
Autom Softw Eng (2017) 24:455–498
DOI 10.1007/s10515-016-0204-z

An effective change recommendation approach for
supplementary bug fixes

Xin Xia1 · David Lo2

Received: 26 July 2015 / Accepted: 4 August 2016 / Published online: 26 August 2016
© Springer Science+Business Media New York 2016

Abstract Bug fixing is one of the most important activities during software develop-
ment and maintenance. A substantial number of bugs are often fixed more than once
due to incomplete initial fixes which need to be followed up by supplementary fixes.
Automatically recommending relevant change locations for supplementary bug fixes
can help developers to improve their productivity. It also help improve the reliabil-
ity of systems by highlighting locations that a developer potentially needs to change
to completely remove a bug. Unfortunately, a recent study by Park et al. shows that
many change recommendation techniques do not work for supplementary bug fixes. In
this paper, to advance the capabilities of existing change recommendation techniques,
we propose an effective approach named SupLocator to recommend relevant loca-
tions (i.e., methods) that need to be changed for supplementary bug fixes. Based
on various relationships among methods, classes, and packages in the source code
(such as containment, inheritance, historical co-change, etc.), SupLocator extracts
six change relationship graphs. Next, SupLocator performs random walk on each
of the 6 graphs, and for each it outputs a ranked list of candidate change locations.
Finally, SupLocator combines these six ranked lists by leveraging genetic algorithm.
To investigate the benefits of SupLocator, we perform experiments on three projects,
i.e., Eclipse JDT, Eclipse SWT, and Equinox p2. The experimental results show that
on average SupLocator can achieve top-1, top-5, and top-10 accuracies, mean recip-
rocal rank (MRR), and mean average precision (MAP) of 0.51, 0.65, 0.67, 0.58 and

B Xin Xia
xxia@zju.edu.cn

David Lo
davidlo@smu.edu.sg

1 College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China

2 School of Information Systems, Singapore Management University, Singapore, Singapore

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-016-0204-z&domain=pdf

456 Autom Softw Eng (2017) 24:455–498

0.32 for the three projects, which improve the best variants of the approach proposed
by Park et al. by 1523.09, 639.70, 550.62, 919.41, and 1478.44%, respectively. It also
improves the approach proposed by Saul et al. in terms of top-1, top-5, and top-10
accuracies, MRR, and MAP by 71.81, 29.54, 18.30, 47.24, and 56.60%, respectively.
Statistical tests show that the improvements are statistically significant.

Keywords Change recommendation · Supplementary bug fixes · Random walk ·
Genetic algorithm

1 Introduction

Due to the complexity of software systems, bugs are inevitable. Bug fixing is an essen-
tial activity in the life cycle of software development and maintenance. In practice, a
substantial number of bugs are fixed in more than one try, i.e., the initial fixes for these
bugs were incomplete or incorrect, and developers have to perform additional fixes
(Park et al. 2012, 2014). These additional fixes are often referred to as supplementary
bug fixes (Park et al. 2012). A previous study shows that around 22–33% of resolved
bugs involve supplementary bug fixes (Park et al. 2012). Automatically recommending
relevant change locations for the supplementary bug fixes can help developers reduce
debugging time, and improve their productivity. Moreover, change recommendation
can help increase system reliability by highlight locations that a developer potentially
needs to change to remove a bug completely.

Over the last decade, a number of change recommendation approaches have been
proposed (Ying et al. 2004; Zimmermann et al. 2005; Hassan and Holt 2004; Nguyen
et al. 2010). Zimmermann et al. and Ying et al. leverage association rule mining
techniques to predict change locations based on historical co-change patterns mined
from version control systems (Ying et al. 2004; Zimmermann et al. 2005). Hassan and
Holt use both co-change patterns and structural dependencies in source code to predict
change locations (Hassan and Holt 2004). Nguyen et al. propose FixWizard which
leverages code clone techniques to suggest change locations (Nguyen et al. 2010). The
accuracies of these approaches were evaluated on software commit data, i.e., commits
were grouped into sets of transactions, and for each transaction, a subset of change
locations in the transaction is used to predict the remaining change locations in the
transaction.

Recently, Park et al. investigate the effectiveness of existing change recommenda-
tion approaches for supplementary bug fixes (Park et al. 2014). Park et al. generalize
many existing change recommendation approaches by constructing multiple change
relationship graphs (CRGs) where nodes correspond to methods, classes, and pack-
ages, and edges correspond to structural dependencies, co-change relationships, and
code similarities. It thus considers structural dependencies previously considered by
Robillard (2005) and Hassan and Holt (2004, 2006), co-change patterns previously
considered by Ying et al. (2004) and Zimmermann et al. (2005), and content similarity
considered by Nguyen et al. (2010). Their approach then traverses one or multiple of
these CRGs to predict buggy methods that still need to be fixed after an initial bug
fix. Unfortunately, their study finds that the effectiveness of traditional change recom-

123

Autom Softw Eng (2017) 24:455–498 457

mendation approaches is very low, highlighting the inherently challenging problem of
recommending change locations for supplementary bug fixes.

