2) Can the F-measure of Im-ML.KNN outperforms those
of its constituent components (i.e., meta classifier, text
classifier, and mixed classifier)?

1102 IEEE TRANSACTIONS ON RELIABILITY, VOL. 65, NO. 3, SEPTEMBER 2016

TABLE III
EXPERIMENT RESULTS OF Im-ML.KNN COMPARED WITH THE METHOD PROPOSED BY LAMKANFI ET AL. [6]. WE CONSIDER MACRO-AVERAGE F-MEASURE
(AVE. F-MEA.) AND THE F-MEASURE FOR EACH TYPE OF BUG REPORT FIELD REASSIGNMENT. , , ,

, , , ,

TABLE IV
EXPERIMENT RESULTS OF Im-ML.KNN COMPARED WITH ML.KNN [13]

TABLE V
EXPERIMENT RESULTS OF Im-ML.KNN COMPARED WITH HOMER-NB [15]

3) Dodifferent numbers of neighbors affect the F-measure
of Im-ML.KNN?

4) What are good predictors for bug report field reassign-
ments and refinements? Do the predictors differ for dif-
ferent fields?

5) What is the effect of varying the amount of training
data on the effectiveness of Im-ML.KNN?

6) How much time does it take for Im-ML.KNN to run?
Answering question 1) sheds light on the effectiveness of

Im-ML.KNN to predict bug report fields that get reassigned and
refined, compared to existing state-of-the-art solutions [6], [13].
Answering question 2) highlights the effectiveness of our ap-
proach compared to each of its individual classifiers. Answering
question 3) sheds light on the sensitivity of Im-ML.KNN when
using various settings of its parameter, i.e., the number of neigh-
bors. The answer of question 4) presents the top features that
best indicate bug report field reassignments and refinements,

which can be used by software practitioners to determine, early
on, which fields are most likely to be reassigned and refined.
The answer to question 5) determines the impact of reducing
the amount of training data on the performance of our approach.
The answer to question 6) examines themodel building time and
prediction time for Im-ML.KNN.

D. RQ1: F-Measure Scores of Im-ML.KNN

Tables III–V present the experimental results of Im-ML.KNN
compared with the method proposed by Lamkanfi et al. [6],
ML.KNN [13], and HOMER-NB [15], respectively. We also
list the average precision and recall of Im-ML.KNN, Lamkanfi
et al.'s method, ML.KNN and HOMER-NB in Table VI. No-
tice that, for Netbeans, no bug report has its severity reassigned
and refined, therefore the precision, recall, and F-measure for
severity reassignment and refinement is 0.

XIA et al.: AUTOMATED BUG REPORT FIELD REASSIGNMENT AND REFINEMENT PREDICTION 1103

TABLE VI
AVERAGE PRECISION (AVE. PRECISION) AND RECALL (AVE. RECALL) OF
IM-ML.KNN, LAMKANFI EL AL.'S METHOD, ML.KNN, AND HOMER-NB

Precision and recall are both important metrics for reassigned
and refined bug prediction since they measure quality in two
aspects. If the precision is low, then the developer would not
use the technique, due to a high number of false alarms. On
the other hand, if the recall is low, which means that most
reassigned and refined bug reports are not successfully de-
tected, developers would also not use the technique. There is
a tradeoff between precision and recall [19]. One can increase
precision by sacrificing recall (and vice versa). One simple way
to increase recall is to predict all the bug reports as reassigned
and refined, then the recall would be 1 but the precision would
be 0. In our method, we can sacrifice precision (recall) to
increase recall (precision), by manually lowering (increasing)
the value of the parameter in (6). F-measure, which
is a weighted harmonic mean of precision and recall, is often
used to judge whether an increase in precision outweighs a loss
in recall (and vice versa) [19]. Thus, in many existing papers,
e.g., [22], [30]–[32], it is often used as a summary measure.
In Fig. 1, the parameter is automatically tuned
to maximize the F-measure for each type of bug report field
reassignment and refinementin the training data.
From Table III, we note that the improvement of our method

over Lamkanfi et al.'s method is substantial. We improve the
average F-measure of the method proposed by Lamkanfi et
al. by 127.17%, 98.30%, 139.39%, and 113.87% for OpenOf-
fice, Netbeans, Eclipse, and Mozilla, respectively. Averaging
across the four datasets, the average improvement achieved by
Im-ML.KNN is 119.69%.
From Table IV, the improvement of our method over

ML.KNN is substantial. We improve the average F-measure of
ML.KNN by 0.98%, 15.03%, 9.85%, and 10.57% for OpenOf-
fice, Netbeans, Eclipse, and Mozilla, respectively. Averaging
across the four datasets, the average improvement achieved by
Im-ML.KNN is 9.11%. We also notice that ML.KNN does not
work well for imbalanced data, for example, ML.KNN's F-mea-
sures for predicting status reassignment and refinementare quite
low, i.e., 0.4739, 0.0004, 0.0000, and 0.0340 for OpenOffice,
Netbeans, Eclipse, and Mozilla, respectively. Our method

TABLE VII
AVERAGE F-MEASURE OF IM-ML.KNN COMPARED WITH EACH OF

3 MULTI-LABEL CLASSIFIERS, I.E., META CLASSIFIER,
TEXT CLASSIFIER, AND MIXED CLASSIFIER

TABLE VIII
AVERAGE WEIGHTS FOR THE META CLASSIFIER,

TEXT CLASSIFIER, AND MIXED CLASSIFIER

overcomes the weakness of ML.KNN and it can achieve better
results for each type of bug report field reassignment.
From Table V, we note that the improvement of our method

over HOMER-NB is substantial. We improve the average
F-measure of HOMER-NB by 164.90%, 148.67%, 188.95%,
and 141.80% for OpenOffice, Netbeans, Eclipse, and Mozilla,
respectively. Averaging across the four datasets, the average
improvement achieved by Im-ML.KNN is 161.08%.We also no-
tice that HOMER-NB does not work well for OS reassignment,
the F-measures for OS reassignment and refinementare quite
low, i.e., 0.1242, 0.1171, 0.1040, and 0.2252 for for OpenOf-
fice, Netbeans, Eclipse, and Mozilla, respectively. Notice the
numbers of bug reports whose OS get reassigned and refined are
quite small compared to other types of field reassignment and
refinement—OS reassignment and refinementonly happens for
5.78%, 4.79%, 4.55%, and 12.34% of OpenOffice, Netbeans,
Eclipse, and Mozilla bug reports respectively.

