
Empir Software Eng (2017) 22:134–174
DOI 10.1007/s10664-015-9417-1

Extracting and analyzing time-series HCI data
from screen-captured task videos

Lingfeng Bao1 · Jing Li2 ·Zhenchang Xing2 ·
Xinyu Wang1 ·Xin Xia1 ·Bo Zhou1

Published online: 19 January 2016
© Springer Science+Business Media New York 2016

Abstract Recent years have witnessed the increasing emphasis on human aspects in soft-
ware engineering research and practices. Our survey of existing studies on human aspects
in software engineering shows that screen-captured videos have been widely used to record
developers’ behavior and study software engineering practices. The screen-captured videos
provide direct information about which software tools the developers interact with and
which content they access or generate during the task. Such Human-Computer Interaction
(HCI) data can help researchers and practitioners understand and improve software engi-
neering practices from human perspective. However, extracting time-series HCI data from
screen-captured task videos requires manual transcribing and coding of videos, which is
tedious and error-prone. In this paper we report a formative study to understand the chal-
lenges in manually transcribing screen-captured videos into time-series HCI data. We then

Communicated by: Emerson Murphy-Hill

� Xinyu Wang
wangxinyu@zju.edu.cn

Lingfeng Bao
lingfengbao@zju.edu.cn

Jing Li
jli030@ntu.edu.sg

Zhenchang Xing
zcxing@ntu.edu.sg

Xin Xia
xxia@zju.edu.cn

Bo Zhou
bzhou@zju.edu.cn

1 College of Computer Science, Zhejiang University, Hangzhou, China

2 School of Computer Engineering, Nanyang Technological University, Singapore, Singapore

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-015-9417-1&domain=pdf
mailto:wangxinyu@zju.edu.cn
mailto:lingfengbao@zju.edu.cn
mailto:jli030@ntu.edu.sg
mailto:zcxing@ntu.edu.sg
mailto:xxia@zju.edu.cn
mailto:bzhou@zju.edu.cn

Empir Software Eng (2017) 22:134–174 135

present a computer-vision based video scraping technique to automatically extract time-
series HCI data from screen-captured videos. We also present a case study of our scvRipper
tool that implements the video scraping technique using 29-hours of task videos of 20 devel-
opers in two development tasks. The case study not only evaluates the runtime performance
and robustness of the tool, but also performs a detailed quantitative analysis of the tool’s
ability to extract time-series HCI data from screen-captured task videos. We also study the
developer’s micro-level behavior patterns in software development from the quantitative
analysis.

Keywords Screen-captured video · Video scraping · HCI data · Online search behavior

1 Introduction

It has long been recognized that the humans involved in software engineering, including
the developers and other stakeholders, are a key factor in determining project outcomes
and success. A number of workshops and conferences (e.g. CHASE, VL/HCC) have been
focusing on the human and social aspects in software engineering. Some important objec-
tives of these studies are to investigate the capabilities of the developers (von Mayrhauser
and Vans 1997; Lawrance et al. 2013; Corritore and Wiedenbeck 2001), their information
needs in developing and maintaining software (Wang et al. 2011; Ko et al. 2006; Li et al.
2013), how developers collaborate (Koru et al. 2005; Dewan et al. 2009), and what we can
do to improve their performance (Ko and Myers 2005; Hundhausen et al. 2006; Robillard
et al. 2004; Duala-Ekoko and Robillard 2012).

Unlike software engineering research with technology focus, research that focuses on
human aspects in software engineering adopts behavioral research methods widely used in
humanities and social sciences (Leary 1991). The commonly used data collection methods
in such human studies include questionnaire, interview, and observation. Among these data
collection methods, observation can provide direct information about behavior of individ-
uals and groups in a natural working context. It also provides opportunities for identifying
unanticipated outcomes.

Two kinds of techniques have been commonly used to automatically record observa-
tional data in the studies of developer behavior: software instrumentation and screencast
(also known as video screen capture) techniques. We can instrument software tools that the
developers use to log their interaction with the tools and application content. For example,
Eclipse IDE can record which refactorings a developer applied to which part of the code
(Vakilian et al. 2012). We refer to such data as Human-Computer Interaction (HCI) data.
Instrumenting many of today’s software systems is considerably complex. It often requires
sophisticated reflection APIs (e.g., Accessibility API or UI Automation API) provided by
applications, operating systems and GUI toolkits (Hurst et al. 2010; Chang et al. 2011). Fur-
thermore, developers use various tools (e.g., IDE, web browsers) in software development
tasks. Instrumenting all of these tools requires significant effort.

Screencast techniques and tools offer a generic and easy-to-deploy alternative to instru-
mentation. Screencast software (e.g., Snagit1) can easily capture a developer’s interaction

1http://www.techsmith.com/snagit.html

http://www.techsmith.com/snagit.html

136 Empir Software Eng (2017) 22:134–174

with several software tools. It produces a screen-captured video, i.e., a sequence of
time-ordered screenshots that the screencast tool takes at a specified time interval (often
1/30 – 1/5 second). Each screenshot records the software tools the developer uses and the
application content he accesses or generates at a specific time.

We survey 26 papers that are published in top-tier software engineering conferences from
1992 to 2014. These papers have studied various human aspects in software engineering.
Screencast techniques are commonly used to record developers’ behavior in these studies.
However, many studies use video data mainly as qualitative evidence of study findings.
Some studies (Lawrance et al. 2013; Li et al. 2013; Ko and Myers 2005) perform quantita-
tive analysis of developers’ behavior by manually transcribing and coding screen-captured
videos into HCI data (e.g., software used, content accessed or generated). These studies
provide deeper insight into the developers’ behavior in various software development tasks.
Such quantitative analysis is expensive and time consuming. It is reported that the ratio of
video recording time to video analysis time is about 1:4–7.

As software engineering research has increased focus on human aspects, there has been a
greater need for a solution to automatically extract and analyzing the HCI data from screen-
captured videos, in order to facilitate quantitative analysis of the developers’ behavior in
software development tasks. To meet this need, we design and implement a computer-
vision-based video scraping technique called scvRipper (Bao et al. 2015b, c). Given a
screen-captured video, scvRipper can recognize window-based applications in the screen-
shots of video, and extract application content from the recognized application windows. It
essentially transforms a screen-captured video into a time-series HCI data. Time-series HCI
data consists of a sequence of time-ordered items. Each item captures the software tool(s)
and application content shown on the screen in the screenshot at a specific time in the video.
The application content contains the working information of an application at a specific
time, such as URL in an address bar, query in a search box, and web page content in a web
browser, and code fragment in a code editor and console output in Eclipse IDE.

In addition to the screen-scraping approach and the scvRipper tool (Bao et al. 2015b, c),
we make the following additional contributions in this paper:

– We complement our previous work (Bao et al. 2015b, c) with a formative study in order
to better understand the challenges in manually transcribing screen-captured videos.
Our study shows that manual transcription requires constant attention to micro-level
details in the videos.

– We conduct a detailed quantitative analysis of the scvRipper tool’s ability to extract
fine-grained time-series HCI data from screen-captured videos. The study is based on
29-hour screen-captured task videos of 20 developers in the two development tasks.
This quantitative study demonstrates the usefulness of the scvRipper tool for studying
developers’ micro-level behavior in software development tasks.

The rest of this paper is structured as follows. Section 2 summarizes our survey of the
use of screen-captured videos in the 26 studies on human aspects of software engineer-
ing. Section 3 discusses a formative study of the challenges in the manual transcription
of screen-captured videos. Section 4 discusses technical details of our video scrapping
technique. Section 5 reports our evaluation of the scvRipper tool. Section 6 discusses the
potential applicability and limitation of our scvRipper technique in studying human factors
of software engineering. Section 7 reviews related work. Section 8 concludes the paper and
discusses our future plan.

Empir Software Eng (2017) 22:134–174 137

2 A Survey of the Use of Screen-Capture Videos in SE Studies

We search using Google Scholar for keywords such as “software engineering”, “exploratory
study”, “empirical study”, “screencast” and/or “screen capture” during the period 2–10
November 2014. From the search results, we survey 26 papers that study human aspects of
software engineering (see Table 1).

We categorize these 26 papers into 4 different kinds according to their research purposes:

1. To study and model the developers’ behavior in software development tasks, such as
debugging, feature location, program comprehension, using unfamiliar APIs.

2. To elicit information needs and requirements for improving the design of software
development tools.

3. To study software engineering practices, such as novice programming, pair program-
ming, distributed programming, testing of plugin systems, game development.

4. To investigate visualization techniques, like code structure, program execution, social
relationships in software development

We further investigate how these studies analyze the screen-captured videos. We identify
3 video coding levels in these studies:

– Artifacts: Refers to information developers access or generate. For example, (Lawrance
et al. 2013) categorized several artifacts such as “Bug-text”, “Runtime”, “Source Code”,
“UI-static inspection”, “Web” in their study of debugging activities. Corritore and
Wiedenbeck (2001, 2000) identified files that the participants accessed. Li et al. (2013)
extracted online resources (e.g. blogs, API documents) that developers used from
screen-captured videos.

– Actions: Refers to developers’ action during software development tasks, such as read-
ing and editing code, navigation, searching, switching between applications, switching
between documents, and testing. In the surveyed papers, the researchers focus on dif-
ferent actions according to their study objectives. For example, (Piorkowski et al. 2011;
Fritz et al. 2014; Robillard et al. 2004; Ammar and Abi-Antoun 2012) only cared about
the navigation actions in their studies, while more action types (e.g. reading, searching,
switching) were considered in many other studies (Sillito et al. 2005; Wang et al. 2011;
Ko et al. 2006; Duala-Ekoko and Robillard 2012).

– Qualitative: Refers to qualitative analysis using screen-captured videos. For example,
to validate developers’ intentions and strategies during the task. Qualitative analysis is
usually based on the analyst’s subjective summary of his observation, and thus does not
require detailed information about artifacts and developer actions.

Our survey shows that screencast tools have been widely used to collect observational
data in studying human aspects of software engineering (21 of 26 papers), especially for
modeling developers’ behavior in software development tasks (research purpose 1) and elic-
iting design requirements for innovative software development tools (research purpose 2).
Studies with these two research purposes require detailed information about developers’
actions and the artifacts developers use in software development tasks. Studying software
engineering practices (research purpose 3) usually requires only qualitative data, such as
the developers’ intentions and strategies. As such, think-aloud, survey and interview meth-
ods are commonly used in these studies. Investigation of visualization techniques usually
uses both screen-captured videos and other data collection methods. However, screen-
captured videos are analyzed qualitatively without the need for detailed user actions and
artifacts.

138 Empir Software Eng (2017) 22:134–174

Ta
bl
e
1

T
he

ov
er
vi
ew

of
su
rv
ey
ed

pa
pe
rs

Pa
pe
r

Sc
re
en
-c
ap
tu
re
d

O
th
er

R
es
ea
rc
h
Pu

rp
os
e
3

V
id
eo

C
od
in
g
L
ev
el

V
id
eo

1
C
ol
le
ct
io
n
M
et
ho
d2

vo
n
M
ay
rh
au
se
r
an
d
V
an
s
(1
99
7)

×
V
id
eo

ta
pe

1-
de
bu
gg
in
g

Q
ua
lit
at
iv
e

A
ud
io

T
hi
nk
-a
lo
ud

L
aw

ra
nc
e
et
al
.(
20
13
)

�
A
ud
io

1-
de
bu
gg
in
g

A
rt
if
ac
ts

T
hi
nk
-a
lo
ud

Si
lli
to

et
al
.(
20
05
)

�
A
ud
io

1-
de
bu
gg
in
g

A
ct
io
ns

L
og

W
an
g
et
al
.(
20
11
)

�
N
.A
.

1-
fe
at
ur
e
lo
ca
tio

n
A
ct
io
ns

C
or
ri
to
re

an
d
W
ie
de
nb
ec
k
(2
00
1)

�
N
.A
.

1-
pr
og
ra
m

co
m
pr
eh
en
si
on

A
rt
if
ac
ts

K
o
et
al
.(
20
06
)

�
N
.A
.

1-
pr
og
ra
m

co
m
pr
eh
en
si
on

A
ct
io
ns

(L
ie
ta
l.
20
13
)

�
N
.A
.

1-
pr
og
ra
m

co
m
pr
eh
en
si
on

A
rt
if
ac
ts
&

A
ct
io
ns

R
ob
ill
ar
d
et
al
.(
20
04
)

�
N
.A
.