In this paper, to advance existing change recommendation works, we propose an
approach named SupLocator to effectively recommend relevant change locations
(i.e., methods) for supplementary bug fixes. Extending Park et al.’s approach, our
approach also leverages multiple relationships that exist between methods, classes,
and packages in source code.We analyze six kinds of relationships: method invocation
(i.e., one method invokes another method), containment (i.e., one method is contained
in a class or a package), inheritance (i.e., one class extends another class), historical co-
change (i.e., onemethod is changed togetherwith anothermethod in a commit), content
similarity (i.e., two methods share similar contents), and name similarity (i.e., two
methods share similar names). Based on the six relationships types,we create sixCRGs
where nodes are methods, classes, and packages, and edges are relationships between
the nodes. In the end we have six CRGs: method invocation, containment, inheritance,
content similarity, and name similarity graphs. Then, to identify the relevant change
locations for a supplementary bug fix, SupLocator performs a random walk (Page
et al. 1999) on each of the six graphs starting from nodes that correspond to methods
that were fixed in the initial bug fix(es). Randomwalk would assign weights to each of
the nodes in a graph according to the proximities of the nodes to the previously fixed
nodes, and it would output a ranked list of the nodes. In total, we have six ranked lists
correspond to the six CRGs. Next, SupLocator combines these six ranked lists by
assigning different weights to them by leveraging genetic algorithms (GAs; Goldberg
and Holland 1988).

We evaluate our approach on three projects: Eclipse JDT,Eclipse SWT, andEquinox
p2which contains 53350, 64962, and 51424methods, respectively. In total, we analyze
2543 bugs with supplementary fixes. We measure the performance of our approach in
terms of top-1, top-5, and top-10 recommendation accuracies, mean reciprocal rank
(MRR; Baeza-Yates et al. 1999), and mean average precision (MAP; Baeza-Yates
et al. 1999). The experimental results show that SupLocator achieves average top-
1, top-5, and top-10 accuracies, MRR, and MAP of 0.51, 0.65, 0.67, 0.58 and 0.32,
respectively for the three projects. We compare the effectiveness of our approach
against the approach proposed by Park et al. and another approach (i.e., FRAN) that
performs random walks on a single graph to find similar methods that we use for
change recommendation (Saul et al. 2007). The results show that our approach can
outperform the best variants of Park et al. approachby1523.09, 639.70, 550.62, 919.41,
and 1478.44%, respectively, and Saul et al.’s approach by 71.81, 29.54, 18.30, 47.24,
and 56.60%, respectively. Statistical test (i.e.,Wilcoxon signed-rank test) results show
that the improvements are significant.

The main contributions of this paper are:

(1) We propose a hybrid change recommendation approach SupLocator, which
performs random walk on multiple CRGs, and leverages GA to combine the
multiple ranked lists outputted by these graphs.

(2) We experiment on a broad range of datasets containing a total of 2543 bugs with
supplementary fixes to demonstrate the effectiveness of SupLocator. We show
that SupLocator outperforms the approaches proposed by Park et al. and Saul

123

458 Autom Softw Eng (2017) 24:455–498

Training Phase Recommenda�on Phase

...

 Gene�c Algorithm
Component

Supplementary
Bug Fixes

Tuned Weights

Recommended
Change Loca�onsRela�onship

Graphs (RGs)

Maximum MAP Score
on the Training Data

4 W1
j

W2
j

W6
j

...

8

7

9

Historical Training
Data (Ini�al &

Supplementary
Fixes)

Method
Invoca�on

Containment

Inheritance

Historical Co-
change

Content
Similarity

Name
Similarity

Random
Walk (RW1)

Random
Walk (RW2)

Random
Walk (RW3)

Random
Walk (RW4)

Random
Walk (RW5)

Random
Walk (RW6)

R1

R2

R3

R4

R5

R6

Ranked Lists

1

2 3

Composi�on 1

W1
1

W2
1

W6
1

...

Composi�on J

W1
j

W2
j

W6
j

...

RGs
Extrac�on

Six Ranked
Lists

5

6

Random Walk
Component

Fig. 1 Overall architecture of SupLocator

et al. by a substantial margin. And statistical test shows the improvements are
significant.

The remainder of the paper is organized as follows. Section 2 describes an overview
of SupLocator’s architecture. Sections 3–5 elaborate on the three main components
of SupLocator, i.e., CRG component, randomwalk component, and GA component,
respectively. Section 6 presents the results of our comparative evaluation of SupLo-
cator. Section 7 discuss the other settings of SupLocator, and threats to validity.
Section 8 surveys the relatedwork. Finally, Section 9 concludes the paper andmentions
future work.

2 SupLocator architecture

Figure 1 presents the overall architecture of SupLocatorwhich works on two phases:
training phase and recommendation phase. In the training phase, we learn the values of
some parameters (or weights) of SupLocator based on a training data. In the recom-
mendation phase, we use SupLocator along with the learned weights to recommend
change locations to bugs that require supplementary bug fixes.

2.1 Training phase

Our framework takes as input historical training data consisting of bug reports with
known initial and supplementary bug fixes. For each of the initial bug fixes, we
extract six CRGs of different types,1 i.e., method invocation, containment, inheri-
tance, historical co-change, content similarity, and name similarity graphs (Step 1).

1 For more details of CRGs, please refer to Sect. 3.

123

Autom Softw Eng (2017) 24:455–498 459

Then, SupLocator inputs these graphs into six random walk components.2 Each of
the randomwalk components traverses one of the relationship graphs starting from the
nodes corresponding to methods fixed in the initial bug fix (Step 2). The random walk
process produces a ranked list of nodes in the CRG sorted based on their likelihood
to be buggy (Step 3).

Next, in the GA component,3 SupLocator searches for a good composition of the
random walk components by assigning suitable weights to the components (Step 4).
For each ranked list, we assign a weight to it, and in total we assign six weights to
the six ranked list which correspond to the six CRGs. GA is a search heuristic that
mimics the process of natural selection which models solutions in a search space as
chromosomes. In our setting, a solution is a set of values for the weights of the random
walk components. The algorithm picks a composition that maximizes the MAP score
when it is used to recommend change locations to bugs in the training data (Step 5).
MAP is a single-figure measure of quality which considers all correct results (in our
case: change locations or methods).