E. RQ2: Benefits of Composition
Table VII presents the average F-measure scores of

Im-ML.KNN compared to the meta classifier, text classifier, and
mixed classifier. We notice the improvement of Im-ML.KNN
over the 3 classifiers are substantial. On average across the 4
projects, Im-ML.KNN improves the average F-measure scores
of meta classifier, text classifier, and mixed classifier by 8.91%,
164.31%, and 9.11% respectively. The results show that it is
beneficial to combine the 3 classifiers.
To investigate which classifier plays an important role in

Im-ML.KNN, we presents the average weights of the meta
classifier, text classifier, and mixed classifier in Table VIII.
Note that we run tenfold cross validation ten times, and for
each fold we have a set of weights. In total, we have 100 sets of
weights, and we record the average weights across the 100 sets.

1104 IEEE TRANSACTIONS ON RELIABILITY, VOL. 65, NO. 3, SEPTEMBER 2016

Fig. 3. Experiment results of Im-ML.KNN for OpenOffice with number of
neighbors K Varied from 5 to 45. , ,

, , ,
, .

Fig. 4. Experiment results of Im-ML.KNN for Netbeans with number of neigh-
bors K Varied From 5 to 45.

From Table VIII, we observe that the mixed classifier plays
the most important role in Im-ML.KNN, followed by meta
classifier and text classifier.

F. RQ3: Sensitivity of Im-ML.KNN on Optimal Setting

Since the number of neighbors can impact the performance of
the algorithm, we investigate the effect of varying the number
of neighbors on the performance of Im-ML.KNN. We vary
the number of neighbors (i.e., in Algorithm 1) from 5 to 45.
We plot the resultant F-measure scores for OpenOffice,

Netbeans, Eclipse, and Mozilla in Fig. 3–6, respectively. For
Openoffice, the average F-measure scores vary from 0.6073

to 0.6215 . For Netbeans, the average F-mea-
sure scores vary from 0.5814 to 0.0.6007 .
For Eclipse, the average F-measure scores vary from 0.5540

to 0.5629 . For Mozilla, the average
F-measure scores vary from 0.5763 to 0.5860

. The results show that the performance of Im-ML.KNN
is relatively stable with various numbers of neighbors. Across

Fig. 5. Experiment results of Im-ML.KNN for Eclipse with number of neigh-
bors K varied from 5 to 45.

Fig. 6. Experiment results of Im-ML.KNN for mozilla with number of neigh-
bors K varied from 5 to 45.

the 4 projects, Im-ML.KNN achieves the best performance with
the number of neighbors set to 15 or 20.

G. Indicators of Bug Field Reassignment
From the bug reports, we extract thousands of features (i.e.,

meta features and textual features). To understand which fea-
tures are important to classify field reassignment, we extract dis-
criminative features from the thousands of features. We extract
top-5 features per label based on their information gain scores
[19].
Table IX presents the top ten most discriminative features.

We notice that the meta features (e.g., product, component, as-
signee) make up most of the top ten features. Notice that we use
the value of the meta features before they are reassigned and
refined (i.e., the first values of these features). We find that the
first/initial values of these features can be good indictors to pre-
dict which fields would get reassigned and refined. Among the
4 projects, product, component, reporter, and assignee are the
4 most important meta features related to various types of field
reassignment. For example, to predict whether the product field
would get reassigned and refined, the value of the meta feature
product is a good indictor, since the initial value of the product

XIA et al.: AUTOMATED BUG REPORT FIELD REASSIGNMENT AND REFINEMENT PREDICTION 1105

TABLE IX
TOP TEN DISCRIMINATIVE FEATURES BASED ON INFORMATION GAIN SCORES. THE META FEATURES ARE UNDERLINED

field maybe wrong, corresponds to a non-existent product, or is
a default value that most likely would get changed later. Aside
from these meta features, some textual features, corresponding
to stemmed words that appear in bug reports, are also good in-
dicators to various field reassignments and refinements. Note
that, in Table IX, the set of top ten features for Netbeans corre-
sponding to label Severity is empty; this is the case since none
of the Netbeans bug reports has its severity field reassigned and
refined.
To further investigate why the most discriminative features

differs for different types of bug report field reassignment and
refinement, we also perform a simple qualitative analysis. No-
tice that the fields in a bug report are related; some feature com-
binations are good indicators for the field reassignment and re-
finement. For example, the combinations of product, compo-
nent are important indicators to find the suitable fixers during
the bug triaging process [6]. For some product and component
combinations, it is easy to find suitable fixers. For some other
combinations, it might be hard to find suitable fixers, which re-
sults in bugs being “tossed” among multiple fixers. Thus, the
combinations of the product and component fields can help to

decide whether the fixer field would get reassigned. For ex-
ample, in the collected dataset of OpenOffice, the combination
of product =“Writer”, and component =“code” appears 2308
times, and there are total of 1892 times that the fixer fields are
reassigned under this combination. In the collected dataset of
Mozilla, the combination of product =“mozilla.org” and com-
ponent =“Server Operations” appears 3,066 times, and there are
a total of 2,914 times where the fixer fields are reassigned under
this combination.
The feature combinations are also good indicators for other

types of field reassignment and refinement. For example, in Net-
beans, we notice that certain combinations of reporter, compo-
nent, and assignee are good indicators for priority refinement.
In the collected dataset of Netbeans, the combination of reporter
=“soldatov”, component =“code”, and assignee =“issue” appear
166 times, and there is a total of 120 times that the priority fields
are reassigned under this combination
To simulate the decision process of an experienced bug

triager who needs to decide what bug report fields will get
reassigned and refined, we create a baseline approach that
infers reassigned and refined fields based on the statistics of