1-
pr
og
ra
m

co
m
pr
eh
en
si
on

A
ct
io
ns

C
or
ri
to
re

an
d
W
ie
de
nb
ec
k
(2
00
0)

�
N
.A
.

1-
pr
og
ra
m

co
m
pr
eh
en
si
on

A
rt
if
ac
ts

L
aw

ra
nc
e
et
al
.(
20
08
)

�
Fi
el
d
no
te
s

1-
pr
og
ra
m

co
m
pr
eh
en
si
on

Q
ua
lit
at
iv
e

Pi
or
ko
w
sk
ie
ta
l.
(2
01
1)

�
A
ud
io

1-
pr
og
ra
m

co
m
pr
eh
en
si
on

A
ct
io
ns

T
hi
nk
-a
lo
ud

Fr
itz

et
al
.(
20
14
)

�
Pa
tc
he
s

1-
pr
og
ra
m

co
m
pr
eh
en
si
on

A
ct
io
ns

D
ua
la
-E
ko
ko

an
d
R
ob
ill
ar
d
(2
01
2)

�
N
.A
.

1-
un
fa
m
ili
ar

A
PI
s

A
ct
io
ns

D
ek
el
an
d
H
er
bs
le
b
(2
00
9)

�
N
.A
.

1-
un
fa
m
ili
ar

A
PI
s

A
ct
io
ns

K
o
an
d
M
ye
rs
(2
00
5)

�
A
ud
io

2-
To

ol
de
si
gn

Q
ua
lit
at
iv
e

K
o
et
al
.(
20
05
a)

�
N
.A
.

2-
To

ol
de
si
gn

A
ct
io
ns

K
o
et
al
.(
20
05
b)

�
N
.A
.

2-
To

ol
de
si
gn

A
ct
io
ns

Empir Software Eng (2017) 22:134–174 139

Ta
bl
e
1

(c
on
tin

ue
d)

Pa
pe
r

Sc
re
en
-c
ap
tu
re
d

O
th
er

R
es
ea
rc
h
Pu

rp
os
e
3

V
id
eo

C
od
in
g
L
ev
el

V
id
eo

1
C
ol
le
ct
io
n
M
et
ho
d2

H
un
dh
au
se
n
et
al
.(
20
06
)

�
N
.A
.

3-
no
vi
ce

pr
og
ra
m
m
in
g

Q
ua
lit
at
iv
e

K
or
u
et
al
.(
20
05
)

×
V
id
eo

ta
pe

3-
pa
ir
pr
og
ra
m
m
in
g

Q
ua
lit
at
iv
e

T
hi
nk
-a
lo
ud

D
ew

an
et
al
.(
20
09
)

�
A
ud
io

3-
di
st
ri
bu
te
d
pr
og
ra
m
m
in
g

Q
ua
lit
at
iv
e

G
re
ile

r
et
al
.(
20
12
)

×
Su

rv
ey

3-
te
st
in
g
of

pl
ug
in

sy
st
em

s
Q
ua
lit
at
iv
e

In
te
rv
ie
w

M
ur
ph
y-
H
ill

et
al
.(
20
14
)

×
Su

rv
ey

3-
ga
m
e
de
ve
lo
pm

en
t

Q
ua
lit
at
iv
e

In
te
rv
ie
w

B
ra
de

et
al
.(
19
92
)

×
V
id
eo

ta
pe

4-
co
de

st
ru
ct
ur
e

Q
ua
lit
at
iv
e

T
hi
nk
-a
lo
ud

A
m
m
ar

an
d
A
bi
-A

nt
ou
n
(2
01
2)

�
T
hi
nk
-a
lo
ud

4-
co
de

st
ru
ct
ur
e

A
ct
io
ns

L
aw

re
nc
e
et
al
.(
20
05
)

�
Fi
el
d
no
te
s

4-
pr
og
ra
m

ex
ec
ut
io
n

Q
ua
lit
at
iv
e

Q
ue
st
io
nn
ai
re

Sa
rm

a
et
al
.(
20
09
)

�
T
hi
nk
-a
lo
ud

4-
so
ci
al
re
la
tio

ns
hi
ps

Q
ua
lit
at
iv
e

1
�
:u

se
d,

×:
no
tu

se
d

2
N
.A
.m

ea
ns

no
ot
he
r
m
et
ho

ds
ar
e
us
ed

3
R
es
ea
rc
h
pu
rp
os
e
ca
te
go
ry

an
d
sp
ec
if
ic
as
pe
ct

140 Empir Software Eng (2017) 22:134–174

Some of the surveyed papers also report the ratio of video recording time and coding
time. The reported ratio is between 1:4–7, depending on the details and granularity of the
HCI data to be collected. The most costly studies are to study fine-grained behavioral pat-
terns in software development tasks (e.g., (Wang et al. 2011; Ko and Myers 2005)) because
they require iterative open coding of screen-captured videos. For example, Ko and Myers
(2005) reported “analysis of video data by repeated rewinding and fast-forwarding”. How-
ever, compared to qualitative data collection and analysis methods, fine-grained studies of
the developers’ behavior can provide deeper insights into the outstanding difficulties in soft-
ware development, and thus inspire innovative tool support to address these difficulties (Ko
and Myers 2004; Wang et al. 2013).

Summary Many studies on human aspects of software engineering have demonstrated the
usefulness of screen-captured videos in studying developers’ behavior in software develop-
ment tasks. However, to fully exploit the potentials of screen-captured video data in software
engineering studies, there is a great need for automated tools that can extract and analyze
time-series HCI data from screen-captured videos. We further elaborate on the kind of priori
studies that could benefit from such an automated tool in Section 6.

3 Formative Study

We conduct a formative study to better understand the challenges in manually transcribing
screen-captured videos into time-series HCI data.

3.1 Study Design

We recruit 3 graduate students from the School of Computer Engineering, Nanyang Tech-
nology University and ask them to manually transcribe a 20-minutes screen-captured task
video. The 20-minutes task video is excerpted from the 29-hours of task videos in our previ-
ous field study of the developers’ online search behavior in software development tasks (Li
et al. 2013). The developers in that study use the Eclipse IDE to complete two programming
tasks. They use Chrome, Internet Explorer, and Firefox to search the Internet and browse
web pages. Details of this previous field study can be found in Section 5.1.

In this formative study, we instruct the three participants to extract the following three
pieces of information from the task video:

1. The applications that the developer uses
2. The time and duration of application usage
3. The application content that the developer interacts with, including source files viewed,

web pages visited, and search queries issued.

We instruct the three participants to log their manual transcription results in a table as
shown in Table 2. A record in the table includes the start Time of using an Application
and the corresponding Application Content. For web browser, the application content has
the URL of the web page currently visited and a query if the web page is a search engine
result. For Eclipse, the application content is the name of the source file currently viewed.
The duration of application usage can be computed by subtracting starting time of two con-
secutive records. The participants are also asked to identify application usage with unique
content and assign it a unique Index. The records in Table 2 show that the developer searches
Google in Chrome and then visits a web page at help.eclipse.org. Next, he switches to

Empir Software Eng (2017) 22:134–174 141

Table 2 An example of manual transcription logs

Index Time Application Application Content

Url1 00:00 Chrome URL: www.google.com

Query:IProgressMonitor editor

Url2 00:20 Chrome URL: help.eclipse.org/...

Src1 01:05 Eclipse SrcFile: MyEditor.java

Src2 01:10 Eclipse SrcFile: SampleAction.java

Url2 01:30 Chrome URL: help.eclipse.org/...

Eclipse IDE and accesses two source files MyEditor.java and SampleAction.java. After that,
he switches back to the eclipse help web page in Chrome. In this example, the first web page
visited is assigned Url1, the second web page is assigned Url2, the first source file viewed
is assigned Src1, and so on. Note that the two web pages visited at Time 00:20 and 01:30
are the same. Hence, they are assigned the same Index Url2.

Before the participants start coding the 20-minutes task video, we use a different 1-
minute video and the manual transcription results to demonstrate to the three participants
what information they need to extract and how to log their transcription results. The
participants conduct a trial on this 1-minute video before they start their coding task.

3.2 Results

Table 3 shows how much time each participant spends in transcribing the 20-minutes task
video and how many records he/she logs. The results show that the ratio of video recording
time to video analysis time is about 1:3–3.75. We can also see that the number of records
that different participants log is very different. The participant S1 logs about 3 times more
records than the participant S3 does. We look into the transcription results of the three
participants. We find that the participant S1 considers screenshots with different content
resulting from window scrolling in the same web page or source file as different application
content, while the participant S2 and S3 do not consider so. This results in much more
records in S1’s transcription results than that of S2 and S3. Furthermore, the participant S3
omits some application switchings whose duration are very short (i.e., switching from one
application to another and then quickly switching back). This results in fewer records in
S3’s transcription results than that of S1 and S2.

In the 20-minutes screen-captured video, the developer uses two web search engines
(Baidu and Google) and visits nine web pages. We further compare the search engines and
web pages that the three participants log. Table 4 shows the results. Note that different web
pages from the same website are annotated with an index number, such as topic.csdn.net
(1), topic.csdn.net (2). We can see that the participant S1 logs all the two search engines and
the nine web pages, but both S2 and S3 miss three web pages. S2 fails to recognize three

Table 3 The statistics of manual
transcription by the three
participants

Participant TotalTime (minute) #NumOfRecords

S1 71 136

S2 56 73

S3 75 47

www.google.com
help.eclipse.org/
help.eclipse.org/

142 Empir Software Eng (2017) 22:134–174

Table 4 The transcription results of search engines or web pages visited

S1 S2 S3

Search Engine www.baidu.com � � �
www.google.com.hk � � �

Visited Web Page topic.csdn.net (1) � � �
topic.csdn.net (2) � �
hongyegu.iteye.com & � � �
www.itpub.net � �
www.blogjava.net � � �
docs.oracle.com � � �
help.eclipse.org (1) � � �
help.eclipse.org (2) �
help.eclipse.org (3) �

different web pages from the same website, while S3 fails to recognize two different web
pages from the same website. S3 fails to recognize www.itpub.net because the developer
visits this web page very briefly.

Finally, we abstract each record in the transcription results of the three participants into
a universal identifier (UID) based on the application content of the record, i.e., the query
used, the web page visited, and the source file viewed in the record. As such, we obtain a
sequence of UIDs for each participant. Figure 1 shows an illustrative example. Although we
instruct the participants to log only web page visited and source file viewed, the participant
S1 interprets our instruction of unique content in a different way. He logs the same web page
or source file with different content resulting from window scrolling (e.g., page up/down)
as different records. As such, the sequence of UIDs of S1’s transcription results contains
subsequences of the same UID. We replace the subsequence of the same UID with that
UID. For example, a sequence of UIDs {Url1, Url2, Src1, Src1, Src2, Url2, Url3, Url3}
will be replaced as the sequence {Url1, Url2, Src1, Src2, Url2, Url3}. We then compute
the Longest Common Subsequence (LCS) of the resulting sequence of UIDs of the two
participants (Si and Sj). We measure the similarity of the sequence of UIDs of the two
participants as 2∗LCS

|Si |+|Sj | , where |Si | is the length of the sequence of UIDs of the participant
Si . As shown in Table 5, the transcription results of different pairs of participants overlap to
certain extent, but their transcription results are not very similar.

Summary This formative study shows that manual transcription of screen-captured videos
requires significant time and effort. To obtain high-quality transcription results, a person
must pay constant attention to micro-level details. Otherwise, one is very like to miss
some information. Finally, the transcription results by different participants can often be
inconsistent.

Url1 Url2 Src1 Src1 Src2 Url2 Url3 Url3

timeline

... ...

Fig. 1 An example of transcript

www.baidu.com
www.google.com.hk
topic.csdn.net
topic.csdn.net
hongyegu.iteye.com
www.itpub.net
www.blogjava.net
docs.oracle.com
help.eclipse.org
help.eclipse.org
help.eclipse.org
www.itpub.net

Empir Software Eng (2017) 22:134–174 143

Table 5 The similarity between
the sequence of UIDs of the two
participants

(S1, S2) (S1, S3) (S2, S3)

LCS 45 32 30

Similarity 0.62 0.46 0.67

Threats to Validity First, the study involves only three participants, and the task video
used in the study is only 20 minutes. The limited transcription data may affect the anal-
ysis result. Second, this formative study asks the participants to watch the video and logs
only their direct observation of application usage and application content, which can be
considered as the lowest level of video analysis. The participants do not need to abstract
developers’ intentions and strategies.