2.2 Recommendation phase

After suitable values of the weights are learned, in the recommendation phase,
SupLocator is then used to recommend change locations to new bugs that require
supplementary bug fixes. For each of the bug, SupLocator first extracts the six CRGs
(Step 6), and then performs random walk on these CRGs to get six ranked lists (Step
7). Next, these six ranked lists are then merged into one list by using the weights
learned in the training phase (Step 8). Finally, it will output a unified ranked list of
change locations (i.e., methods, Step 9).

3 Change relationship graph (CRG)

We use graph representations to capture different types of relationships among meth-
ods, classes, and packages in a source code. The nodes in such graphs are methods,
classes, and packages, while the edges are the relationships. We consider six relation-
ship types which correspond to the construction of six graphs (each capturing one
relationship type); these relationships include: method invocation (i.e., one method
invokes another method), containment (i.e., one method is contained in a class or a
package), inheritance (i.e., one class extends another class), historical co-change (i.e.,
one method is changed together with another method in a commit), content similarity
(i.e., twomethods share similar contents), and name similarity (i.e., twomethods share
similar names).

Notice that methods fixed in an initial fix and those fixed in corresponding supple-
mentary fixes contribute to the implementation of the same feature that is affected by
the same bug. Thus, they are likely to be closely related to one another. By travers-

2 For more details of the random walk component, please refer to Sect. 4.
3 For more details of the GA component, please refer to Sect. 5.

123

460 Autom Softw Eng (2017) 24:455–498

ing a CRG, we can find closely related methods to the initial fixed methods. These
methods located in the vicinity of the fixed methods in a CRG and these are likely
candidates of methods fixed in the supplementary fixes. As an example, consider bug
#210521 of Eclipse JDT, methods changed in its supplementary fixes are located one
hop away from the initial methods in the inheritance and historical co-change graphs.
As another example, for bug #251126 of Eclipse SWT, methods changed in its sup-
plementary fixes are one hop away from the initial methods in the name similarity
graph.

From the examples presented earlier, we can note that for some bugs, some CRGs
are better able to capture closely related methods that match to those fixed in supple-
mentary fixes. However, for other bugs, other CRGs are better. For example, for bug
#210521 of Eclipse JDT, although the changed methods in its supplementary fixes
can be located one hop away from the initial methods in the inheritance and historical
co-change graphs, for the other CRGs, the changed methods cannot be located. As
another example, for bug #251126 of Eclipse SWT, although the changed methods
in its supplementary fixes can be located one hop away from the initial methods in
the name similarity graph, and two hops away from the initial methods in the content
similarity graph, for the other CRGs, these changed methods cannot be located. Since
there is no CRG that is able to consistently outperform other graphs, we need to con-
sider multiple CRGs. All of the six graphs are directed graphs, and we discuss how
these graphs are created in the following paragraphs.

3.1 Method invocation, containment, and inheritance graphs

We use a partial program analysis (PPA) tool proposed by Dagenais and Hendren
(2008) to extract structural dependency information from packages, classes, andmeth-
ods in the source code files. Following Park et al. (2014), we use PPA to extract
ASTs from changed files in revisions prior to the initial bug fix. Based on the ASTs,
we extract the method invocation, containment, and inheritance relationships among
methods, classes, and packages in the ASTs. Different from the work of Park et al.
(2014), we create three independent graphs instead of one graph to represent the three
relationships.We refer to them as themethod invocation, containment, and inheritance
graphs, respectively. For some changes which do not contain sufficient information
for PPA to derive the type or package information, we set the number of nodes in the
method invocation, containment, and inheritance graphs as 0, i.e., these three graphs
do not contains any nodes and edges. Notice that even if some graphs do not contain
any nodes or edges, SupLocator still can return a recommendation result.

To construct the method invocation graph, twomethods A and B would have a edge
if A calls B (the edge direction is from A to B), or B calls A (the edge direction is
from B to A). To construct the containment graph, for each class and each method in
it, we create a directed edge from the class to the method. Also, for each package and
each class in it, we create a directed edge from the package to the class. To construct
the inheritance graph, we create a directed edge from class Class1 to class Class2 if
Class1 is a subclass ofClass2.Also, we create a directed edge frommethodMethod1
to method Method2 if Method1 overrides Method2.

123

Autom Softw Eng (2017) 24:455–498 461

3.2 Historical co-change graph

In the historical co-change graph, twomethod nodes A and B would have two directed
edges if they were changed within the same commit (revision) prior to the initial bug
fix (the directions are from A to B, and B to A). To create such a graph, we first extract
all changes from a revision control system that were committed before the initial bug
fixing commit wasmade.We then analyze the co-change relationships amongmethods
in the source code and construct the historical co-change graph.

3.3 Content similarity graph

In the content similarity graph, two method nodes A and B would have two directed
edges if their corresponding method bodies have similar contents (the directions are
from A to B, and B to A). Following Park et al. (2014) study, we identify similar
contents by using the output of CCFinderX (Kamiya et al. 2002) with the value of the
minimum token size parameter set to 40. To create such a graph, we first extract the
methods in the current snapshot of source code of the initial bug fix, and construct the
content similarity edges among the methods.

Notice we use a clone detection technique instead of a textual similarity technique
(e.g., semantic coupling proposed by Poshyvanyk et al. 2009) to construct the content
similarity graph. If two methods share many common words, their textual similarity
scores would be large. We find that methods in the same class/package tend to show
higher textual similarity scores than methods in different classes/packages. Based on
this observation, if we use textual similarity, it would be prone to recommend methods
in the same class/package for supplementary bug fixes. However, we empirically find
that most of the methods changed in the supplementary bug fixes are in the different
classes/packages as the methods in the initial bug fixes. Thus, textual similarity cannot
work well for our problem. Clone detection techniques focus on structural similarity
rather than textual similarity. Structural similarity will assign high similarity scores
to methods that share a similar structure, and we find that these methods are typically
in different classes/packages. Thus, in this paper, we choose to use a clone detection
technique instead of a textual similarity technique.