1106 IEEE TRANSACTIONS ON RELIABILITY, VOL. 65, NO. 3, SEPTEMBER 2016

TABLE X
EXPERIMENT RESULTS OF Im-ML.KNN COMPARED WITH THE BASELINE APPROACH

the top ten discriminative features for each field reassignment
and refinement. Since there are two types of features, i.e., meta
features and textual features, we compute the statistics for these
two types of features in different ways.
For a meta feature , the baseline approach computes the

probability for a field to be reassigned and refined as follows:
given a value of the meta feature , suppose the number of
times appears in the training bug reports is denoted as ,
and the number of times appears in the training bug reports
whose field get reassigned and refined is denoted as ,
the probability that field of a bug report with value of meta
feature , to get reassigned, which is denoted by , and is
computed by .
For a textual feature , and for a field , we compute the

number of bug reports in the training data whose field is re-
assigned or refined (denoted as), and also the number of
bug reports in the training data whose field is reassigned or
refined and contains term (denoted as). Based on
the these numbers, we compute the probability for to be reas-
signed given textual feature , which is denoted as , by
taking the ratio of and .
To predict whether a field will get reassigned and refined in

a new bug report, the baseline approach first computes a proba-
bility for each of the top-10 discriminative features, considering
the values of these features in the new bug report. If one of the
probabilities is larger than or equal to 0.5, the baseline approach
predicts that field will get reassigned and refined; else it pre-
dicts that will not be reassigned or refined.
Table X presents the F-measure scores of Im-ML.KNN

compared with the baseline approach. We improve the av-
erage F-measure of the baseline approach by 7.32%, 28.71%,
29.87%, and 51.06% for OpenOffice, Netbeans, Eclipse, and
Mozilla, respectively. Averaging across the four datasets, the
average improvement achieved by Im-ML.KNN is 29.24%.

H. Varying the Amount of Training Data
In the previous research questions, we use tenfold cross val-

idation, which means that 90% of the bug reports are used as
training data. In this research questions, we would like to in-
vestigate the impact of reducing the amount of training data on
the evaluation of our approach. In K-fold cross validation,

of the data is used to train a model, and the
remaining of the data is used to test the model.
K-fold cross validation is a standard approach. To answer this

Fig. 7. Average F-measure of Im-ML.KNN for OpenOffice, Netbeans, Eclipse,
and Mozilla with various amount of training bug reports.

research question, we try to reduce the number of folds to reduce
the amount of training data. We vary the number of from 2
to 10, and for each value of , we perform ten times K-fold
cross-validation, and record the average F-measure scores.
Fig. 7 presents the average F-measure scores of Im-ML.KNN

for OpenOffice, Netbeans, Eclipse, and Mozilla with various
amount of training bug reports. The average F-measure scores
vary from 0.4541–0.6226, 0.5624–0.5963, 0.5296–0.5683,
and 0.5652–0.5956, for OpenOffice, Netbeans, Eclipse, and
Mozilla, respectively. When we vary from 10 to 2, the
F-measure for Eclipse, Mozilla, and Firefox remains relatively
stable (it fluctuates less than 5.68% of the original value). For
OpenOffice, the F-measure reduces by 26.81% when we vary

from 10 to 2.

I. Time Efficiency of Im-ML.KNN

The time efficiency of Im-ML.KNN may affect its us-
ability, therefore, we also investigate Im-ML.KNN's time
efficiency. In this question, we investigate whether the runtime
of Im-ML.KNN is reasonable. To answer this research ques-
tion, we investigate the average amount of time that is needed
by Im-ML.KNN and the baseline approaches to process a bug
report during the model building phase, and the average amount
of time it needs to predict the fields which would get reassigned
and refined for a new bug report during the prediction phase.
We use a Windows 7, 64-bit, Intel(R) Xeon(R) 2.53 GHz server
with 24 GB RAM.

XIA et al.: AUTOMATED BUG REPORT FIELD REASSIGNMENT AND REFINEMENT PREDICTION 1107

TABLE XI
AVERAGE MODEL BUILDING TIME, AND PREDICTION TIME, PER BUG REPORT, FOR IM-ML.KNN,

LAMKANFI EL AL.'S APPROACH, ML.KNN, AND HOMER-NB (IN SECONDS)

Table XI shows the average model building time and pre-
diction time per bug report for Im-ML.KNN, Lamkanfi et al.'s
approach, ML.KNN, and HOMER-NB. We notice that the av-
erage model building time and the average prediction time of
Im-ML.KNN are 0.0265 and 0.0158 s per bug report, respec-
tively. Comparing with the other 3 baseline approaches, the
average model building time and the average prediction time
of Im-ML.KNN are better than those of Lamkanfi et al.'s ap-
proach and HOMER-NB, and worse than those of ML.KNN.
Still, the time taken by Im-ML.KNN is reasonable. Note that
the model building phase can be done offline (e.g., overnight).
Also, a learned model can be used to predict reassigned and re-
fined fields of many new bug reports, it is normal to spend a
few hours to process hundreds of thousands of bug reports to
initially build a model, since the model can be reused and the
process can be done offline.

VII. DISCUSSION

A. Longitudinal Data Setup
To investigate whether Im-ML.KNN can be used to solve the

problem in the same setting as the one in practice, we performed
an experiment using a longitudinal data setup following Tam-
rawi et al. and Bhattacharya and Neamtiu [18], [33]. We sorted
the bug reports in the order they are received (i.e., temporally)
and split them into 11 nonoverlapping time windows of equal
sizes, numbered 0 to 10. The process then proceeds as follows:
First, in fold 1, we train using bug reports in window 0, and
test the trained model using the bug reports in window 1. Then,
in fold 2, we train using bug reports in window 1, and test the
trained model using the bug reports in window 2, and so on. We
proceed in a similar manner for the next folds. In the final fold
(i.e., fold 10), we train using bug reports in window 9, and test
using the bug reports in window 10. We record the average per-
formance across the ten folds.
Table XII presents the average F-measure of Im-ML.KNN

compared with Lamkanfi et al.'s, ML.KNN, and HOMER-NB.
The average F-measure of Im-ML.KNN are 0.4187, 0.4848,
0.4154, and 0.4708 for OpenOffice, Netbeans, Eclipse, and
Mozilla, respectively. The improvement of our method over
Lamkanfi et al.'s method is substantial. We improve the av-
erage F-measure of the method proposed by Lamkanfi et
al. by 54.20%, 53.17%, 73.87%, and 61.57% for OpenOf-
fice, Netbeans, Eclipse, and Mozilla, respectively. Averaging
across the four datasets, the average improvement achieved by
Im-ML.KNN is 60.70%.
The improvement of our method over the ML.KNN method