However, one of the participants misinterprets our instruction about unique content,
which results certain inconsistencies in the transcription results. This misinterpretation is
not observed in the trial run of 1-minute video before the real task. We merge the result-
ing separate records in the transcription log of this participant to make his transcription log
comparable with that of the other two participants. In addition to this transcription inconsis-
tency, the inconsistencies between the participants’ transcription results are mainly due to
the error-prone nature of human attention and observation, such as ignoring briefly visited
web pages, ignoring fast switching redundant between applications.

4 The Video Scraping Technique

We now present our computer-vision based video scraping technique for automatically
extracting time-series HCI data from screen-captured videos. We refer to our technique as
scvRipper. In this section, we first describe the metamodel of application window scvRip-
per assumes. We then give an overview of our scvRipper technique. Finally, we detail the
key steps of scvRipper.

4.1 Definition of Application Window

A person recognizes an application window based on his knowledge of the window lay-
out and the distinct visual cues (e.g., icons) that appear in the window. Our video scraping
technique (scvRipper) requires the definition of application windows as input to recognize
screenshots in a screen-captured video. The definition of an application window “informs”
the scvRipper tool with the window layout, the sample images of distinct visual cues of
the window’s GUI components, and the GUI components to be scraped once they are
recognized.

Figure 2 shows the metamodel of application windows. scvRipper assumes that an appli-
cation window is composed of a hierarchy of GUIComponents. Rows and windows define
the layout of the application window. A row or window can contain nested rows, nested
windows, and/or leaf GUIItems. Rows and GUIItems have relative positions in the appli-
cation window (denoted as index), while windows do not. A GUIItem contains an ordered
set of VisualCues. A VisualCue contains a set of sample images of the visual cue. If the
application window can have only one instance of a VisualCue, the isunique field of the
VisualCue is true. The GUIComponents whose tobescraped field is true will be scraped
from the application window in the screen-captured video.

144 Empir Software Eng (2017) 22:134–174

Figure 3 shows the definition of the Eclipse IDE and the Google Chrome window. The
definition of the Eclipse window assumes that the Eclipse window consists of a GUIItem
(TitleBar) and four rows (Menu, ToolBar, MainContent, and StatusBar) from top down. We
omit the definition details of Menu, ToolBar and StatusBar due to space limitation. The
TitleBar contains a unique VisualCue (Eclipse application icon). MainContent rowmay con-
tain CodeEditor windows and ConsoleView windows. CodeEditor window contains FileTab
and EditArea GUIItems. These two GUIItems contain non-unique visual cues (such as Java
file icons, compile error icons). This definition instructs scvRipper to scrape CodeEditor
and ConsoleView windows from the Eclipse window.

The definition of the Chrome window assumes that the Chrome window consists of two
rows from top down: Header and WebPage. The Header contains three GUIItems from left
to right: NavigationPart, AddressBar, and Tool. NavigationPart contains three VisualCues
from left to right: GoBack, GoForward, and Refresh buttons. These buttons are unique in
the Chrome window. The WegPage may contain a SearchBox GUIItem as commonly seen
in search engine web pages. A SearchBox has a unique Search button VisualCue. This defi-
nition instructs scvRipper to scrape AddressBar, SearchBox and WebPage from the Chrome
window.

We have developed a configuration tool to aid the definition of application windows.
The tool can define the hierarchy of GUIComponents, configure the attributes of GUICom-
ponents, and attach sample images of visual cues to GUIComponents. Figure 4 shows the
screenshot of using configuration tool to define the Eclipse IDE window and the Google
Chrome window shown in Fig. 3. Using the configuration tool, the user can intuitively
define the application windows based on the GUI structure of the application windows. Col-
lecting sample images of visual cues may require certain efforts. However, this task usually
needs to be done only once. As long as applications use the same layout and window struc-
ture, the definition of an application window can be reused for screen-captured videos taken
on different computers with different screen resolutions and window color schema, as nei-
ther window definition nor computer-vision techniques that scvRipper uses are sensitive to
screen resolutions and window color schema.

4.2 Technique Overview

Figure 5 presents the process of our video scraping technique to extract time-series HCI
data. We have implemented our technique in a tool (called scvRipper) using OpenCV

(an open-source computer vision library). Our scvRipper tool takes as input a screen-
captured video, i.e., a time-series screenshots taken by screencast tools such as Snagit.

Fig. 2 The metamodel of application windows

Empir Software Eng (2017) 22:134–174 145

Fig. 3 Two instances of application-window metamodel

It produces as output a time-series HCI data (i.e., software used and application content
accessed/generated) extracted from the video. Our scvRipper tool essentially uses computer-
vision techniques to transcribe a time-series screenshots that only a human can interpret into
a time-series HCI data that a computer can automatically analyze.

First, scvRipper uses image differencing technique (Wu and Tsai 2000) to detect screen-
shots with distinct content in the screen-captured video. This step reduces the number of
screenshots to be further analyzed using computationally expensive computer-vision tech-
niques. Next, the core algorithm of scvRipper processes one distinct-content screenshot at a

146 Empir Software Eng (2017) 22:134–174

Fig. 4 The configuration tool for window definition

time to recognize application windows in the screenshot based on the definition of applica-
tion windows provided by the user. The recognized application windows identify software
used at a specific time in the video. Then, scvRipper scrapes the GUIComponent images
from the recognized application windows in the screenshot as specified in the definition
of application windows. It uses Optical-Char-Recognition (OCR) technique to convert the
scraped GUIComponent images into textual application content processed at a specific time
in the video.

The upper part of Fig. 6 shows an illustrative example of a screen-captured video. In this
example, four distinct-content screenshots are identified at five time periods. The lower part

Fig. 5 The process of our video scraping technique to extract time-series HCI data

Empir Software Eng (2017) 22:134–174 147

Fig. 6 An illustrative example of a screen-captured video and video scraping results

of Fig. 6 shows the time-series HCI data extracted from these four distinct-content screen-
shots according to the definition of Eclipse IDE and Google Chrome window in Fig. 3.
Bulky contents (e.g., web page, code fragment) are omitted due to space limitation. This
time-series HCI data identifies the software tools that the developer uses at different time
periods. It also identifies the application content that the developer accesses and/or gener-
ates (such as search queries, web pages, code fragments, and console output) at different
time periods. Further information (e.g., method name, exception) can be extracted from the
application content through post analysis of video scraping data.

In the following subsections, we describe technical details of our scvRipper technique.

4.3 Detecting Distinct-Content Screenshots

The screencast tools can record a large number of screenshots (e.g., 30 screenshots per
second). A sequence of consecutive screenshots can often be the same, for example a person
does not interact with the computer for a while. Or they may differ little, for example due
to mouse movement, button click, or small scrolling. Thus, there is no need to analyze each
screenshot in the screen-captured video.

To that end, scvRipper uses an image differencing algorithm (Wu and Tsai 2000) to fil-
ter out subsequent screenshots with no or minor differences in the screen-captured video,
for example, mouse or cursor movement, small window movement, menu display, several
lines of scrolling. This produces a sequence of distinct consecutive screenshots, s1, s2, ..., sn
where any two consecutive screenshots si and si+1 are different, i.e., over a user-specified
threshold (tdiff). The two non-consecutive screenshots can still be the same in this sequence
of distinct consecutive screenshots. scvRipper uses image differencing technique again to
identify distinct-content screenshots. scvRipper stores the traceability between a distinct-
content screenshot and all the screenshots it represents during this image differencing
process.

Take the screen-captured video in Fig. 6 as an example. The developer views two web
pages side-by-side in the two Chrome windows. He then maximizes one of the Chrome
windows. After a while, he switches from the Chrome window to an Eclipse IDE window.
He opens two different methods in Eclipse and read the code. Next he switches from the
Eclipse window back to the Chrome window. Assume this sequence of human-computer

148 Empir Software Eng (2017) 22:134–174

interaction takes 120 seconds. A screencast tool can record 600 screenshots at the sample
rate of 5 screenshots per second.

Given this stream of 600 screenshots, scvRipper can identify a sequence of five distinct
consecutive screenshots as shown in Fig. 6. It can then identify that the screenshots at times-
tamp t2 and t5 are the same. The screenshots at timestamp t1 and t2 are similar but still
different enough to be considered as two distinct-content screenshots. As such, scvRipper
only needs to further analyze four distinct-content screenshots out of 600 raw screenshots.

4.4 Detecting Application Windows

The core algorithm of scvRipper takes as input a distinct-content screenshot and the defi-
nition of application windows to be recognized in the screenshot. It recognizes application
windows in the screenshot in four steps:

1. Detecting horizontal and vertical lines.
2. Detecting individual visual cues.
3. Grouping detected visual cues.
4. Detecting window boundaries.

scvRipper can accurately recognize stacked or side-by-side windows.

4.4.1 Detecting Horizontal and Vertical Lines

Figure 7 illustrates the process of detecting horizontal and vertical lines. Figure 7a is the
screenshot of the Eclipse window at time period t3 − t4 in Fig. 6. scvRipper assumes that
an application window (or subwiondow) has explicit window boundaries and occupies a
rectangular region in the screenshot. Thus, scvRipper first uses the canny edge detector
(Canny 1986) to extract the edge map of a screenshot. An edge map is a binary image where
each pixel is marked as either an edge pixel or a non-edge pixel. Figure 7c shows the canny
edge map of the part of the screenshot in Fig. 7b.

Fig. 7 An example of detecting horizontal and vertical lines

Empir Software Eng (2017) 22:134–174 149

Then scvRipper performs two morphological operations (erosion and dilation) on the
canny edge map. Erosion with a kernel (a small 2D array, also referred to filter or mask)
(Gonzalez and Woods 2002) shrinks foreground objects by stripping away a small layer
of pixels from the inner and outer boundaries of foreground objects. It increases the holes
enclosed by a single object and the gaps between different objects, and eliminates small
details. Dilation has the opposite effect of erosion. It adds a small layer of pixels to the
inner and outer boundaries of foreground objects. It decreases the holes enclosed by a single
object and the gaps between different objects, and fills in small intrusions into boundaries.

For horizontal lines, erosion followed by dilation with the kernel [1]1×K (i.e., a horizon-
tal line of K pixels) on the edge map removes the horizontal lines whose length is less than
K . For vertical lines, erosion followed by dilation with the kernel [1]K×1 (i.e., a vertical
line of K pixels) on the edge map removes the vertical lines whose length is less than K .
These erosion and dilation operations generate a line map of the screenshot (see Fig. 7d).

The horizontal (or vertical) lines in the line map can be very close to each other. Such
close-by horizontal (or vertical) lines introduce noises and increase complexity to detect
the window boundaries. Given a line map of the screenshot, scvRipper uses density-based
clustering algorithm (DBSCAN Ester et al. 1996) to cluster the close-by horizontal (or ver-
tical) lines based on their geometric distance and overlap. For each cluster of horizontal (or
vertical) lines, scvRipper generates a representative line by choosing the longest line in the
cluster and extending this line to the smallest start pixel position and the largest end pixel
position of all the lines in the cluster.

4.4.2 Detecting Individual Visual Cues

scvRipper uses the samples of visual cues provided in the definition of an application win-
dow as image templates. It detects the distinct visual cues of an application in the screenshot
using key point based template matching (Lowe 1999; Bay et al. 2008). Key point based
template matching is an efficient and scale invariant template matching method. A key point
in an image is a point where the local image features can differentiate one key point from
another.

scvRipper uses the Features from Accelerated Segment Test (FAST) algorithm (Rosten
and Drummond 2006) to detect the key points of an image. It extracts the Speeded Up
Robust Features (SURF) (Bay et al. 2008) of the detected key points. scvRipper detects the
occurrences of a template image in a given screenshot by comparing the similarities between
the key points of the template image and the key points of the screenshot (Muja and Lowe
2009). Figure 8a visualizes the key points image of the part of the screenshot in Fig. 7b. The

left corner of Fig. 8b visualizes the key points image of the visual cue of ConsoleView
of Eclipse window. scvRipper detects the occurrence of this visual cue in the screenshot as
indicated by the lines in Fig. 8b.