3.4 Name similarity graph

In the name similarity graph, following Park et al. (2014) study, two method nodes
A and B would have two directed edges (the directions are from A to B, and B to
A) if the following conditions hold: (1) the two methods are in the same package, (2)
the classes that define the two methods have a name similarity score larger than 0.5,
and (3) the names of the two methods have a name similarity score larger than 0.7.
To measure the similarity of method and class names, Park et al. use the approach
proposed by Xing and Stroulia (2005), i.e., the similarity between the names of two
methods A and B is twice the number of consecutive character pairs (a.k.a. bigrams)
that are common to both method names divided by the sum of the number of bigrams
in the two method names. To create the name similarity graph, we first extract the

123

462 Autom Softw Eng (2017) 24:455–498

methods in the current snapshot of source code of the initial bug fix, and construct the
name similarity edges among the methods.

4 Random walk component

After the extraction of the CRGs, given a set of nodes corresponding to methods
changed in an initial bug fix, for each CRG, our approach ranks method nodes based
on the likelihood of the corresponding methods to be changed in the supplementary
bug fixes. Intuitively, the closer the relationships between amethod tomethods that are
changed in the initial bug fix is, themore likely it is to bemodified in the supplementary
fixes.

Park et al.’s approach only recommends methods that are one hop away from the
methods that are fixed in the initial bug fix. However, not all changed methods can
be found one hop away from the methods that are fixed in the initial bug fix in the
graphs. For example, for historical co-change graph, we find 59.36, 3.42, and 37.22%
changed methods in the supplementary fixes can be located 1 hop, 2 hops, and more
than 3 hops away from the methods that are fixed in the initial bug fixes of Eclipse
JDT. And for containment graph, we find 32.26, 20.55, and 47.19% changed methods
in the supplementary fixes can be located 1 hop, 2 hops, and more than 3 hops away
from the initial fixed methods in Eclipse SWT.

Saul et al. have shown that closely-related methods can be identified by performing
a random walk on a graph capturing structural dependencies of program elements in
the vicinity of a method (Saul et al. 2007). In this work, we follow the intuition of
Saul et al. by running random walk algorithms on each of the six CRGs to create
six ranked lists each capturing closely related methods to those fixed in the initial
fixes. To create this ranking, in a nutshell, for each CRG, our approach works as
follows: (1) given a set of nodes that are fixed in the initial bug fix, we extract a
subgraph that captures the vicinity of these nodes, (2) we then perform random walk
to estimate the relationship strength of each node in this subgraph to the initial fixed
methods. We then rank the method nodes based on their relationship strengths. We
describe our subgraph extraction method and our random walk step in the following
sub-sections.

4.1 Subgraph extraction

Beforewe describe the subgraph that we extract, we need to introduce some terminolo-
gies. Let us denote the nodes corresponding to methods that are changed in the initial
bug fixes as Vini .We define the set of nodes with outgoing edge(s) to at least one of the
nodes in Vini as parent nodes—denoted as Vparent . Next, we define the set of nodes
with incoming edge(s) from at least one of the nodes in Vini as child nodes—denoted
as Vchild . Furthermore, we define the set of nodes not in Vini with incoming edge(s)
from at least one node in Vparent as sibling nodes—denoted as Vsibling. Finally, we
define the set of nodes not in Vini with outgoing edge(s) to at least one node in Vchild
as spouse nodes—denoted as Vspouse. Figure 2 presents an illustration of these four

123

Autom Softw Eng (2017) 24:455–498 463

Fig. 2 An illustration of the
parent set, child set, sibling set,
and spouse set of an initial set of
changed nodes in a change
relationship graph

Ini�al Set

Parent Set

Child Set

Spouse Set

Sibling Set

A

B C

sets of nodes in a CRG.4 Given Vini , our approach first identifies its corresponding
Vparent , Vchild , Vsibling, and Vspouse sets. It then extracts a subgraph with nodes that
appear in the union of these sets along with edges that connect them.

4.2 Random walk

Wemake use of a popular randomwalk algorithm named PageRank that was proposed
by Page et al. (1999) and is used in Google to rank web pages. PageRank works in a
number of iterations and eventually computes the probability of a random walker to
traverse a node from an arbitrary node in a graph. The PageRank algorithm is orig-
inally proposed to study the importance of web pages in the Internet. In PageRank,
one node corresponds to one web page, and one edge corresponds to the link in/out
relationship between two web pages. In our paper, one node corresponds to a method,
and one edge corresponds to one of the six types of change relationships as shown in
the previous section. In such a way, the relationships among methods can be mapped
to the relationships among webpages. Applying PageRank on our graphs will recover
important nodes that are closely related to the initial methods (i.e., method that are
modified in the initial bug fix) that are used to construct the graphs. These closely
related methods are likely to be locations that are missed in the initial bug fix. In the
initial iteration, all nodes in a graph are given an equal fixed probability. This proba-
bility is then updated in each iteration. At iteration k, the probability that PageRank
assigns to a node n can be computed as follows:

P(n, k) = 1 − d

ND
+ r

∑

u∈K (n)

P(u, k − 1)

|L(u)| .