is substantial for Netbeans, Eclipse, and Mozilla. We improve

TABLE XII
AVERAGE F-MEASURE OF IM-ML.KNN COMPARED WITH LAMKANFI EL AL.'S,
ML.KNN, AND HOMER-NB USING A LONGITUDINAL DATA SETUP. THE
LAST ROW SHOW THE AVERAGE PERFORMANCE ACROSS THE 4 PROJECTS

the average F-measure of ML.KNN by 6.68%, 25.43%, and
17.25%, and 11.12% for OpenOffice, Netbeans, Eclipse, and
Mozilla, respectively. Averaging across the four datasets, the
average improvement achieved by Im-ML.KNN is 15.12%.
The improvement of our method over the HOMER-NB

method is substantial for Netbeans, Eclipse, and Mozilla. We
improve the average F-measure of HOMER-NB by 63.94%,
70.90%, 87.31%, and 70.56% for OpenOffice, Netbeans,
Eclipse, and Mozilla, respectively. Averaging across the four
datasets, the average improvement achieved by Im-ML.KNN is
73.18%.
Fig. 8–11 present the average F-measure scores of Im-ML.

KNN, Lamkanfi et al.'s approach, ML.KNN, and HOMER-NB
for OpenOffice, Netbeans, Eclipse, and Mozilla, respectively.
We note that the average F-measure scores of Im-ML.KNN out-
perform those of other approaches for most folds for the ma-
jority of the projects. Also, in OpenOffice, we notice there is a
remarkable drop on Folds 8 and 9 for Im-ML.KNN, we double
check the results, and it is the case.

B. Cost Analysis

Here, we analyze the cost of Im.ML-KNN. For a field , if
we correctly predict that the field will get reassigned and refined,
let us assume that the time saved for bug fixing is ; else if we
wrongly predict that the field would get reassigned and refined,

1108 IEEE TRANSACTIONS ON RELIABILITY, VOL. 65, NO. 3, SEPTEMBER 2016

Fig. 8. Experiment results of Im-ML.KNN, Lamkanfi et al.'s approach,
ML.KNN, and HOMER-NB for OpenOffice with different folds.

Fig. 9. Experiment results of Im-ML.KNN, Lamkanfi et al.'s approach,
ML.KNN, and HOMER-NB for netbeans with different folds.

Fig. 10. Experiment results of Im-ML.KNN, Lamkanfi et al.'s approach,
ML.KNN, and HOMER-NB for Eclipse with different folds.

we assume that the extra time needed for bug fixing is . Sup-
pose we have bug reports, and among the bug reports, we
correctly predict whether field f would get reassigned in bug
reports and incorrectly predict whether would get reassigned
in bug reports, then the cost for Im-ML.KNN is

Fig. 11. Experiment results of Im-ML.KNN, Lamkanfi et al.'s approach,
ML.KNN, and HOMER-NB for Mozilla with different folds.

. If , then our approach could help
developers save time.
Table XIII presents the cost of Im-ML.KNN. We denote the

time saved due to the correct prediction of component, product,
severity, priority, os, version, fixer, and status reassignments and
refinements as , , , , , , , and , and the time
wasted due to wrong prediction as , , , , , ,

, and . For simplicity, let us assume that the time saved
for each correct prediction is the same, i.e.,

, and the time wasted for
each wrong prediction is the same, i.e.,

. Then, the net savings for
OpenOffice, Netbeans, Eclipse, and Mozilla are

, , ,
and , respectively. For OpenOffice,
Netbeans, Eclipse, and Mozilla, when ,

, , and , respectively,
Im-ML.KNN could help save bug fixing time.

C. Impact of Default Assignment in Fixer Field

When a bug report is initially submitted, its fixer field could
be assigned to a default address. For example, in OpenOffice,
the fixer fields of some bug reports are set to “issues” when they
are first submitted. It is easy to know that the fixer fields set to a
default address will eventually get reassigned. Thus, we would
like to investigate the effectiveness of Im-ML.KNN when we
omit these default developer assignments.
To do so, we first remove bug reports whose fixers are ini-

tially set to default addresses. In OpenOffice and Netbeans, we
remove bug reports whose fixers are initially set to default ad-
dresses such as “issues”, “UNKNOWN”, “spreadsheet”, and
“support”. In Eclipse, we remove bug reports whose fixers are
initially set to default addresses which end with “inbox”. In
Mozilla, we remove bug reports whose fixers are initially set to
default addresses such as “nobody”, “timeless”, “accounts”, and
“bugzilla”. In total, we have 35 934, 32 938, 12 801, and 11 416
bug reports remaining for OpenOffice, Netbeans, Eclipse, and
Mozilla, respectively. We run Im-ML.KNN on these datasets,
and denote the resultant results as .

XIA et al.: AUTOMATED BUG REPORT FIELD REASSIGNMENT AND REFINEMENT PREDICTION 1109

TABLE XIII
COST OF IM-ML.KNN

TABLE XIV
AVERAGE F-MEASURE OF IM-ML.KNN COMPARED WITH

USING TEN TIMES TENFOLD
CROSS-VALIDATION SETUP. THE LAST ROW SHOW THE
AVERAGE PERFORMANCE ACROSS THE FOUR PROJECTS

TABLE XV
AVERAGE F-MEASURE OF IM-ML.KNN COMPARED WITH

USING A LONGITUDINAL DATA SETUP. THE LAST
ROW SHOW THE AVERAGE PERFORMANCE ACROSS THE 4 PROJECTS

Tables XIV and XV present the average F-measure of
Im-ML.KNN compared with Im- using ten
times tenfold cross-validation setup, and the longitudinal
data setup, respectively. On average across the four projects,
Im- achieves average F-measures 0.5459
and 0.4087 in the cross validation setup and longitudinal
data setup respectively. We notice the average F-measures of

, but the differences are relatively small
(i.e., 0.05).
From the intution, removing the bug reports whose fixer fields

are set to a default address may remove the bug reports sub-
mitted by users, and leave the reports that were created by devel-
opers, since the developers are the ones with the project knowl-
edge to assign to something other than default. We also investi-
gate whether it is the case. For example, in OpenOffice, we find
a developer Frank Schonheit has reported 1150 bug reports, and
fixed 146 bug reports. However, still seven out of the 1150 re-
ported bugs are assigned to the default address “issue”. Also, a
user deye only has reported one bug report 102816, but the fixer
field is set to “ab@bregas.de” initially. Thus, users and devel-
opers in the community all have the chance to set the fixer field
to a default address.