The visual cues of an application are usually small icons. Some small icons may not
always have enough key points, for example, the Java file icon of CodeEditor of Eclipse

Fig. 8 An example of detecting individual visual cues

150 Empir Software Eng (2017) 22:134–174

window. In such cases, scvRipper detects the visual cues in a screenshot using template
matching with alpha mask. The alpha mask of an image is a binary image used to reduce the
effect of transparent pixels on the template matching. Given a visual cue image, its alpha
mask, and the screenshot, scvRipper computes the normalized cross-correlation between
the visual cue image and the subimages of the screenshot with the same size as the
visual cue image (Forsyth and Ponce 2002). The higher the normalized cross-correlation
value, the more the similarity between the visual cue image and the subimages. scvRipper
considers it as a match if the normalized cross-correlation value between the visual cue
image and the subimage is greater than a user-specified threshold (usually a high threshold
like 0.99).

4.4.3 Grouping Detected Visual Cues

A screenshot may or may not contain the application windows of interest. To determine if
the screenshot contains the window(s) of a given application, scvRipper counts the number
of the detected visual cues that belong to the application according to the definition of the
application window. Multiple instances of the same type of VisualCues are counted once.
If the number of the detected visual cues that belong to the application is more than tapp%
(a user-specified threshold) of the number of VisualCues defined in the window definition
of the given application, scvRipper considers that the screenshot contains the window(s) of
the given application.

If the screenshot contains the application window(s) of interest, scvRipper uses normal-
ized min-max cut algorithm (Shi and Malik 2000) to group the detected visual cues into
different application windows, as the screenshot may contain two or more windows of the
same application. Normalized min-max cut algorithm is an image segmentation technique
that groups pixels into segments based on an affinity matrix of pairwise pixel affinities such
as pixel color similarity and geometric distance. In our application of normalized min-max
cut algorithm we define the affinity of the two detected visual cues as the possibility of the
two visual cues belonging to the same application window.

If the two visual cues belong to two different applications (e.g., Eclipse versus Chrome)
according to the definition of application windows, scvRipper sets their affinity to 0. If the
two visual cues belong to the same application, scvRipper computes the affinity of the two
visual cues based on the uniqueness of the visual cues, their relative positions, and their
geometric distance.

If the two visual cues are the same type of VisualCue of an application and the isunique

of this type of VisualCue is true, scvRipper sets their affinity to 0. That is, it is impossible
that these two visual cues belong to the same application window because the application
window can have only one instance of this type of VisualCue. Figure 9 shows the screenshot
of the two side-by-side Chrome windows at time period t1− t2 in Fig. 6. In this example, the
affinity between the two detected “Go Back” visual cues (V1 and V3) is 0 because a Chrome
window can have only one “Go Back” button. The same for the “Tool” visual cues (V2 and
V4).

If the two visual cues are different types of VisualCues of an application, scvRipper
compares the relative position of the two visual cues against the position constraints defined
in the definition of the application window. If the relative position of the two visual cues is
inconsistent with the position constraints, scvRipper set their affinity at 0. For example, the
“Go Back” button is supposed to be at the left of the “Tool” button in a Chrome window.
Thus, it is impossible that the detected “Go Back” button V3 and the “Tool” button V2 belong
to the same Chrome window, because V3 is at the right of V2.

Empir Software Eng (2017) 22:134–174 151

Fig. 9 An example of affinity calculation

Given the two visual cues whose affinity is not yet set to 0 based on the uniqueness and

relative positions of the visual cues, scvRipper computes their affinity as e
−(d2ij /δ2) where

dij is the distance between the center of the two visual cues Vi and Vj and δ is a term
proportional to the image size. Intuitively, the more the distance between the two visual
cues, the less likely the two visual cues belong to the same application window. In Fig. 9
the visual cues V1 and V3 (or V2 and V4) more likely belong to the same Chrome window
than V1 and V4.

4.4.4 Detecting Window Boundaries

Given a group of detected visual cues belonging to an application window, scvRipper first
calculates the smallest rectangle enclosing the group of detected visual cues. It then expands
this smallest rectangle to find the bounding horizontal and vertical lines that form the
bounding box of the group of detected visual cues. This bounding box is considered as the
boundary of the application window. scvRipper records software usage at a specific time t

in the screen-captured video in terms of the application window(s) present in the screenshot
at time t . Once the boundary of an application window is determined, scvRipper further
determines the boundary of the GUI components to be scraped within the application win-
dow boundary using the same method, based on the group of detected visual cues belonging
to the to-be-scraped GUI components.

Figure 10 shows the detected boundaries of the Eclipse window (at time period t3 − t4
in Fig. 6) and the Chrome window (at time periods t2 − t3 and t5 − t6 in Fig. 6). It also
shows the detected boundaries of the to-be-scraped GUIComponents in the two windows.

152 Empir Software Eng (2017) 22:134–174

1

2

2

1

3

Fig. 10 An example of boundary detection and image scraping results

The detected boundaries are highlighted in the same color as that of the corresponding type
of GUIComponent in Fig. 2.

4.5 Scraping Content Data from Application Windows

Based on the detected boundary of the to-be-scraped GUIComponents, scvRipper crops
the portion of the screenshot and uses Optical-Character-Recognition (OCR) techniques
(e.g., ABBYY FineReader) to convert image content into textual data. Figure 10 presents
an example of the image scraping results of the Eclipse window and the Chrome window.
The textual data from OCR records the contents that the developer accesses or generates at
a specific time in the screen-captured video. For example, the scraped code snippet and the
exception message show that the developer is editing the Activator class and he encounters
the exception IllegalArgumentException. The scraped URL and search query show that the
developer uses the Google search engine (domain name “google.com” in the URL) and his
search query is “plugin openEditor”.

5 Case Study

We use the 29-hours of screen-captured task videos from our previous study (Li et al. 2013)
to evaluate the runtime performance and effectiveness of our scvRipper tool. To evaluate
the tool’s data extraction capability and the usefulness of the extract HCI data, we analyze
the developers’ online search behavior in software development using the time-series HCI

google.com

Empir Software Eng (2017) 22:134–174 153

data extracted from the 29 h of task videos. The analysis of the developers’ micro-level
behavior patterns enabled by the scvRipper tool leads to several implications for enhanced
tool supports for online search in software development.

5.1 Data Set

The data we use is the screen-captured videos in our previous study of the developers’
online search behavior during software development (Li et al. 2013). We use these screen-
captured videos because of the diversity of the development tasks involved in our previous
study and the diversity of the computer settings and software tools that the participants
use. These diversities make the videos a good test bed for evaluating the runtime perfor-
mance and robustness of our scvRipper tool and usefulness of the video scraping data. Note
that our previous study performs only manual, qualitative analysis of the task videos. As
such, it investigates only the general information needs and search processes in software
development tasks. As shown in this section, the scvRipper tool can extract much more
fine-grained HCI data from the task videos to study the developers’ micro-level behavior
patterns.

Our previous study includes two software development tasks. The first task (Task1) is to
develop a new P2P chat software. Task1 requires the knowledge about Java multi-threading,
socket APIs, and GUI framework (e.g., Java Swing). The second task (Task2) is to maintain
an existing Eclipse editor plugin. Task2 includes two subtasks. The first subtask is to fix
two bugs in the existing implementation. To fix these two bugs, developers need knowledge
about Eclipse editor API and plugin configuration. The second subtask asks developers to
extend existing editor plugin with file open/save/close features and file content statistics
(e.g., word count). This subtask requires developers to program to Eclipse editor and view
extension points (e.g., EditorPart).

Eleven graduate students are recruited in the first task, and 13 different graduate students
are recruited in the second task from the School of Computer Science, Fudan University.
The participants have general Java programming experience. As our goal in the previous
study is to investigate the developers’ online search behavior in software development tasks,
we select the participants who do not possess all the knowledge necessary for the tasks, for
example, Java multi-threading or socket APIs for the first task, and Eclipse plugin devel-
opment or Eclipse editor API for the second task. Thus, the participants have to interleave
coding, web search and learning during the tasks.

The participants are instructed to use a screen-capture software to record their working
process. They use their own computers that have different window resolutions and color
schema. As the task videos of 4 participants are corrupted, we use the 29 h task videos of
the 20 participants (8 from the first task and 12 from the second task) to evaluate our video
scraping tool. Figure 11 shows the box-plot of the Task Video Length (TVL in minutes) of
these participants.

Fig. 11 The statistics of Task
Video Length (TVL)

154 Empir Software Eng (2017) 22:134–174

5.2 Data Extraction and Processing

Based on the software tools that the participants used in our previous study, we define appli-
cation windows for the scvRipper tool to recognize Eclipse IDE window and web browser
window (Google Chrome, Mozilla Firefox, Internet Explorer). Figure 3 shows partially the
definitions of the Eclipse IDE and Google Chrome window defined in this study. The defini-
tion instructs the scvRipper tool to scrap: 1) code editor and console view content in Eclipse
IDE window, and 2) address bar, search box and web page content in web browser window
(see Fig. 10 for an example).

Given a task video, scvRipper automatically extracts time-series HCI data from screen-
captured videos, including the applications being used and the application content as defined
above. Examples of the extracted time-series HCI data are illustrated in Figs. 6 and 10. We
then post-process the extracted time-series HCI data to compute and analyze various statis-
tics of application usage (e.g., within-application switching, between-application switching)
and content usage (e.g., most visited websites, keyword source, query refinement). These
application-usage and content-usage statistics can be easily obtained using tools like Mat-
lab. However, the most challenging part of this case study is to obtain the HCI data that can
be programmatically analyzed from the video that can only be interpreted by human.

5.3 Runtime Performance

We run our scvRipper tool on one Windows 7 computer with 4GB RAM and Intel(R)
Core(TM)2 Duo CPU. The 29 h task videos are recorded at sample rate 5 screenshots
per second. As such, the 29 h task videos consist of in total over 520K screenshots. Our
scvRipper tool takes 43 h to identify about 11K distinct-content screenshots from the 29 h
videos at the threshold tdiff = 0.7. One distinct-content screenshot on average represents
about 10 seconds video (about 50 screenshots). The scvRipper tool takes about 122 h to
extract time-series HCI data from the 11K distinct-content screenshots, i.e., on average
38.41 ± 16.94 seconds to analyze one distinct-content screenshot. The OCR of the scraped
image content takes about 60 h .

The current implementation of scvRipper’s core algorithm processes one distinct-content
screenshot at a time (i.e., sequential processing). The most time-consuming step of the core
algorithm is the second step (i.e., detect individual visual cues). Our definition of the Eclipse
IDE and Chrome window consists of about 30 and 20 visual cues respectively. The current
implementation detects visual cues in a screenshot one at a time. This step consumes about
97 % of the processing time of distinct-content screenshots. Since the processing of indi-
vidual screenshots and the detection of individual visual cues are independent, the runtime
performance of the scvRipper tool could be significantly improved by parallel computing
(Zhang et al. 2008) and hardware-implementation of template-matching algorithm (Sinha
et al. 2006). Parallel computing and hardware acceleration2 could also reduce the time of
detecting distinct-content screenshots and the OCR of scraped screen images.

5.4 Robustness

We qualitatively evaluate the robustness of the key steps of the scvRipper tool (i.e., image
differencing algorithm, application window detection, and OCR of scraped screen images)

2http://docs.opencv.org/modules/gpu/doc/introduction.html

http://docs.opencv.org/modules/gpu/doc/introduction.html

Empir Software Eng (2017) 22:134–174 155

using randomly sampled 500 distinct-content screenshots from different developers’ task
videos at different time periods.

First, we examine the video clips that these sampled distinct-content screenshots rep-
resent and find that the scvRipper’s image differencing algorithm (at tdiff = 0.7 in this
study) can tolerate the reasonable differences between the screenshots caused by window
scrolling, mouse or cursor movement, and menu display, and minor code editing. Ignoring
these screenshots should not cause significant information loss for data analysis.

Second, we examine the results of detected application windows in these sampled
distinct-content screenshots. Our scvRipper tool sometimes may miss certain visual cues.
As long as some visual cues are detected (over 80 % of defined VisualCues in this study),
scvRipper usually can still recognize the application window. However, missing some visual
cues may result in the less accurate detection of window boundary. For example, the
detected window boundary may miss the title bar due to a failure in detecting the corre-
sponding title bar visual cue. Our scvRipper tool can accurately recognize side-by-side or
stacked windows. But it cannot accurately detect several (≥ 3) overlapping windows, each
of which is only partially visible. However, screenshots with several overlapping windows
are rare in the 500 sampled screenshots (less than 1 %).