In the equation, d is the probability that a random walker continues to visit other
nodes (a.k.a. the damping factor), ND is the number of nodes in the network, K(n)
is the set of nodes that link to n, and L(u) is the set of nodes that u links to. The

4 Similar terminologies were also used by Saul et al. in their similar-method recommendation work (Saul
et al. 2007).

123

464 Autom Softw Eng (2017) 24:455–498

iteration continues until all the scores converge. Implementation-wise, we make use
of the PageRank algorithm implemented in jung library.5 We denote the PageRank
probability of a node n as PageRank(n).

In our random walk component, we adjust the probabilities outputted by PageRank
by considering the degree of a node (West et al. 2001). The degree of a node n is the
number of edges from and to the node n, and is denoted as Degree(v).Our hypothesis
is nodes with more degrees have more dependencies and thus are more likely to be
buggy. The final ranking score of a node n, denoted as Rank(n), is computed as:

Rank(n) = PageRank(n) × Degree(n). (1)

Sincewe have six types ofCRGswhich correspond to six randomwalk components,
we denote the six random walk components as RW1, RW2, . . . , RW6.

5 Genetic algorithm component

The GA component merges the six ranked lists that are produced by the six random
walk components (each working on a different CRG). Notice in our paper, we consider
six types of CRGs, we need to combine the multiple lists from the output of the
six types of CRGs. Some CRGs may produce better ranked lists than the others.
Intuitively, ranked lists produced by those graphs need to be assigned higher weights.
GAs (Goldberg and Holland 1988) can be used to combine the multiple ranking lists
by assigning different weights to each of them. Other algorithms can potentially be
used, e.g., learning to rank (Liu 2009). However, in this work, we choose GA since it is
less susceptible to the issue with local optima, while learning to rank is often casted as
an optimization problem (e.g., hill climbing Dai et al. 2013) whichmay often converge
in a local optimum.

To merge the six ranked lists, our approach computes the composite rank of each
method and ranks them based on their composite ranks. We define this composite rank
in Definition 1.

Definition 1 (composite rank) Let us denote the rank of a method v produced by the
six randomwalk components as Rank1(v), Rank2(v), . . . , Rank6(v).The composite
rank CRank(v) of method v is computed as:

CRank(v) =
6∑

i=1

αi × Ranki (v). (2)

In the above equation, α1–α6 are the weights of the six random walk components.
Each weight is a real number from zero to one.

To estimate the composite rank of a method well, our approach needs to esti-
mate suitable weights α1–α6 in Eq. 2. We make use of a GA to search for a suitable

5 http://jung.sourceforge.net/.

123

http://jung.sourceforge.net/

Autom Softw Eng (2017) 24:455–498 465

combination of weights based on a training data of completely fixed bugs and their
supplementary fixes.

5.1 Search space and fitness functions

5.1.1 Search space

The search space of all possible combinations corresponds to the various assignments
of values to the weights assigned to the six lists {α1, α2, . . . , α6}. These weights
are needed for the composite ranking problem, i.e., the creation of one unified list
that merges the six. Each weight is a real number from zero to one. We refer to
each composition of weights as a solution in the search space, denoted as Sol =
{α1, α2, . . . , α6}.

5.1.2 Fitness function

A fitness function measures the quality of a solution in the search space. In this paper,
by default, we use the following fitness function we try to maximize:

Fitness = MAP(Sol). (3)

In the above equation, MAP(Par) is theMAP score achieved by using the weights
in Sol on the training data. The details on how MAP score is computed is given in
Sect. 6.2.

5.2 Detailed procedure

GA is a well-known search algorithm which models solutions in a search space as
chromosomes. In our setting, a solution is a set of values for the weights. A chromo-
some contains a set of genes where a gene corresponds to a part of a solution (e.g., a
value of a weight, in our setting). GA starts with a population of randomly constructed
chromosomes, referred to as the initial population. It then evolves the population by
generating subsequent generations, where each generation is another population of
chromosomes. GA evolves the population by three operations: (1) selection opera-
tor, which selects parent chromosomes according to their fitness scores, (2) crossover
operator, where the selected parents exchange their genes with a given probability, (3)
mutation operator, where the genes of new chromosomes would be modified accord-
ing to a given probability. More details about GA can be found in Sivanandam and
Deepa (2007) and Goldberg and Holland (1988). We use the Roulette wheel selection
procedure (Sivanandam andDeepa 2007; Goldberg and Holland 1988) as the selection
operator. It assigns a high probability to a chromosome with a higher fitness score to
be selected. For the crossover operator, we use the single point crossover operator. It
processes pairs of chromosomes and for each pair, with a certain probability, it ran-
domly picks a gene (i.e., a value of a weight) from a parent chromosome and swaps
that gene and the subsequent ones with corresponding genes from the other parent

123

466 Autom Softw Eng (2017) 24:455–498

Algorithm 1 Estimation of weights in the GA component of SupLocator.
1: EstimateWeights({RW1, RW2, . . . , RW6}, T RData, PopSize, MaxGen)
2: Input:
3: {RW1, RW2, . . . , RW6}: Six random walk components
4: T RData: Training data
5: PopSize: Number of chromosomes in a population
6: MaxGen: Maximum number of generations
7: Output: α1, α2, . . . , α6
8: Method:
9: Let P = Initial population with PopSize members;
10: Evaluate P and record the best solution found so far (i.e., the solution with the maximum MAP score

on T RData);
11: Let curGen = 0
12: while curGen < MaxGen do
13: Let P ′ = select (P);
14: P ′ = crossover(P ′);
15: P ′ = mutation(P ′);
16: Evaluate P ′ and record the best solution so far;
17: curGen = curGen + 1;
18: end while
19: Output (α1, α2, . . . , α6) which achieves the highest MAP score.

chromosome in the pair. For the mutation operator, we use randommutation. For each
gene, with a certain probability, it randomly swaps the gene with another value in the
range of zero to one.