D. Evaluation
In this paper, we automatically identify good , , , and

values for Im-ML.KNN following the algorithm pre-
sented in Fig. 1. The values are optimized (and thus are dif-
ferent) for different datasets and different training frames in our
tenfold cross-validation and longitudinal data setup.
Also, for each label , which corresponds to a type of bug

report field reassignment, our Im-ML.KNN automatically iden-
tify good from the training bug reports. Thus, the
decision boundaries (aka. thresholds) of Im-ML.KNN are fixed,
i.e., the precision and recall would not be varied with different
threshold values. We believe our Im-ML.KNN could help de-
velopers to use our tool in practice, since they do not need to
consider the effect of the threshold values to the performance of
our tool.
In single-label learning literature, receiver operating charac-

teristic (ROC) curve is a graphical plot which shows the perfor-
mance of a binary classifier when its threshold is varied [34].
Notice in our paper, we do not analyze the ROC curve due to
three reasons, given here.
• Im-ML.KNN automatically identifies good thresholds for
each of the eight types of field reassignment, which makes
the thresholds fixed. Thus, there is only one point in the
ROC curve for each of the eight types of field reassign-
ment.

• In multilabel learning literature, ROC curve is rarely used
to evaluate the performance of a multi-label learning algo-
rithm, see [13], [26]–[28]. Normally, researchers prefer to
use precision, recall, and F-measure to measure the perfor-
mance of a multilabel learning algorithm.

• In our paper, there are in total eight types of field reassign-
ment, which correspond to eight labels. If for each label, we
plot its ROC curve, then there would be too many curves.

E. Im-ML.KNN Versus HOMER-KNN
In the previous section, we used Naive Bayes as the under-

lying classifier for HOMER, which is also used by Tsoumakas
et al. [15]. We notice HOMER could also use other underlying
classifiers. Thus, we also use kNN as the underlying classifier
of HOMER (denoted as HOMER-KNN) as we do in Im-ML.
KNN, and we set the number of neighbors in kNN as 10 as
Im-ML.KNN.
Table XVI and XVII present the average F-measure of

Im-ML.KNN compared with HOMMER-KNN using ten times
tenfold cross-validation setup and longitudinal data setup,

1110 IEEE TRANSACTIONS ON RELIABILITY, VOL. 65, NO. 3, SEPTEMBER 2016

TABLE XVI
AVERAGE F-MEASURE OF IM-ML.KNN COMPARED WITH HOMER-KNN
USING TENFOLD CROSS-VALIDATION SETUP. THE LAST ROW SHOW THE

AVERAGE PERFORMANCE ACROSS THE FOUR PROJECTS

TABLE XVII
AVERAGE F-MEASURE OF IM-ML.KNN COMPARED WITH HOMER-KNN

USING A LONGITUDINAL DATA SETUP. THE LAST ROW SHOW THE
AVERAGE PERFORMANCE ACROSS THE FOUR PROJECTS

respectively. From Table XVI, we note that the improvement
of our method over HOMER-KNN is substantial. We improve
the average F-measure of HOMER-KNN by 3.85%, 10.24%,
4.44%, and 2.28% for OpenOffice, Netbeans, Eclipse, and
Mozilla, respectively. Averaging across the four datasets, the
average improvement achieved by Im-ML.KNN is 5.20% in the
tenfold cross-validation setup. From Table XVII, We improve
the average F-measure of HOMER-KNN by 8.71%, 12.73%,
6.37%, and 10.93% for OpenOffice, Netbeans, Eclipse, and
Mozilla, respectively. Averaging across the four datasets, the
average improvement achieved by Im-ML.KNN is 9.68% in the
longitudinal data setup.

F. Qualitative Analysis
Here, we perform a qualitative analysis on why the features

that we consider are relevant, how our Im-ML.KNN could po-
tentially help reduce bug fixing time, and why we need to com-
bine the 3 classifiers. We take status reassignment and refine-
ment (i.e., a bug report is reopened) and component reassign-
ment and refinementas examples.
Features: Tables XVIII–XXI present bug reports from

Netbeans. These four bug reports are chose from the predic-
tion results of our Im-ML.KNN, Lamkanfi et al.'s, ML.KNN,
and HOMER-NB. Also, since our Im-ML.KNN is a nearest
neighbor based approach, it would be easy to explain why our
approach outperforms the baseline approaches if some fields of
the bug reports are similar. Note that we record the values of
fields in these bug reports when they are first reported—before
any reassignments and refinements (if any). The status and
component fields in these 4 bug reports get reassigned and
refined. We notice there are many similarities among these four
bug reports.
• Many values of meta features in these 4 bug reports are
the same. For example, the product, component, assignee,
and version fields for these 4 bug reports are “db”, “UI”,
“davidvc”, and “6.X”, respectively. Also, for bug report
#137543 and #149041, their reporter are the same, i.e.,
“Roman Mostyka”.

TABLE XVIII
BUG REPORT #137543 OF NETBEANS

TABLE XIX
BUG REPORT #137600 OF NETBEANS

TABLE XX
BUG REPORT #144020 OF NETBEANS

• The description of these four bug reports are similar, i.e.,
their textual features are similar. These four bug reports are
all about UI issues and they share some common terms,
such as “dialog” and “connection.”

From the observation, we notice that if we consider both
the meta and textual features, the performance of Im-ML.KNN
could be further improved.
Reducing Bug Fixing Time: Notice that bug report #149041

in Table XXI takes a long time to be fixed. It is created in
“2008-10-03” and is only fixed in “2009-05-12”. The bug fixing
time is more than half a year. The component and status fields

XIA et al.: AUTOMATED BUG REPORT FIELD REASSIGNMENT AND REFINEMENT PREDICTION 1111

TABLE XXI
BUG REPORT #149041 OF NETBEANS

of this bug report are reassigned and refined. These reassign-
ments and refinements mean that the component that this bug
affects is wrongly reported (which leads to the component re-
assignment) and the bug is initially fixed incorrectly and needs
to be re-fixed (which leads to status reassignment). These reas-
signments and refinements are likely to increase bug fix time. If
our system is deployed, it can predict that the component field is
likely to be reassigned and refined, and the bug report is likely
to be reopened (which implies that the bug is hard-to-fix). This
can guide developers to first find the right component before at-
tempting to fix the bug, and to be more careful in performing
the fix, as the fix is likely to be a risky one. As a result, the bug
fixing time is likely to be reduced. Note that the model building
time for our Im-ML.KNN is only several hours at most (and it
could be trained offline), and the typical prediction time for a
bug report is less than a second. Thus, from developers' point of
view, they can get alert information in just less than a second.
Composing Classifiers: Note that we have three classifiers in