Third, we evaluate the accuracy of the OCR results using the extracted query keywords.
scvRipper identified 236 distinct-content screenshots that contain a search query. These
queries contain 253 English words and 809 Chinese words in total. The OCR accuracy of
the English words is about 88.5 % (224/253), while the OCR accuracy of the Chinese words
is about 74.9 % (606/809). The screenshots have low DPI (Dots Per Inch, only 72–96 DPI
in participants’ computer) which is lower than the 300 DPI that the OCR tool generally
requires. The OCR tool (ABBYY FineReader) we use scales the low DIP screenshots to
300 DPI and produces acceptable OCR results.

We also compare the HCI data extracted by the scvRipper tool from the 20 min task video
with the manual transcription results of the three human participants on the 20 min task
video obtained in the formative study. The scvRipper tool recognizes 277 distinct screen-
shots from the 20 min video, which is more than the number of records transcribed by
the human participants in the formative study (See Table 3 in Section 3). This is because
there are lots of small changes between adjacent screenshots which are usually ignored by
the human participants, e.g. the change caused by window scroll up/down. The scvRip-
per tool identifies 8 distinct web pages from the 20 min video but misses the web page
“help.eclipse.org (3)” (See Table 4). This is because this web page is very similar to anther
web page on the “help.eclipse.org” web site and the duration on this web page is very short.
Thus, the scvRipper tool misses the web page.

5.5 Data Analysis on Online Search

Next, we describe examples of fine-grained HCI data that the scvRipper tool can extract
from the task videos and the usefulness of the extracted data for understanding the
developers’ online search behavior patterns in software development.

5.5.1 Most Visited Web Sites

First, we extract web site names (i.e., domain name) from the scrapped URLs.We categorize
the web sites that the developers visited during the two tasks into seven categories: search
engines (SE), technical tutorials (TT), document sharing sites (DS), topic forums (TF), code
hosting sites (CH), Q&A sites (QA), and API specifications (API). Table 6 lists the top

156 Empir Software Eng (2017) 22:134–174

Table 6 The top three most-visited web sites of 7 web categories

The Top 3 Most-Visited Web Sites #Frequency

Search engines (SE) www.baidu.com 121

www.google.com 62

www.bing.com 8

Doc sharing sites (DS) www.360doc.com 21

www.doc88.com 8

www.docin.com 6

Technical tutorials(TT) blog.csdn.net 28

developer.51cto.com 12

www.newasp.cn 9

Topic forums(TF) topic.csdn.net 11

www.newsmth.net 6

java.chinaitlab.com 5

Code hosting sites (CH) download.csdn.net 13

code.google.com 5

github.com 3

Q&A websites (QA) zhidao.baidu.com 10

iask.sina.com.cn 4

stackoverflow.com 2

API specification (API) docs.oracle.com 7

developers.google.com 5

www.aspose.com 3

three most visited web sites of these seven categories in our study. The results show that
developers heavily relied on search engines, doc sharing sites and technical tutorials in the
two development tasks.

5.5.2 Web Page Visited After a Search

We consider the developer visiting a web page if the scvRipper tool extracts the URL of
the web page from the task videos, and the developer performing a search if the scvRipper
tool extracts the search engine web page with a query. Figure 12 presents the times that the
developers visited a specific number of unique URLs (i.e., web pages) after a search in the
two tasks. We can see that the developers in the first task open much less number of web
pages after a search than the developer in the second task does. This reflects the complexity
of the two tasks and the information needs of the developers in the two tasks. We further
elaborate on this in Section 5.5.4.

5.5.3 Web Page Visited and Web Page Switching During the Tasks

Figure 13 shows the number of unique URLs (i.e., web pages) that the 20 developers visit
in the two tasks and the number of switchings between these web pages. In the first task, 5
developers visit less than 9 web pages and make less than 9 web-page switchings. However,

www.baidu.com
www.google.com
www.bing.com
www.360doc.com
www.doc88.com
www.docin.com
blog.csdn.net
developer.51cto.com
www.newasp.cn
topic.csdn.net
www.newsmth.net
java.chinaitlab.com
download.csdn.net
code.google.com
github.com
zhidao.baidu.com
iask.sina.com.cn
stackoverflow.com
docs.oracle.com
developers.google.com
www.aspose.com

Empir Software Eng (2017) 22:134–174 157

Fig. 12 The statistics of opening a specific number of web pages

the other 3 developers visit on average 20 ± 4 web pages and make on average 37.6 ± 19.5
web-page switchings. In the second task only 2 developers visit less than 6 web pages
and make less than 5 web-page switchings. These two developers are experienced Eclipse
plugin developers. They complete the task much faster than the other 10 less experienced
developers (i.e., the two outliers ‘*’ in Fig. 11). During the task, they only issue a few
searches and explore a small number of web pages. The other 10 developers visit on average
31.4 ± 13.1 web pages and make on average 75.7 ± 38.1 web-page switchings.

The results show that in less than two hours of tasks most of the developers have to
explore, examine, and use a large amount of information when searching and using online
resources. We observe two common reasons why developers sometimes visit a large number
of web pages and switched between them. First, the developers need to select the most
relevant web pages from several web pages, or to integrate information from several web
pages. For example, the developers D2 issues only 2 new queries. But he prefers to visit

Fig. 13 Statistics of unique URLs and URL switchings

158 Empir Software Eng (2017) 22:134–174

several web pages from the search results, and then examines these web pages to determine
their relevance. He visits in total 20 web pages and makes 24 web-page switchings.

Second, the developers need to follow information scents from one web page to another
during their online search process. For example, the developer D15 searches “PermGen
space”. He opens a web page about “PermGen space error” on “http://www.cnblogs.com”
from the search results. He follows the link on this web page to another web page on
“http://blog.csdn.net” about “JVM parameter setting”. This csdn web page helps him fix the
virtual memory issue to run the Eclipse IDE.

5.5.4 Keyword Source in Queries

Given a search query extracted from search results web pages, we determine the sources
of its keywords by searching code fragments and console output extracted from the distinct
Eclipse IDE screenshots before the web-page screenshot in which a keyword is used for
the first time. If a keyword appears in code fragments, for example, the keyword “openEd-
itor” in the query “java.lanq.IllegalArgumentException openEditor” is an Eclipse API used
in the source code, we consider its source as “FromCode”. If a keyword appears in con-
sole outputs, for example, the keyword “IllegalArgumentException” in the above query is
an exception thrown in the console view, we consider its source as “FromConsole”. If a
keyword appears in both code fragments and console outputs, we consider the keyword as
“FromCode”. If a keyword appears in neither code fragments nor console outputs, we con-
sider its source as self-phrasing, for example, the keywords “eclipse” and “rcp” in the query
“eclipse rcp EditorPart EdtorInput”.

Table 7 summarizes the number of distinct keywords that the developers use in the two
tasks and the sources of these keywords. In the first task the developers’ keywords are
mainly self-phrased. In the second task the keywords are both self-phrased and from IDE
context.

Table 8 presents the top 7 most-used keywords by at least two developers in the first task
and the top 11 most-used keywords by at least four developers in the second task. In the
first task, all the seven most-used keywords are considered as self-phrasing. Three of these
7 keywords are from task descriptions (socket, TCP, chat and 4 described programming
language and techniques to be used (Java, SWT, button, event). Using these keywords the
developers can find good online examples to complete the first task. They occasionally
search for unfamiliar APIs or errors (e.g., IProgressMonitor and ConnectException) while
modifying reused code examples.

In the second task, 6 out of the 11 most-used keywords are considered as self-phrasing,
three of which describe application platform and techniques to be used (Eclipse, plugin,
SWT) and three are from task description (editor, view, savefile). The other 5 most-used
keywords are from IDE context, which describe Eclipse APIs required for the task (Editor-
Part, openEditor, IEditorInput, doSave, IWorkbenchPage). In the second task, developers
have to fix bugs in using specific Eclipse APIs and extend specific Eclipse interface. How-
ever, only using specific Eclipse APIs often cannot find good online examples to accomplish
the second task. Developers have to use application and task context to restrict the search.

5.5.5 Query Refinement

Given the search queries that a developer issued, we measure the similarity of the two con-
secutive queries Qi and Qi+1 using the Jaccard coefficient of distinct keywords of the two
queries, i.e., |Qi

⋂
Qi+1|/|Qi

⋃
Qi+1|. If the Jaccard coefficient of the two consecutive

http://www.cnblogs.com

Empir Software Eng (2017) 22:134–174 159

Table 7 Statistics of distinct keywords and keyword sources

Developer ID #Query #DistinctKW #FromCode #FromConsole #Self-phrasing

Taks1

D1 2 2 1 0 1

D2 3 5 0 0 5

D3 8 13 2 2 9

D4 7 12 0 0 12

D5 2 5 1 0 4

D6 5 13 0 0 13

D7 6 9 2 1 6

D8 8 13 1 0 12

mean±standard 5.13±2.37 9±4.15 0.87±0.78 0.37±0.69 7.75±4.11

deviation(D1–D8)

Task2

D9 4 10 2 0 8

D10 2 2 1 0 1

D11 22 32 14 6 12

D12 6 10 3 1 6

D13 7 9 1 0 8

D14 15 16 5 1 10

D15 9 13 1 5 7

D16 15 20 3 3 14

D17 12 18 5 0 13

D18 16 18 7 0 11

D19 7 9 5 0 4

D20 12 15 6 9

mean±standard 10.58±5.54 14.33±7.5 4.41±3.49 1.33±2.05 8.58±3.61

deviation(D9-D20)

queries is greater than 0.5, Qi+1 is considered as the refinement of Qi . For example, the 4th
query “openEditor java.lanq.IllegalArgumentException” of the developer D11 is considered
as a refinement of his 3rd query “java.lanq.IllegalArgumentException”, while his 5th query
“eclipse rcp EditorPart EdtorInput” is considered as a new query as it is very different from
the 4th query.

Figure 14 shows the number of new queries and the number of query refinements in the
two tasks. In the first task the developers issue in total 27 new queries (on average 3.37±1.34
new queries per developer). The developers do not refine 7 of these 27 new queries. They
refine 12 new queries 1–3 times, and 2 new queries more than 3 times. The rest 6 queries
are too different from their preceding queries, and thus are considered as new queries. In
the second task the developers issue in total 57 new queries (on average 3.37 ± 2.18 new
queries per developer). Nine of these 57 new queries are not refined. 30 new queries are
refined 1–3 times, and 9 new queries are refined more than 3 times. The rest 4 queries are
considered as new queries because they are too different from their preceding queries.

160 Empir Software Eng (2017) 22:134–174

Table 8 Most-used keywords in the two tasks

Keywords Frequency (times) Who Used These Keywords

Task1

java 7 D1, D2, D3, D5, D6, D7, D8

socket 5 D1, D3, D4, D5, D7

TCP 4 D2, D3, D6, D8

SWT 3 D5, D6, D8

button 2 D3, D8

event 2 D5, D8

chat 2 D3, D6

Task2

eclipse 10 D9, D11, D12, D13, D14, D15, D16, D17, D18, D20

plugin 8 D12, D13, D14, D15, D16, D17, D18, D20

EditorPart 6 D10, D11, D12, D17, D18, D19

openEditor 6 D12, D15, D16, D17, D18, D20

IEditorInput 5 D11, D13, D14, D19, D20

doSave 4 D11, D12, D18, D19

editor 4 D11, D12, D14, D16

IWorkbenchPage 4 D14, D17, D18, D20

SWT 4 D9, D11, D16, D17

savefile 4 D12, D13, D17, D20

view 4 D9, D11, D17, D20

5.5.6 Search Frequencies and Intervals

The extracted time-series HCI data identifies the search queries that the participants issued
through the tasks. We consider the first appearance of a search query in the time-series
HCI data as the time when the participants searched the Internet with this query. We collect
the interval time of the two consecutive searches with different queries (denoted by τ) of

Fig. 14 The statistics of new queries and query refinements

Empir Software Eng (2017) 22:134–174 161

the 20 developers in the two tasks. We use probability density function p(τ) to describe
the relative likelihood of the interval time of two consecutive searches between a given
interval. We obtain the probability density function of our data samples of interval time
of two consecutive searches by kernel smoothing density estimation (Silverman 1986), as
shown in black dot line in Fig. 15.