Algorithm 1 presents the detailed steps to search for a suitable combination of
weights. We first create an initial population (i.e., P) containing PopSize chromo-
somes (i.e., solutions) that are chosen randomly, and we record the best solution (i.e.,
the solution with the maximum MAP score on T RData) among the solutions in P
(lines 9 and 10). Remember that each solution in P is a set ofweights {α1, α2, . . . , α6}.
Next, we evolve the population in MaxGen iterations; for each iteration, we perform
the selection, crossover, and mutation operations on the current population, and record
the best solution found so far (lines 11–18). The algorithm returns the combination
of α1, α2, . . . , α6 which achieves the highest MAP score on T RData (i.e., the best
solution among solutions in the initial population and the populations generated in the
MaxGen generations).

6 Experiments and results

In this section, we evaluate the performance of SupLocator. The experimental envi-
ronment is a Windows Server 2008, 64-bit, Intel Xeon 2.00 GHz server with 80 GB
RAM.

6.1 Experiment setup

We use the datasets provided by Park et al. (2014) which contain a total of 2543
bugs each with one or more supplementary fixes. Table 1 present the statistics of the
collected data. The columns correspond to the project name (Project), the time period

123

Autom Softw Eng (2017) 24:455–498 467

Table 1 Statistics of collected data

Projects Time Period # Bugs with Sup. # Methods

Eclipse JDT 1 November 2001–18 December 2007 873 53,350

Eclipse SWT 11 October 2001–21 December 2008 1215 64,962

Equinox p2 25 October 2001–23 December 2009 455 51,424

of the collected bugs (Time Period), the number of bugs with supplementary fixes
(# Bugs with Sup.), and the number of methods in the source code (# Methods).
For each of these bugs, we extract the methods changed in the supplementary fixes as
ground truth. Our task is to use the information (i.e., CRGs) in the initial fix to predict
the modified methods in the supplementary fixes.

To simulate the usage of our approach in practice,we use the longitudinal data setup.
We first sort bugs described in Table 1 in chronological order of their reported time.
Next, we use the first 10%of the bugs as a training set to build theSupLocatormodel.
We use the remaining 90% of the bugs as the test set to evaluate the effectiveness of
SupLocator. This setup simulates the real usage of our tool in reality, since it is not
possible to use future data to predict the past.

We compare SupLocator with a set of change recommendation approaches pro-
posed by Park et al. (2014) and FRAN proposed by Saul et al. (2007). Park et al.
generalize a number of previous works on change recommendation, e.g., Robillard
(2005), Hassan and Holt (2004), Ying et al. (2004), Zimmermann et al. (2005) and
Nguyen et al. (2010), and propose to use a number of different CRGs capturing dif-
ferent relationships between methods, classes, and packages to recommend change
locations. They consider four types of CRGs capturing four different relationships,
i.e., structural (method invocation, containment, and inheritance), co-change, content
similarity, and name similarity. Their approach then identifies nodes in the CRGs that
correspond to changes made in an initial bug fix and recommends methods whose
nodes are one-hop away from the initial fix nodes (in one or more of the graphs) to
be recommended as candidate change locations for the corresponding supplementary
bug fix. Park et al. propose various variants of their approach: four variants only use
one of the CRGs and we denote them as ParkStructure, ParkChange, ParkContent ,

and ParkName; one variant makes use of selected edges from all the four CRGs and
we denote it as ParkSel; two other variants leverage developer specific patterns and
package patterns and we denote them as ParkDev and ParkPack, respectively. Saul
et al. propose FRAN, which also performs random walk to find similar methods to
input methods (Saul et al. 2007). We adapt their approach to recommend change loca-
tions. Differently from our approach, FRAN only performs randomwalk on one graph
(i.e., structural dependency graph). Furthermore, they employ hypertext induced topic
selection (HITS) algorithm (Kleinberg 1999) rather than PageRank. We obtained the
implementation of Park et al.’s approaches from the authors and we reimplemented
FRAN by making use of a publicly available implementation of HITS.6

6 http://jung.sourceforge.net/.

123

http://jung.sourceforge.net/

468 Autom Softw Eng (2017) 24:455–498

In SupLocator, we use a simple GA (Sivanandam and Deepa 2007; Goldberg and
Holland 1988) implemented in jgap (Meffert et al. 2011) to construct the GA compo-
nent. Since GA exhibits some randomness (Sivanandam and Deepa 2007; Goldberg
and Holland 1988; Xia et al. 2014a), we run the GA 10 times and report the aver-
age performance score. This follows the recommendation made by Arcuri and Briand
(2011), Liu et al. (2010), Canfora et al. (2013), and Xia et al. (2014a) to evaluate
random algorithms in software engineering context. The parameters of GA that we
use in this study are as follows:

(1) Population sizewe set amoderate population size (PopSize) of 500 chromosomes.
(2) Number of generations we set the maximum number of generations (MaxGen) to

200.
(3) Crossover operatorwe use a single point crossover operator with crossover prob-

ability (CrossProb) of 0.35.
(4) Mutation operator we use a random mutation operator with mutation probability

(MutProb) of 0.08.

6.2 Evaluation metrics

To evaluate SupLocator, we use top-k prediction accuracy, MRR (Baeza-Yates et al.
1999), and MAP (Baeza-Yates et al. 1999), which are commonly used in evaluating
recommendation systems in the software engineering literature (Zhou et al. 2012; Rao
and Kak 2011; Xia et al. 2014c; Tamrawi et al. 2011).