Im-ML.KNN, and the prediction results for the 3 classifiers could
be different. The combination of these three classifiers could
utilize the advantages of each classifier, and achieve a better
performance. For example, if we predict the fields which would
get reassigned and refined for bug report #149041, we notice
that the meta features for #149041 are very similar to the other
three bug reports (#137543, #137600, and #144020), however
its textual features are less similar to the other three bug reports.
Thus, the meta classifier predicts that the component and status
fields would get reassigned and refined; on the other hand, the
textual classifier does not predict any of these two fields would
get reassigned and refined, while the mixed classifier predicts
that only the component field would get reassigned and refined.
By combining these three classifiers, Im-ML.KNN predicts that
the component and status fields of bug report #149041 would
get reassigned and refined.

VIII. THREATS TO VALIDITY

Here, we highlight threats to internal validity, external va-
lidity, and construct validity.
Threats to Internal Validity: Threats to internal validity re-

late to bias and errors in our experiments. To reduce the risk of

this threat, we have double checked our datasets and our exper-
iments, however there could still be errors that we did not no-
tice. Also, to reduce training set selection bias, we have applied
tenfold cross validation ten times and recorded the average per-
formance. And we have also evaluated Im-ML.KNN using the
longitudinal data setup.
Threats to External Validity: Threats to external validity re-

late to the generalizability of our results. To reduce this risk, we
have analyzed 190 558 closed and fixed bug reports from four
open source software projects, and investigate eight types of bug
report field reassignment. Analyzing a substantial proportion of
bug reports in selected projects is important for the generaliz-
ability of the findings. Past studies also only investigate similar
number of bug reports from these projects [33], [35]–[38]. In the
future, we plan to reduce this threat further by analyzing more
bug reports from more software projects, including commercial
and open source projects.
Threats to Construct Validity: Threats to construct validity

refer to the suitability of our evaluation measures. We use the
average F-measure score as the main evaluation metric which is
also used by past studies to evaluate the effectiveness of a pre-
diction technique in various software engineering studies [20],
[22], [31], [39]. Thus, we believe there is little threat to con-
struct validity.

IX. RELATED WORK

In this section, we briefly review studies on bug report field
reassignments in Section IX-A, and multilabel learning in soft-
ware engineering in Section IX-B.

A. Bug Report Field Reassignment
The most related work to our paper is the empirical study we

perform [9]. In the empirical study, we analyze the root causes
of bug report field reassignment by sending emails to devel-
opers in open source software projects. We also analyze var-
ious field reassignments that happen in 190 558 bug reports in
four open-source software projects. We find that approximately
80% of the bug reports have one or more of their fields reas-
signed, and the bug reports whose fields get reassigned require
more time to be fixed than those without field reassignments.
This work complements our previous work, and our previous
work serves as a motivation to this work. In particular, in this
paper we propose an automated tool to predict which bug re-
port fields would get reassigned, to help developers reduce bug
fixing effort.
There have been a number of other studies on bug report field

reassignments. Guo et al. perform an empirical study on fixer
reassignments, and they find five primary reasons for fixer reas-
signments, i.e., difficulty to identify the root cause, ambiguous
ownership of components, poor bug report quality, difficulty to
determine the proper fix, and workload balancing [40]. Jeong et
al. investigate fixer reassignments in Mozilla and Eclipse, and
they propose a method which uses fixer reassignment graph to
improve the performance of bug triaging [7]. Bhattacharya et
al. extend Jeong et al.'s work to improve the accuracy of bug
triaging by using multi-feature fixer reassignment graph [33].
Shihab et al. study reopened bugs in Eclipse, Apache HTTP, and
OpenOffice, and find that the average time to resolve a reopened

1112 IEEE TRANSACTIONS ON RELIABILITY, VOL. 65, NO. 3, SEPTEMBER 2016

bug is approximately twice as much as the time to resolve a non-
reopened bug [4], [5]. They propose a machine learning based
method to predict reopened bug reports; they extract four groups
of features, related to work habits, bug report fields, bug fix, and
people, containing a total of 24 features. Sureka investigates the
component reassignment problem in Eclipse and Mozilla, and
proposes the use of machine learning algorithms to predict the
components of bug reports [12]. Lamkanfi et al. also study the
component reassignment problem, and find that the proportion
of bug reports whose component field gets reassigned varies be-
tween 8.3% to 32.7% in Eclipse and Mozilla [6]. They propose
the usage of Naive Bayes to predict whether the component of a
bug report would be reassigned, and their method achieves pre-
cision and recall between 0.58–0.94 and 0.54–1 for bug reports
of several products of Eclipse and Mozilla. Our work general-
izes the above studies; whereas previous studies focus on single
bug report field reassignment, our work considers all field reas-
signments simultaneously.

B. Multilabel Learning
There have been a number of studies on multi-label learning

in software engineering [20], [21], [36], [41]. Xia et al. propose
TagCombine to recommend tags in software information sites
[21]. Xia et al. propose DevRec to recommend bug resolvers
[36]. Each of these two studies makes use of a multi-label
learning algorithm. Banerjee et al. propose the usage of
multi-label learning algorithms to select suitable duplicated
bug report detection techniques, and combine them to achieve
a better performance [41]. Xia et al. propose a composite
methodMLL-GAwhich combines different multi-label learning
algorithms by leveraging genetic algorithms, to achieve a better
performance for software behavior learning [20]. Our work
is orthogonal to the above studies since we study a different
problem—we focus on predicting which bug report fields
would get reassigned rather than recommending a set of tags,
resolvers, and duplicated bug report detection techniques, and
predicting the fault types of a failure. Also, different from the
above studies, in this study we consider the class imbalance
problem, and adapt ML.KNN to handle this problem.