According to theory of human dynamics (Barabasi 2005), the probability density func-
tion p(τ) of human activity interval time obeys a power-law distribution as p(τ) = kλe−λτ ,
where λ is exponent parameter and k is a constant coefficient. We fit our data samples of
interval time of two consecutive searches in terms of this equation using the Least Squares
Fitting (Weisstein 2011). The fitting result is shown in red line in Fig. 15. This red line is
p (τ) = 1

1.41 × 0.45e−0.45τ . We employ coefficients of determination R2 (Colin Cameron
and Windmeijer 1997) to determine how well our experimental data fit the statistical model.
The R2 is 0.97 which indicates that our data samples can be well explained by the statistical
model represented by the red line.

Given the probability density function p(τ), the probability of variable τ ranging from
τ1 to τ2 is equal to P(τ1 < τ ≤ τ2) = ∫ τ2

τ1
p(τ)dτ (Parzen 1962). Based on the statistical

model p(τ) = 1
1.41 ×0.45e−0.45τ , the probability that the developers in the two tasks search

with a different query within 1 minute is 0.48, within 3 min is 0.68, and within 10 min is
0.86.

5.6 Data Analysis on Context Switching

This section analyzes the developers’ context switching activities within and across the IDE
and web browser using the HCI data extracted by the scvRipper tool. Given a sequence
of distinct consecutive screenshots, if the two consecutive screenshots contain the Eclipse
window and the web browser window respectively, we count one switching between IDE
and web browser (IDE � Browser switching). If the two consecutive screenshots contain
the same type of application windows (Eclipse IDE or web browser), we count one switch-
ing between distinct IDE content (Within-IDE switching) or one switching between distinct

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Interval time τ (minutes)

P
ro

ba
bi

lit
y

de
ns

ity
 fu

nc
tio

n
p(

 τ
)

Experimental data
Power−law

λ =0.45

Fig. 15 The distribution of interval time of two consecutive queries

162 Empir Software Eng (2017) 22:134–174

web content (Within-Browser switching). We also compute the time that the developers
spend on the distinct IDE contents and the distinct web contents in the two tasks.

5.6.1 Working Context Switching

First, we want to compare how the developers progress through the two tasks. To make the
developers’ progress comparable, we split their task processes into 10-minutes buckets and
aggregate their context switching activities in these 10-minutes buckets.

Figure 16 shows the number of IDE� Browser switchings, Within-Browser switchings,
and Within-IDE switchings that the developers perform in every 10-minutes bucket in the
two tasks. The box plots label data with 5 attributes. The bottom and top of the box are the
first (25 %) and third (75 %) quartiles (Q1 and Q3) of the switchings that the developers
perform in a 10-minute time slot. The band inside the box is the second quartile (Q2, i.e., the
median). The gray boxes indicate the interquartile range (IQR = Q3−Q1). The lowest end
of the whiskers represents minimal observation, and the highest end of whiskers represents
maximal observation. The blue line shows the mean values of the number of switchings
over time.

In the first task the developers start with a small number of IDE � Browser switchings
and a large number of Within-Browser switchings and Within-IDE switchings in the first 10
minutes. This indicates that the developers are trying to understand the problem they need to
solve. The developers’ Within-Browser and Within-IDE switchings remain relatively stable
or drop in the next 20 min, while the IDE� Browser switchings increase at the same time.
This indicates that the developers find good online examples and start integrating online
examples in the IDE. Then, the developers’ Within-Browser and IDE�Browser switchings
drop for the rest of the first task, while the developers’ Within-IDE switchings remain active.
That is, the developers focus on developing the software within the IDE without much need
for further online search.

0

5

10

15

20

25

30

35

40

45

50

10−minutes time slots

T
im

es

0−10
10−20

20−30
30−40

40−50
50−60

60−70
70−80

80−90

90−100
0

50

100

150

200

250

10−minutes time slots

T
im

es

0−10
10−20

20−30
30−40

40−50
50−60

60−70
70−80

80−90

90−100
0

10

20

30

40

50

60

10−minutes time slots

T
im

es

0−10
10−20

20−30
30−40

40−50
50−60

60−70
70−80

80−90

90−100

0

5

10

15

20

25

30

35

40

45

50

10−minutes time slots

T
im

es

0−10
10−20

20−30
30−40

40−50
50−60

60−70
70−80

80−90

90−100
0

50

100

150

200

250

10−minutes time slots

T
im

es

0−10
10−20

20−30
30−40

40−50
50−60

60−70
70−80

80−90

90−100
0

10

20

30

40

50

60

10−minutes time slots

T
im

es

0−10
10−20

20−30
30−40

40−50
50−60

60−70
70−80

80−90

90−100

Fig. 16 Statistics of application and content switchings in every 10 minutes

Empir Software Eng (2017) 22:134–174 163

In the second task the developers also start with a small number of IDE � Browser
switchings and a large number of Within-Browser switchings and Within-IDE switch-
ings in the first 10 min. Next, there is a surge in the Within-Browser switchings in
the 11–20 min followed by a surge in the IDE � Browser switchings in 20–30 min.
Similar to the first task, the developers find some useful online resources and start inte-
grating them into the IDE in the first 30 min. However, the Within-Browser and IDE
� Browser switchings are much more intense in the second task than in the first task.
Furthermore, the Within-Browser and IDE � Browser switchings do not drop after the
30 min in the second task. Unlike the first task in which the developers’ search activity
occur mainly in the beginning of the task, the developers in the second task have to fre-
quently search and integrate online resources for the emerging problems throughout the
task.

5.6.2 Markov Model on Context Switching

To further study the implicit information flow within web browser and between IDE and
web browser, we build MarkovModels (Whittaker and Poore 1993) for describing the devel-
opers’ information flow behavior in Within-Browser switchings and in IDE � Browser
switchings. The Markov Models consists of 8 states: the 7 web categories (see Table 6)
and the Eclipse IDE. A transition between the two states represent the switching between
the two web categories or the switching between a web category and the Eclipse IDE.
The probability of a transition is computed based on the frequencies of the corresponding
switchings, i.e., the number of switchings from one state to another state divided by the
number of switchings from this state to all the states. Table 9 presents the transition prob-
abilities of the Markov Model. The maximal probability of each row is highlighted in bold
font.

The table shows that the developers have the highest probabilities to switch between
the Eclipse IDE and the technical tutorials (TT) in the first task. The technical tutorials
seem to be the most useful information source in the first task. There are 5 developers who
download code examples from some technical tutorials and customize these code examples
to complete the first task. In addition, the developer also integrate the information found
on Q&A sites (QA) and API specification sites (API) into the IDE, as indicated by the
high probabilities to switch from the QA or API categories to the Eclipse. In the first task,
other than technical tutorials (TT), the developers have the highest probabilities to switch
from different web categories (document sharing (DS), topic forum (TF), code hosting
(CH), Q&A (QA), and API specification (API)) to the search engine. This suggests that the
developers may collect hints from different web sites and then use the hints to refine their
search.

The developers in the second task exhibit different information flow behavior. First, the
probabilities to switch from the Eclipse IDE to different web categories (i.e., technical tuto-
rials (TT), document sharing sites (DS), topic forums (TF), and API specifications (API))
are more evenly distributed. Furthermore, unlike the first task, the developers have the
highest probabilities to switch from technical tutorials (TT), document sharing (DS), topic
forums (TF), code hosting (CH) sites, and API specifications (API) to the IDE, instead of
to the search engine. This suggests that the technical tutorials are not the dominant infor-
mation sources in the second task. The developers need more diverse information from
different sources. Furthermore, the developers are more likely to integrate the informa-
tion found on these information sources, instead of using the information to refine their
search.

164 Empir Software Eng (2017) 22:134–174

Table 9 Markov transition matrices

Destination States

Eclipse SE TT DS TF CH QA API

(a) Task 1

Source Eclipse 0 0.16 0.62 0.03 0.11 0 0.07 0.01

states SE 0.27 0 0.34 0.08 0.20 0.05 0.06 0

TT 0.73 0.20 0 0 0.06 0 0.01 0

DS 0.38 0.50 0 0 0.13 0 0 0

TF 0.38 0.45 0.07 0 0 0 0.07 0.03

CH 0.33 0.67 0 0 0 0 0 0

QA 0.42 0.42 0.08 0 0.08 0 0 0

API 0.50 0.50 0 0 0 0 0 0

(b) Task 2

Source Eclipse 0 0.12 0.26 0.28 0.15 0.02 0.01 0.15

states SE 0.19 0 0.26 0.06 0.14 0.03 0.05 0.28

TT 0.58 0.25 0 0.03 0.05 0 0.02 0.07

DS 0.81 0.09 0.04 0 0.02 0.02 0 0.02

TF 0.56 0.25 0.08 0.02 0 0.01 0.01 0.08

CH 0.45 0.31 0.03 0.07 0.03 0 0.07 0.03

QA 0.20 0.33 0.10 0 0.10 0.13 0 0.13

API 0.53 0.27 00.10 0.02 0.02 0.01 0.04 0

5.7 Implications of Behavior Analysis Results

The time-series HCI data extracted from screen-captured task videos by the scvRipper tool
enables the study of the developers’ micro-level behavior patterns while they interleave
coding and web search in software development. These micro-level behavioral patterns
identify opportunities and challenges for supporting developers’ online search in software
development.

5.7.1 Context Sensing and Reasoning

In light of previous work showing context to be useful in search tasks (Matejka et al. 2011;
Brandt et al. 2010), our study suggests that more detailed studies are required to understand
which types and scopes of context are more effective for providing useful results.

The scopes of context must be carefully determined. Existing tools use mainly the limited
program context (e.g., a snapshot of current code) to augment the developer’s queries. This
limited context may not be sufficient to satisfy the developer’s information needs in a task
because the developer often needs application-level and task-level context to help to restrict
the search. Application-level and task-level context may not be observable. Inferring the
high-level context (e.g., user interest) from the low-level observable contextual cues can be
difficult. Spurious contextual information can introduce noise which may raises the rank
of less-useful results. Showing contextual query keywords and allowing the developers to
adjust them may be beneficial because it offers a mixed strategy to combine the developer’s
knowledge and the implicit context sensing and reasoning.

Empir Software Eng (2017) 22:134–174 165

The dynamics of context must be carefully modeled. Many types of contextual infor-
mation can be described as a static set of facts providing the background for online
search. This static view of context may not be sufficient to reason about the devel-
oper’s information needs over time because the developer’s working context can change
fast and frequently. Recommendation systems should avoid giving too many “helpful”
hints by adjusting notification level based on the developer’s progressions through the
task. The developer’s progression patterns may be modeled (e.g., using Hidden Markov
Model (Rabiner and Juang 1986) or progression stages in time-evolving event sequences
(Yang et al. 2014)) for predicting when the developer may most likely need online
resources.

5.7.2 Exploratory Search of Online Resources

The online search does not end with presenting a list of results. The developers have to
explore, examine, and use many web pages and refine their queries in an iterative search pro-
cess. This suggests that more intuitive presentation and interaction techniques are required
to bridge the gulf of evaluation of online search results.

Our recent work (Wang et al. 2013) proposed an intelligent, multi-faceted, interactive
search UI for exploring the feature location results in a code base. The automatically mined
code facets provide to the developers more abstract and structured feedback about the
feature location results. As a result, the developers can better refine their feature queries
based on the hints they observe from different facets. This multi-faceted, exploratory search
approach may also be beneficial for exploring multi-dimensional information space of
online search results. Unlike source code, web contents vary greatly in formats as well as in
both technical and presentational quality.

Entity-centric search (Bordes and Gabrilovich 2014; Guha et al. 2003) seems like a
promising direction. Unlike current web search engines that essentially conduct page-level
search, entity-centric search can uncover connected information about real-world entities.
Entity-centric search has demonstrated its effectiveness in people search (Zhu et al. 2009),
academic search (Nie and Zhang 2005), and product search (Nie et al. 2007). It can answer
complex queries with direct and aggregate answers because of the availability of semantics
defined by the knowledge graph (Nie and Zhang 2005; Bordes and Gabrilovich 2014). Oth-
erwise, it could take one a long time to sift through many web pages returned by a page-level
search engine. The challenge here is how to extract and model meaningful knowledge enti-
ties (e.g., programming languages, frameworks, application features) and their relationships
from online software engineering resources.

5.7.3 Remembrance Agent and Community of Practices

In searching and using online information, the developers’ working context changes fast and
frequently. The information flows implicitly during context switchings within and across
applications. This suggests that effective techniques are required to track the information at
micro-level and support smooth information flow as the developer interleaves coding and
web search in software development.