6.2.1 Top-k prediction accuracy

Top-k prediction accuracy is the percentage of bugswith supplementary patcheswhose
ground truth methods are ranked in the top-k positions in the returned ranked lists of
change locations (i.e.,methods).Given a bug b, if at least one of its top-k recommended
methods is actually changed in its supplementary bug fix, we consider the recommen-
dation to be successful, and set the value success(b, top − k) to 1; else we consider
the recommendation to be unsuccessful, and set the value success(b, top − k) to 0.
Given a set of bugs requiring supplementary fixes, denoted as SupBugs, its top-k
prediction accuracy Top@k is computed as:

Top@k =
∑

b∈SupBugs success(b, top-k)
|SupBugs| . (4)

The higher the top-k accuracy score is, the better a code-reviewer recommendation
technique performs. In this paper, we set k=1, 5, and 10.

6.2.2 Mean reciprocal rank (MRR)

MRR is a popular metric used to evaluate an information retrieval technique (Baeza-
Yates et al. 1999). Given a query (in our case: a bug b), its reciprocal rank is the
multiplicative inverse of the rank of the first correct document (in our case: change

123

Autom Softw Eng (2017) 24:455–498 469

location or method) in a rank list produced by a ranking technique (in our case: a
change recommendation technique). MRR is the average of the reciprocal ranks of
all bugs in a set of bugs. The MRR of a set of bugs requiring supplementary fixes
SupBugs is computed as:

MRR(R) = 1

|SupBugs|
∑

b∈SupBugs

1

rank(b)
. (5)

In the above equation, rank(b) refers to the position of the first correctly recom-
mended method in the ranked list returned by a change recommendation technique
for bug b.

6.2.3 Mean average precision (MAP)

MAP is a single-figure measure of quality, and it has been shown to have especially
good discrimination and stability to evaluate ranking techniques (Baeza-Yates et al.
1999). Different from top-k accuracy and MRR that only consider the first correct
result, MAP considers all correct results. For a single query (in our case: a bug b), its
average precision is defined as the mean of the precision values obtained for different
sets of top-k documents (in our case: change locations or methods) that were retrieved
before each relevant document is retrieved, which is computed as:

AvgP(b) =
∑M

j=1 P(j) × Rel(j)

Number of relevant methods
. (6)

In the above equation, M is the number of candidate methods in a ranked list,
Rel(j) indicates whether the method at position j is relevant or not (in our case: a
ground truth method or not), and P(j) is the precision at the given cut-off position j
and is computed as:

P(j) = Number of relevant methods in top j posi tions

j
.

Then the MAP for a set of bugs requiring supplementary fixes SupBugs is the mean
of the average precision scores for all bugs in SupBugs:

MAP =
∑

b∈SupBugs AvgP(b)

|SupBugs| . (7)

In change recommendation, a supplementary bug fixmay require a number ofmethods
to be changed. We use MAP to measure the average performance of SupLocator to
recommend all of the relevant methods. The higher the MAP value, the better the
change recommendation performance is.

123

470 Autom Softw Eng (2017) 24:455–498

6.2.4 Completeness@K

Suppose we have m bugs with supplementary fixes. For the i th bug bi , let the set of
its actual change locations be Ci . We recommend the top-k change locations Ti for
bi according to our approach. Then, the completeness of our approach at the top-k
recommendations, denoted as Completeness@K is:

Completeness@K = 1

m

i=m∑

i=1

|Ci
⋂

Pi |
Ci

. (8)

In this paper,we choose K equals to 5, 10, and 20, and compute theCompleteness@K
values for SupLocator and the baseline approaches. We use Completeness@K as a
supplementary evaluation metric in Sects. 7.4–7.6.

6.3 Research questions

This paper addresses the following research questions:

RQ1: How effective is SupLocator in recommending change locations? Howmuch
improvement can it achieve over the state-of-the-art approaches?

RQ2: What is the performance of the six random walk components? And what is the
benefit of our composite GA model?

RQ3: What is the effect of varying the number of bugs in the training set on the
effectiveness of SupLocator?

RQ4: What is the effect of varying the fitness function of the GA component on the
effectiveness of SupLocator?

6.4 Results

6.4.1 RQ1: How effective is SUPLOCATOR in recommending change locations?
How much improvement can it achieve over the state-of-the-art approaches?

Motivation the more accurate SupLocator is, the more benefit SupLocator would
give to its users. Thus, in this research question, we evaluate the effectiveness of
SupLocator and compare it with the state-of-the-art approaches.

Approach to answer RQ1, we compare SupLocatorwith the approaches proposed
by Park et al. (2014) (i.e., ParkStructure, ParkChange, ParkContent , ParkName,

ParkSel , ParkPack, and ParkDev), and FRAN proposed by Saul et al. (2007). We
evaluate them by using the longitudinal data setup, and record the top-k prediction
accuracies (k=1, 5, 10, and 20), MRR, and MAP.