X. CONCLUSION AND FUTURE WORK

In this paper, we develop a tool which leverages multi-label
learning algorithms to automatically predict which bug report
fields would be reassigned and refined. We propose imbalanced
ML.KNN (Im-ML.KNN), which extends ML.KNN, by consid-
ering the class imbalance phenomenon. Im-ML.KNN is a com-
posite model, which combines three multilabel classifiers built
on different types of features (i.e., meta, textual, and mixed fea-
tures). We evaluate the performance of Im-ML.KNN on four
large-scale open source projects which contain 190 558 bug re-
ports in total. Experiment results show that Im-ML.KNN could
achieve an average F-measure score of 0.56–0.62.We also com-
pare Im-ML.KNN with other state-of-art methods, such as the
method proposed by Lamkanfi et al., ML.KNN, and HOMER.
The results show that Im-ML.KNN on average improves the av-
erage F-measure scores of Lamkanfi et al.'s method, ML.KNN,
and HOMER-NB by 119.69%, 9.11%, and 161.08%, respec-
tively. We show that the performance of Im-ML.KNN remains

relatively stable across a wide range of parameter settings thus
showing that it is not sensitive on the optimal setting of its
parameter.
In the future, we plan to evaluate Im-ML.KNN with more bug

reports from more software projects and develop a better tech-
nique which could improve the bug report field reassignment
and refinement prediction further.

REFERENCES
[1] M. Newman, “Software errors cost us economy $59.5 billion annu-

ally,” NIST Assesses Technical Needs of Industry to Improve Software-
Testing, 2002.

[2] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and
C. Weiss, “What makes a good bug report?,” IEEE Trans. Software
Eng., vol. 36, no. 5, pp. 618–643, Sep.–Oct. 2010.

[3] T. Zimmermann, R. Premraj, J. Sillito, and S. Breu, “Improving bug
tracking systems,” in Proc. 31st Int. Conf. Software Eng.-Companion
Vol., 2009, pp. 247–250.

[4] E. Shihab, A. Ihara, Y. Kamei, W. M. Ibrahim, M. Ohira, B. Adams,
A. E. Hassan, and K.-I. Matsumoto, “Predicting re-opened bugs: A
case study on the eclipse project,” in Proc. 17th Working Conf. Re-
verse Eng., 2010, pp. 249–258.

[5] E. Shihab, A. Ihara, Y. Kamei, W. M. Ibrahim, M. Ohira, B. Adams,
A. E. Hassan, and K.-I. Matsumoto, “Studying re-opened bugs in open
source software,” Empirical Software Eng., pp. 1–38, 2012.

[6] A. Lamkanfi and S. Demeyer, “Predicting reassignments of bug re-
ports-an exploratory investigation,” in Proc. 17th Eur. Conf. Software
Maintenance and Reeng., 2013, pp. 327–330.

[7] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with
bug tossing graphs,” in Proc. 7th Joint Meeting Eur. Software Eng.
Conf. and the ACM SIGSOFT Symp. The Foundations of Software
Eng., 2009, pp. 111–120.

[8] R. K. Saha, S. Khurshid, and D. E. Perry, “An empirical study of long
lived bugs,” in Proc. IEEE Conf. Software Maintenance, Reeng. and
Reverse Eng., 2014, pp. 144–153.

[9] X. Xia, D. Lo, M. Wen, E. Shihab, and B. Zhou, “An empirical study
of bug report field reassignment,” in Proc. IEEE Conf. Software Main-
tenance, Reeng. and Reverse Eng., 2014, pp. 174–183.

[10] S. Mani, S. Nagar, D. Mukherjee, R. Narayanam, V. S. Sinha, and A.
A. Nanavati, “Bug resolution catalysts: Identifying essential non-com-
mitters from bug repositories,” in Proc. 10th Working Conf. Mining
Software Repositories, San Francisco, CA, USA, 2013, pp. 193–202.

[11] G. Tsoumakas and I. Katakis, “Multi-label classification: An
overview,” Int. J. Data Warehousing and Mining, vol. 3, no. 3, pp.
1–13, 2007.

[12] A. Sureka, “Learning to classify bug reports into components,” in
Objects, Models, Components, Patterns. Berlin, Germany: Springer,
2012, pp. 288–303.

[13] M.-L. Zhang and Z.-H. Zhou, “Ml-knn: A lazy learning approach
to multi-label learning,” Pattern Recognition, vol. 40, no. 7, pp.
2038–2048, 2007.

[14] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans.
Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009.

[15] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Effective and efficient mul-
tilabel classification in domains with large number of labels,” in Proc.
ECML/PKDD Workshop on Mining Multidimensional Data, 2008, pp.
30–44.

[16] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?,” in
Proc. 28th Int. Conf. Software Eng., 2006, pp. 361–370.

[17] R. A. Baeza-Yates and B. A. Ribeiro-Neto, Modern Information Re-
trieval 2011.

[18] A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen, “Fuzzy
set and cache-based approach for bug triaging,” in Proc. 19th ACM
SIGSOFT Symp. and 13th Eur. Conf. Foundations of Software Eng.,
2011, pp. 365–375.

[19] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Tech-
niques. San Mateo, CA, USA: Morgan Kaufmann, 2006.

[20] X. Xia, Y. Feng, D. Lo, Z. Chen, and X.Wang, “Towardsmore accurate
multi-label software behavior learning,” in Proc. IEEE Conf. Software
Maintenance, Reeng. and Reverse Eng., 2014, pp. 134–143.

[21] X. Xia, D. Lo, X. Wang, and B. Zhou, “Tag recommendation in soft-
ware information sites,” in Proc. 10th Int. Workshop on Mining Soft-
ware Repositories, 2013, pp. 287–296, IEEE Press.

XIA et al.: AUTOMATED BUG REPORT FIELD REASSIGNMENT AND REFINEMENT PREDICTION 1113

[22] Y. Tian, J. Lawall, and D. Lo, “Identifying linux bug fixing patches,”
in Proc. 34th Int. Conf. Software Eng., 2012, pp. 386–396.

[23] T. Menzies and A. Marcus, “Automated severity assessment of soft-
ware defect reports,” in Proc. IEEE Int. Conf. Software Maintenance,
2008, pp. 346–355.

[24] F. Thung, D. Lo, and J. L. Lawall, “Automated library recommenda-
tion,” in Proc. WCRE, 2013, pp. 182–191.