Several tools (Brandt et al. 2010; Sawadsky and Murphy 2011; Ponzanelli et al. 2013)
have been proposed to embed search engine or online resources into the IDE. These tools
can reduce the switching cost of searching online resources while working in the IDE, espe-
cially when using online resources as reminders of technical details (Brandt et al. 2009).
When the developers have to intensively search, browse, and learn online resources for a

166 Empir Software Eng (2017) 22:134–174

complex task, these tools may become less effective, because browsing several web pages
in a small IDE view could be much less efficient than using normal web browser.

A remembrance agent (Rhodes 1996) would be useful to track the information that the
developers search, browse and use during the task. Auto-completion technique could use the
tracked information to augment human memory by displaying a list of information which
may be relevant to the developer’s current search or coding context. The tracked information
further has the potential to support “community of practice” (Kimble et al. 2008; Kushman
and Katabi 2010; Matejka and Li 2009; Bateman et al. 2012; Hartmann et al. 2010). Our
data analysis suggests the developers share common information needs and information
flow patterns in the task. The contextual “fingerprints” of some developer’s search history
could be used to help other developers not only find relevant online resources in similar con-
text, but also learn how to search for needed resources from others. According to theories of
social learning (Bandura 1986) and cognitive apprenticeship (Brown et al. 1989), observ-
ing and imitating skilled practitioners performing the task in the context can help people
incrementally adjust their performance until they reach competence.

5.8 Threats to Validity

A major threat to the internal validity of our case study is that many findings in this study
are based on the time-series HCI data extracted by the scvRipper tool. We evaluate the
robustness of the scvRipper tool using randomly sampled 500 screenshots. Furthermore,
to develop confidence in the quality of the extracted HCI data and the analysis results, we
manually examine all the analysis results against the task videos. However, such manual
examination is qualitative in nature. It is almost impossible to quantitatively examine all the
extracted HCI data against the task videos.

A major threat to the external validity of the study is that we study developers’ behavior
in a controlled experiment instead of a real-world context. Although the study involves two
realistic tasks, the complexity of the software to be developed or maintained may limit the
generalizability of our findings. Furthermore, due to the limited number of developers and
their limited diversity, our study is exploratory by nature. Further studies are required to
generalize our findings.

6 Discussion

In this case study, we demonstrate that our scvRipper tool supports the quantitative analysis
of developers’ micro-level behavioral patterns when they interleave coding and web search
in software development. scvRipper could help the similar human studies in software engi-
neering. In Section 2, we analyze video coding levels in priori studies on human aspects of
software engineering. Developer actions and artifacts have to be transcribed in order to per-
form quantitative analysis of developer behavior in different software development tasks.
Our scvRipper tool can significantly ease the process of video analysis (e.g., open coding)
in such quantitative analysis by automatically extracting application usage and application
content from the screen-captured video. Furthermore, as our case study demonstrates, the
extracted data can be programmatically abstracted and aggregated, which could provide
quantitative evidence to the qualitative observation of the video data.

Based on the extracted HCI data, some actions can be automatically inferred from the
context of the recognized application windows, for example, switching between applica-
tions, switching between documents within an application, reading code in Eclipse editor,

Empir Software Eng (2017) 22:134–174 167

navigating through Eclipse views. However, due to the limitation of computer vision
techniques, scvRipper cannot reliably detect fine-grained developer actions, such as code
editing, setting breakpoints, text selection, and window scrolling. Indeed, through the devel-
opment of the scvRipper tool, we find that it is very difficult to use computer-vision
techniques to track such fine-grained mouse and keyboard actions. This finding leads to
the development of our ActivitySpace framework (Bao et al. 2015a, d) that combines com-
puter vision technique with operating-system level mouse and keyboard instrumentation.
Through this combination, our ActivitySpace framework can track and analyze fine-grained
developer actions in their daily work.

7 Related Work

Computer vision techniques have been used to identify user interface elements from screen-
captured images or videos. Prefab (Dixon and Fogarty 2010) models widgets layout and
appearance of an user interface toolkit as a library of prototypes. A prototype consists of
a set of parts (e.g., a patch of pixels) and a set of constraints regarding those parts. Prefab
identifies the occurrence of widgets from a given prototype library in an image of an user
interface by first assigning image pixels in parts from the prototype library and then filtering
widget occurrences according to the part constraints.

Waken (Banovic et al. 2012) uses image differencing technique to identify the occurrence
of GUI elements (cursors, icons, menus, and tooltips) that an application contains in screen-
captured videos. The identified GUI elements can be associated with videos as metadata.
This metadata allows the users to directly explore and interact with the video, as if it is
a live application, for example, hove over icons in the video to display their associated
tooltips.

Sikuli (Yeh et al. 2009) uses template matching techniques (Forsyth and Ponce 2002) to
find GUI patterns on the screen. It supports visual search of a given image in the screenshot.
It also supports a visual scripting API to automate GUI interactions, for example automating
GUI testing (Chang et al. 2010) or enhancing interactive help systems.

These computer-vision based techniques inspired the design and implementation of our
video scraping technique, including the metamodel of application window, the detection
of distinct-content screenshots, and the detection of application window. These existing
techniques have focused on visual search, GUI automation, and implementing new interac-
tion techniques. In contrast, our work focuses on extracting and analyzing time-series HCI
data from screen-captured videos. Unlike the video data that only a human can interpret,
the extracted time-series HCI data can be automatically analyzed to discover behavioral
patterns.

Instrumentation techniques (Hilbert and Redmiles 2000; Kim et al. 2008) can directly
log a person’s interaction with software tools and application content. They usually require
the support of sophisticated reflection APIs (e.g., Accessibility API or UI Automation API)
provided by applications, operating systems and GUI toolkits. Furthermore, a person can use
several software tools (e.g., Eclipse IDE, different web browsers) in his work. Instrumenting
all these software tools require significant efforts.

Some work proposes to combine low-level operating system APIs and computer vision
techniques to track human computer interaction. Hurst et al. (2010) leverages image differ-
encing and template matching techniques to improve the accuracy of target identification
that the users click. Chang et al. (2011) proposed a hybrid framework for detecting text
blobs in user interface by combining pixel-based analysis and accessibility metadata of the

168 Empir Software Eng (2017) 22:134–174

user interface. In contrast, our video scrapping technique analyzes screen-captured videos
without any accessibility information.

Although operating-system instrumentation can easily track fine-grained user action,
one difficulty in using operating-system instrumentation data is that the data is too fine-
grained to infer higher-level user actions. Our recent work (Bao et al. 2015a, d) present
a remembrance framework ActivitySpace that combines the computer vision techniques
that scvRipper implements with operating-system instrumentation. The screenshots pro-
vide application context to understand and analyze operating-system instrumentation data.
Another interesting extension could be integrating speech recognition techniques to analyze
audio data collected by think-aloud method (Mavrikis et al. 2014). This audio data could
provide more contextual information regarding the developers’ intentions and strategies.

8 Conclusions and Future Work

This paper presented a computer-vision based video-scraping technique (called scvRip-
per) that can automatically extract time-series HCI data from screen-captured videos. We
revealed the need for such an automatic video scraping technique through a formative study
of the challenges in manual transcription and coding of screen-captured videos. Our scvRip-
per technique is generic and easy to deploy. It can collect software usage and application
content data across several applications according to the user’s definition. Our scvRipper
tool can address the increasing need for automatic observational data collection methods in
the studies of human aspects of software engineering.

Our case study demonstrated the robustness of the scvRipper tool, and identified the
bottleneck of the tool’s runtime performance and suggested potential solutions. The fine-
grained quantitative analysis of the task videos of developers’ online search behavior in
software development demonstrated the usefulness of the extracted time-series HCI data
in modeling and analyzing the developers’ micro-level behavioral patterns during software
development.

Recently, we managed to collect over 2,000-hours working data of 58 developers from
a software development company using our recent data collection framework ActivitySpace
(Bao et al. 2015a, d), a tool built on the core scvRipper techniques and operating-system
level instrumentation. We are in the process of analyzing this large scale data to mine strate-
gies of professional developers for online search, program comprehension, testing, and
software maintenance.

Acknowledgments This work was partially supported by the Major State Basic Research Development
Program of China (973 ProgramNo.2015CB352201) and National Key Technology R&D Program of the
Ministry of Science and Technology of China (No. 2013BAH01B01). This work is supported by NTU SUG
M4081029.020 and MOE AcRF Tier1 M4011165.020.

References

Ammar N, Abi-Antoun M (2012) Empirical evaluation of diagrams of the run-time structure for coding tasks.
In: Proceedings of the WCRE, pp 367–376

Bandura A (1986) Social foundations of thought and action: a social cognitive theory, vol 1, p 617
Banovic N, Grossman T, Matejka J, Fitzmaurice G (2012) Waken: reverse engineering usage information

and interface structure from software videos. In: Proceedings of the UIST, pp 83–92

Empir Software Eng (2017) 22:134–174 169

Bao L, Ye D, Xing Z, Xia X (2015a) ActivitySpace: a remembrance framework to support interapplication
information needs. In: Proceedings 30th IEEE/ACM international conference on automated software
engineering

Bao L, Li J, Xing Z, Wang X, Zhou B (2015b) Reverse engineering time-series interaction data from screen-
captured videos. In: Proceedings of the SANER, pp 399–408

Bao L, Li J, Xing Z, Wang X, Zhou B (2015c) scvRipper: video scraping tool for modeling developers
behavior using interaction data. In: Proceedings of the ICSE, pp 673–676

Bao L, Xing Z, Wang X, Zhou B (2015d) Tracking and analyzing cross-cutting activities in developers’
daily work. In: Proceedings of the 30th IEEE/ACM international conference on automated software
engineering

Barabasi AL (2005) The origin of bursts and heavy tails in human dynamics. Nature 435(7039):207–211
Bateman S, Teevan J, White RW (2012) The search dashboard: how reflection and comparison impact search

behavior. In: Proceedings of the CHI, 1785
Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (surf). Comp Vision Image

Underst 110(3):346–359
Bordes A, Gabrilovich E (2014) Constructing and mining web-scale knowledge graphs: KDD 2014 tutorial.

In: Proceedings of the KDD, p 1967
Brade K, Guzdial M, Steckel M, Soloway E (1992) Whorf: A visualization tool for software maintenance.

In: Proceedings 1992 IEEE workshop on visual languages, pp 148–154
Brandt J, Guo PJ, Lewenstein J, Dontcheva M, Klemmer SR, Francisco S (2009) Two studies of opportunis-

tic programming: interleaving web foraging, learning, and writing code. In: Proceedings of the CHI,
pp 1589–1598

Brandt J, Dontcheva M, Weskamp M, Klemmer SR, Francisco S (2010) Example-centric programming:
integrating web search into the development environment. In: Proceedings of the CHI, pp 513–522

Brown JS, Collins A, Duguid P (1989) Situated cognition and the culture of learning
Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell:679–698
Chang T-H, Yeh T, Miller R (2011) Associating the visual representation of user interfaces with their internal

structures and metadata. In: Proceedings of the UIST, pp 245–256
Chang T-H, Yeh T, Miller RC (2010) GUI testing using computer vision. In: Proceeding of the CHI, pp 1535–

1544
Colin Cameron A, Windmeijer FA (1997) An r-squared measure of goodness of fit for some common

nonlinear regression models. J Econ 77(2):329–342
Corritore CL, Wiedenbeck S (2000) Direction and scope of comprehension-related activities by procedural

and object-oriented programmers: An empirical study. In: Proceedings of the IWPC. IEEE, pp 139–
148

Corritore CL, Wiedenbeck S (2001) An exploratory study of program comprehension strategies of procedural
and object-oriented programmers. Int J Hum-Comput St 54(1):1–23

Dekel U, Herbsleb JD (2009) Reading the documentation of invoked API functions in program comprehen-
sion, pp 168–177

Dewan P, Agarwal P, Shroff G, Hegde R (2009) Distributed side-by-side programming. In: Proceedings of
the 2009 ICSE workshop on cooperative and human aspects on software engineering, pp 48–55

Dixon M, Fogarty J (2010) Prefab: implementing advanced behaviors using pixel-based reverse engineering
of interface structure. In: Proceedings of the CHI, pp 1525–1534

Duala-Ekoko E, Robillard MP (2012) Asking and answering questions about unfamiliar APIs: an exploratory
study. In: Proceedings of the ICSE, pp 266–276

Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large
spatial databases with noise. In: Proceedings of the KDD, vol 96, pp 226–231

Forsyth DA, Ponce J (2002) Computer vision: a modern approach. Prentice Hall Professional Technical
Reference

Fritz T, Shepherd DC, Kevic K, Snipes W, Bräunlich C (2014) Developers’ code context models for change
tasks. In: Proceedings of the FSE, pp 7–18

Gonzalez RC, Woods RE (2002) Digital image processing. Prentice hall Upper Saddle River, NJ
Greiler M, van Deursen A, Storey M (2012) Test confessions: a study of testing practices for plug-in systems,

pp 244–254
Guha R, Guha R, McCool R, McCool R, Miller E, Miller E (2003) Semantic search. In: Proceedings of the

WWW, pp 700–709
Hartmann B, Macdougall D, Brandt J, Klemmer SR (2010) What would other programmers do? Suggesting

solutions to error messages. In: Proceedings of the CHI, pp 1019–1028
Hilbert DM, Redmiles DF (2000) Extracting usability information from user interface events. ACM Comput

Surv 32(4):384–421

170 Empir Software Eng (2017) 22:134–174

Hundhausen CD, Brown JL, Farley S, Skarpas D (2006) A methodology for analyzing the temporal evolution
of novice programs based on semantic components. In: Proceedings of the ACM international computing
education research workshop, pp 59–71

Hurst A, Hudson SE, Mankoff J (2010) Automatically identifying targets users interact with during real
world tasks. In: Proceedings of the IUI. ACM, pp 11–20

Kim JH, Gunn DV, Schuh E, Phillips B, Pagulayan RJ, Wixon D (2008) Tracking real-time user experience
(TRUE): a comprehensive instrumentation solution for complex systems. In: Proceedings of the CHI,
pp 443–452

Kimble C, Hildreth PM, Bourdon I (2008) Communities of practice: creating learning environments for
educators, vol 1. Information Age Publisher

Ko AJ, Myers BA (2004) Designing the whyline: a debugging interface for asking questions about program
behavior. In: Proceedings of the CHI, pp 151–158

Ko AJ, Myers BA (2005) A framework and methodology for studying the causes of software errors in
programming systems. J Visual Lang Comput 16(1):41–84

Ko AJ, Aung HH, Myers BA (2005a) Design requirements for more flexible structured editors from a study
of programmers’ text editing. In: CHI’05 extended abstracts on human factors in computing systems.
ACM, pp 1557–1560

Ko AJ, Aung HH, Myers BA (2005b) Eliciting design requirements for maintenance-oriented IDEs: a
detailed study of corrective and perfective maintenance tasks. In: Proceedings of the ICSE, pp 126–135

Ko AJ, Myers BA, Coblenz MJ, Aung HH (2006) An exploratory study of how developers seek, relate, and
collect relevant information during software maintenance tasks. IEEE Trans Softw Eng 32(12):971–987

Koru AG, Ozok A, Norcio AF (2005) The effect of human memory organization on code reviews under
different single and pair code reviewing scenarios. ACM SIGSOFT Software Engineering Notes 30:1–3

Kushman N, Katabi D (2010) Enabling configuration-independent automation by non-expert users. In:
Proceedings of the ninth USENIX symposium on operating systems design and implementation,
pp 223–236

Lawrance J, Bellamy R, Burnett M, Rector K (2008) Using information scent to model the dynamic foraging
behavior of programmers in maintenance tasks. In: Proceedings of the CHI. ACM, pp 1323–1332

Lawrance J, Bogart C, Burnett M, Bellamy R, Rector K, Fleming SD (2013) How programmers debug,
revisited: an information foraging theory perspective. IEEE Trans Softw Eng 39(2):197–215

Lawrence J, Clarke S, Burnett M, Rothermel G (2005) How well do professional developers test with code
coverage visualizations? An empirical study. In: Proceedings of the VL/HCC, pp 53–60

Leary MR (1991) Introduction to behavioral research methods. Wadsworth Publishing Company
Li H, Xing Z, Peng X, Zhao W (2013) What help do developers seek, when and how? In: Proceedings of the

WCRE, pp 142–151
Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of the ICCV, vol 2,

pp 1150–1157
Matejka J, Li W (2009) CommunityCommands: command recommendations for software applications. In:

Proceedings of the UIST, pp 193–202
Matejka J, Grossman T, Fitzmaurice G (2011) Ambient help. In: Proceeding of the CHI, pp 2751–2760
Mavrikis M, Grawemeyer B, Hansen A, Gutierrez-Santos S (2014) Exploring the potential of speech

recognition to support problem solving and reflection. In: Open learning and teaching in educational
communities. Springer, Berlin, pp 263–276

Muja M, Lowe DG (2009) Fast approximate nearest neighbors with automatic algorithm configuration. In:
VISAPP (1), pp 331–340

Murphy-Hill ER, Zimmermann T, Nagappan N (2014) Cowboys, ankle sprains, and keepers of quality: how
is video game development different from software development? In: Proceeding of the ICSE, pp 1–11

Nie Z, Zhang Y (2005) Object-level ranking: bringing order to web objects. In: Proceeding of the WWW,
pp 567–574

Nie Z, Ma Y, Shi S, Wen J-r, Ma W-y (2007) Web Object Retrieval. In: Proceeding of the WWW, pp 81–90
Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33(3):1065–1076
Piorkowski D, Fleming SD, Scaffidi C, John L, Bogart C, John BE, Burnett M, Bellamy R (2011) Modeling

programmer navigation: a head-to-head empirical evaluation of predictive models. In: Proceeding of the
VL/HCC, pp 109–116

Ponzanelli L, Bacchelli A, Lanza M (2013) Seahawk: Stack overflow in the IDE. In: Proceeding of the ICSE,
pp 1295–1298

Rabiner L, Juang BH (1986) An introduction to hidden Markov models. IEEE ASSP Mag 3(1):4–16
Rhodes B (1996) Remembrance agent: a continuously running automated information retrieval system. In:

The proceedings of the first international conference on the practical application of intelligent agents
and multi agent technology, pp 122–125

Empir Software Eng (2017) 22:134–174 171

Robillard MP, Coelho W, Murphy GC (2004) How effective developers investigate source code: an
exploratory study. IEEE Trans Softw Eng 30(12):889–903

Rosten E, Drummond T (2006) Machine learning for high-speed corner detection. In: Computer Vision–
ECCV 2006. Springer, Berlin, pp 430–443

Sarma A, Maccherone L, Wagstrom P, Herbsleb J (2009) Tesseract: interactive visual exploration of socio-
technical relationships in software development. In: Proceeding of the ICSE, pp 23–33

Sawadsky N, Murphy GC (2011) Fishtail: from task context to source code examples. In: Proceeding of the
1st workshop on Developing tools as plug-ins - TOPI, p 48

Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell
22(8):888–905

Sillito J, De Voider K, Fisher B, Murphy G (2005) Managing software change tasks: an exploratory study.
In: International Symposium on Empirical Software Engineering, IEEE, p 10

Silverman BW (1986) Density estimation for statistics and data analysis, vol 26. CRC press
Sinha SN, Frahm J-M, Pollefeys M, Genc Y (2006) GPU-based video feature tracking and matching. In:

EDGE, workshop on edge computing using new commodity architectures, vol 278, p 4321
Vakilian M, Chen N, Negara S, Rajkumar BA, Bailey BP, Johnson RE (2012) Use, disuse, and misuse of

automated refactorings. In: Proceeding of the ICSE, pp 233–243
von Mayrhauser A, Vans AM (1997) Program understanding behavior during debugging of large scale

software. In: Empirical Studies of Programmers, 7th Workshop, ACM. ACM, pp 157–179
Wang J, Peng X, Xing Z, Zhao W (2011) An exploratory study of feature location process: Distinct phases,

recurring patterns, and elementary actions. In: Proceeding of the ICSM, pp 213–222
Wang J, Peng X, Xing Z, Zhao W (2013) Improving feature location practice with multi-faceted interactive

exploration. In: Proceeding of the ICSE, pp 762–771
Weisstein EW (2011) Least squares fitting–exponential. MathWorld-A Wolfram Web Resource. http://

mathworld.wolfram.com/LeastSquaresFittingExponential.html
Whittaker JA, Poore JH (1993) Markov analysis of software specifications
WuD-C, TsaiW-H (2000) Spatial-domain image hiding using image differencing. Proc ICCVISP 147(1):29–

37
Yang J, McAuley J, Leskovec J, LePendu P, Shah N (2014) Finding progression stages in time-evolving

event sequences. In: Proceeding of the WWW, pp 783–794
Yeh T, Chang T-H, Miller RC (2009) Sikuli: using GUI screenshots for search and automation. In:

Proceeding of the UIST, pp 183–192
Zhang Q, Chen Y, Zhang Y, Xu Y (2008) SIFT implementation and optimization for multi-core systems. In:

Proceeding of the IPDPS, pp 1–8
Zhu J, Nie Z, Liu X, Zhang B, Wen J-R (2009) StatSnowball: a statistical approach to extracting entity

relationships. In: Proceeding of the WWW, p 101

Lingfeng Bao is currently a PhD candidate in the College of Computer Science and Technology, Zhejiang
University. He received his B.E. from the College of Software Engineering, Zhejiang University in 2010.
His research interests include software analytics, behavioral research methods, data mining techniques, and
human computer interaction.

http://mathworld.wolfram.com/LeastSquaresFittingExponential.html
http://mathworld.wolfram.com/LeastSquaresFittingExponential.html

172 Empir Software Eng (2017) 22:134–174

Jing Li is currently a PhD candidate in Computer Science, at the School of Computer Engineering, Nanyang
Technological University (NTU), Singapore. He received his B.E. and M.E. in Electrical Engineering from
University of Electronic Science and Technology of China (UESTC), China, in 2010 and 2013, respectively.
His research aims to understand, predict, and enhance developer behavior in software development and main-
tenance, in social and information networks by developing techniques in machine learning, data mining,
network analysis and natural language processing.

Zhenchang Xing is the Assistant Professor at the School of Computer Engineering, Nanyang Technologi-
cal University, Singapore. Dr. Xing’s research interests include software engineering and human-computer
interaction. His work combines software analytics, behavioral research methods, data mining techniques, and
interaction design to understand how developers work, and then build recommendation or exploratory search
systems for the timely or serendipitous discovery of the needed information.

Empir Software Eng (2017) 22:134–174 173

Xinyu Wang received the BE and PhD degrees from Zhejiang University, Hangzhou, China, in 2002 and in
2007. He is an Associate Professor in the College of Computer Science and Technology, Zhejiang University.
His primary research interests include software engineering, distributed software architecture, and distributed
computing.

Xin Xia received his PhD degree in computer science from the College of Computer Science and Technology,
Zhejiang University, China in 2014. He is currently a research assistant professor in the college of computer
science and technology at Zhejiang University. His research interests include software analytic, empirical
study, and mining software repository. He is a member of the Institute of Electrical and Electronics Engineers.

174 Empir Software Eng (2017) 22:134–174

Bo Zhou received the PhD degree from Zhejiang university in 1996. He is a professor in the college of
computer science and technology at Zhejiang university. His research interests include database management
system, distributed computing and software engineering.

	Extracting and analyzing time-series HCI data from screen-captured task videos
	Abstract
	Introduction
	A Survey of the Use of Screen-Capture Videos in SE Studies
	Summary

	Formative Study
	Study Design
	Results
	Summary
	Threats to Validity

	The Video Scraping Technique
	Definition of Application Window
	Technique Overview
	Detecting Distinct-Content Screenshots
	Detecting Application Windows
	Detecting Horizontal and Vertical Lines
	Detecting Individual Visual Cues
	Grouping Detected Visual Cues
	Detecting Window Boundaries

	Scraping Content Data from Application Windows

	Case Study
	Data Set
	Data Extraction and Processing
	Runtime Performance
	Robustness
	Data Analysis on Online Search
	Most Visited Web Sites
	Web Page Visited After a Search
	Web Page Visited and Web Page Switching During the Tasks
	Keyword Source in Queries
	Query Refinement
	Search Frequencies and Intervals

	Data Analysis on Context Switching
	Working Context Switching
	Markov Model on Context Switching

	Implications of Behavior Analysis Results
	Context Sensing and Reasoning
	Exploratory Search of Online Resources
	Remembrance Agent and Community of Practices

	Threats to Validity

	Discussion
	Related Work
	Conclusions and Future Work
	Acknowledgments
	References