[25] G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and I. Vlahavas,
“Mulan: A Java library for multi-label learning,” J. Mach. Learning
Res., vol. 12, pp. 2411–2414, 2011.

[26] G. Tsoumakas, I. Katakis, and L. Vlahavas, “Random k-labelsets for
multilabel classification,” IEEE Trans. Knowl. Data Eng., vol. 23, no.
7, pp. 1079–1089, Jul. 2011.

[27] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains
for multi-label classification,” Machine Learning, vol. 85, no. 3, pp.
333–359, 2011.

[28] M. Zhang and Z. Zhou, “A review on multi-label learning algorithms,”
IEEE Trans. Knowl. Data Eng., vol. 26, no. 8, pp. 1819–1837, Aug.
2014.

[29] Y. Feng and Z. Chen, “Multi-label software behavior learning,” in
Proc. Int. Conf. Software Eng., 2012, pp. 1305–1308.

[30] R.Wu, H. Zhang, S. Kim, and S.-C. Cheung, “Relink: Recovering links
between bugs and changes,” in Proc. 19th ACM SIGSOFT Symp. and
13th Eur. Conf. Foundations of Software Eng., 2011, pp. 15–25.

[31] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Multi-
layered approach for recovering links between bug reports and fixes,”
in Proc. ACM SIGSOFT 20th Int. Symp. Foundations of Software Eng.,
2012, p. 63.

[32] F. Peters and T. Menzies, “Privacy and utility for defect prediction:
Experiments with morph,” inProc. 34th Int. Conf. Software Eng., 2012,
pp. 189–199.

[33] P. Bhattacharya and I. Neamtiu, “Fine-grained incremental learning
and multi-feature tossing graphs to improve bug triaging,” in Proc.
IEEE Int. Conf. Software Maintenance, 2010, pp. 1–10.

[34] T. Fawcett, “An introduction to roc analysis,” Pattern Recognition
Lett., vol. 27, no. 8, pp. 861–874, 2006.

[35] P. Hooimeijer andW.Weimer, “Modeling bug report quality,” in Proc.
22nd IEEE/ACM Int. Conf. Automated Software Eng., 2007, pp. 34–43.

[36] X. Xia, D. Lo, X. Wang, and B. Zhou, “Accurate developer recommen-
dation for bug resolution,” in Proc. 20th Working Conf. Reverse Eng.,
2013, pp. 72–81.

[37] S. Zaman, B. Adams, and A. E. Hassan, “Security versus performance
bugs: A case study on Firefox,” in Proc. 8th Working Conf. Mining
Software Repositories, 2011, pp. 93–102.

[38] X. Xia, D. Lo, E. Shihab, X. Wang, and B. Zhou, “Automatic, high
accuracy prediction of reopened bugs,” Automated Software Eng., pp.
1–35, 2014.

[39] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in Proc. Int.
Conf. Software Eng., 2013, pp. 382–391.

[40] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “Not my
bug! and other reasons for software bug report reassignments,” in
Proc. ACM Conf. Comput. Supported Cooperative Work, 2011, pp.
395–404.

[41] S. Banerjee, Z. J. Syed, J. Helmick, and C. Bojan, “A fusion approach
for classifying duplicate problem reports,” in Proc. ISSRE, 2013, pp.
208–217.

Xin Xia (M’14) received the Ph.D. degree from the College of Computer Sci-
ence and Technology, Zhejiang University, Hangzhou, China, in 2014.
He is currently a Research Assistant Professor with the College of Com-

puter Science and Technology, Zhejiang University, Hangzhou, China. His re-
search interests include software analytic, empirical study, and mining software
repository.

David Lo (M’14) received the Ph.D. degree from the National University of
Singapore, Singapore, in 2008.
He is currently an Assistant Professor with the School of Information Sys-

tems, Singapore Management University, Singapore. He has close to 10 years of
experience in software engineering and data mining research and has authored
and coauthored more than 130 publications in these areas.
Dr. Lee was the recipient of the Lee Foundation Fellow for Research Ex-

cellence from the Singapore Management University in 2009. He has won a
number of research awards including an ACM distinguished paper award for his
work on bug report management. He has also served on the program commit-
tees of ICSE, ASE, KDD, VLDB, and many others. He is a steering committee
member of the IEEE International Conference on Software Analysis, Evolution,
and Reengineering (SANER) which is a merger of the two major conferences
in software engineering, namely CSMR and WCRE. He will also serve as the
general chair of ASE 2016. He is a leading researcher in the emerging field of
software analytics and has been invited to give keynote speeches and lectures
on the topic in many venues, such as the 2010 Workshop on Mining Unstruc-
tured Data, the 2013 Gnie Logiciel EmpiriqueWorkshop, the 2014 International
Summer School on Leading Edge Software Engineering, and the 2014 Estonian
Summer School in Computer and Systems Science.

Emad Shihab received the B.Eng. and M.A.Sc. degrees from the University of
Victoria, Victoria, BC, Canada, and the Ph.D. degree from Queen's University,
Kingston, ON, Canada.
He is an Assistant Professor with the Department of Computer Science and

Software Engineering, Concordia University, Montreal, QC, Canada. His re-
search interests are in software engineering, software quality assurance, em-
pirical software engineering, mining software repositories, mobile applications
and software architecture. He was a Software Research Intern with Research In
Motion, Waterloo, ON, Canada, and Microsoft Research, Redmond, WA, USA.
Dr. Shihab held an NSERC Alexander Graham Bell Canada Graduate Schol-

arship (CGS-D3) and the PhD research achievement award from the School
of Computing at Queens University. He served as organizer to a number of
events related to Mining Software Repositories (MSR) and Mobile Applica-
tions, including serving as program chair of the MSR 2012 Challenge Track and
the MSR 2013 Data Showcase Track. Dr. Shihab regularly serves on the pro-
gramming committee of Software Engineering conferences and journals such
as ICSME, MSR, ICPC, SANER (formerly WCRE/CSMR), OSS, TSE and
EMSE.

Xinyu Wang received the B.S. and Ph.D. degrees in computer science from
Zhejiang University, Hangzhou, China, in 2002 and 2007, respectively.
He was a Research Assistant with Zhejiang University, Hangzhou, China,

during 2002–2007. He is currently an Associate Professor with the College of
Computer Science, Zhejiang University, Hangzhou, China. His research inter-
ests include software engineering, formal methods, and very large information
systems.