To check if the differences in the performance of SupLocator and the baseline
approaches are statistically significant, for the each dataset, we apply the Wilcoxon
signed-rank test (Wilcoxon 1945) at 95% significance level on the paired data which
corresponds to the top-k accuracies, MRR, and MAP scores of two competing
approaches, respectively. Since we have three projects, for each evaluation metrics

123

Autom Softw Eng (2017) 24:455–498 471

Table 2 Top-k accuracies
(k=1, 5, and 10), MRR and
MAP for Suplocator
compared with those for the
approaches proposed by Park et
al. and FRAN for bugs in
Eclipse JDT project

The best performance is
highlighted in bold

Approaches Top-1 Top-5 Top-10 MRR MAP

SupLocator 0.61 0.74 0.78 0.67 0.39

ParkStructure 0.03 0.07 0.09 0.05 0.02

ParkChange 0.03 0.06 0.09 0.04 0.02

ParkContent 0.01 0.01 0.01 0.01 0.00

ParkName 0.03 0.09 0.11 0.06 0.02

ParkSel 0.01 0.03 0.05 0.03 0.01

ParkDev 0.00 0.01 0.01 0.01 0.00

ParkPack 0.00 0.02 0.03 0.01 0.00

FRAN 0.35 0.56 0.64 0.45 0.25

Table 3 Top-k accuracies
(k=1, 5, and 10), MRR and
MAP for Suplocator
compared with those for the
baseline approaches for bugs in
Eclipse SWT project

The best performance is
highlighted in bold

Approaches Top-1 Top-5 Top-10 MRR MAP

SupLocator 0.57 0.70 0.73 0.63 0.33

ParkStructure 0.03 0.06 0.07 0.04 0.01

ParkChange 0.04 0.11 0.17 0.08 0.03

ParkContent 0.01 0.02 0.03 0.01 0.00

ParkName 0.05 0.12 0.15 0.08 0.03

ParkSel 0.01 0.03 0.07 0.03 0.01

ParkDev 0.01 0.01 0.04 0.02 0.01

ParkPack 0.01 0.02 0.06 0.02 0.01

FRAN 0.34 0.54 0.60 0.43 0.21

Table 4 Top-k accuracies
(k=1, 5, and 10), MRR and
MAP for Suplocator
compared with those for the
baseline approaches for bugs in
Equinox p2 project

The best performance is
highlighted in bold

Approaches Top-1 Top-5 Top-10 MRR MAP

SupLocator 0.38 0.49 0.52 0.43 0.23

ParkStructure 0.04 0.09 0.12 0.06 0.02

ParkChange 0.01 0.03 0.06 0.03 0.01

ParkContent 0.00 0.00 0.00 0.00 0.00

ParkName 0.01 0.05 0.06 0.03 0.01

ParkSel 0.01 0.04 0.07 0.03 0.01

ParkDev 0.00 0.02 0.04 0.02 0.01

ParkPack 0.00 0.01 0.02 0.01 0.00

FRAN 0.21 0.40 0.46 0.30 0.14

(i.e., top-k accuracies, MRR, and MAP), we also use Bonferroni correction (Abdi
2007) to counteract the results of multiple comparisons.

Results Tables 2, 3, and 4 present the top-k accuracies (k=1, 5, and 10), MRR
and MAP for Suplocator compared with those of the approaches proposed by Park

123

472 Autom Softw Eng (2017) 24:455–498

Table 5 P-values of SupLocator compared with the baseline approaches for bugs in Eclipse JDT project
(after Bonferroni correction)

Sup. versus baseline Top-1 Top-5 Top-10 MRR MAP

Sup. versus ParkStructure 6.6e−16 6.6e−16 6.6e−16 6.6e−16 6.6e−16

Sup. versus ParkChange 6.6e−16 6.6e−16 6.6e−16 6.6e−16 6.6e−16

Sup. versus ParkContent 6.6e−16 6.6e−16 6.6e−16 6.6e−16 6.6e−16

Sup. versus ParkName 6.6e−16 6.6e−16 6.6e−16 6.6e−16 6.6e−16

Sup. versus ParkSel 6.6e−16 6.6e−16 6.6e−16 6.6e−16 6.6e−16

Sup. versus ParkDev 6.6e−16 6.6e−16 6.6e−16 6.6e−16 6.6e−16

Sup. versus ParkPack 6.6e−16 6.6e−16 6.6e−16 6.6e−16 6.6e−16

FRAN 2.1e−9 7.2e−6 5.4e−10 3.6e−10 6.3e−8

Table 6 P-values of SupLocator compared with the baseline approaches for bugs in Eclipse SWT project
(after Bonferroni correction)

Sup. versus baseline Top-1 Top-5 Top-10 MRR MAP

Sup. versus ParkStructure 6.6e−16 6.6e−16 6.6e−16 6.6e−16 6.6e−16

Sup. versus ParkChange 6.6e−16 6.6e−16 6.6e−16 6.6e−16 6.6e−16

Sup. versus ParkContent 6.6e−16 6.6e−16 6.6e−16 6.6e−16 6.6e−16

Sup. versus ParkName 6.6e−16 6.6e−16 6.6e−16 6.6e−16 6.6e−16

Sup. versus ParkSel 6.6e−16 6.6e−16 6.6e−16 6.6e−16 6.6e−16

Sup. versus ParkDev 6.6e−16 6.6e−16 6.6e−16 6.6e−16 6.6e−16

Sup. versus ParkPack 6.6e−16 6.6e−16 6.6e−16 6.6e−16 6.6e−16

FRAN 2.7e−10 4.2e−8 5.4e−6 6.6e−7 8.1e−7

et al. and FRAN proposed by Saul et al. for bugs in Eclipse JDT, Eclipse SWT,
and Equinox p2 projects, respectively. We notice that Suplocator outperforms the
approaches proposed by Park et al. by a substantial margin.

On average across the three projects, SupLocator achieves top-1, top-5, and top-
10 prediction accuracies, MRR, and MAP of 0.52, 0.65, 0.67, 0.58, and 0.32, which
outperform the best approaches (i.e., ParkName) proposed Park et al. by 1523.09,
639.70, 550.62, 919.41, and 1478.44%, and FRAN by 71.81, 29.54, 18.30, 47.24, and
56.60%, respectively.

Tables 5, 6, and 7 present the p-values of SupLocator compared with the baseline
approaches for bugs inEclipse JDT,Eclipse SWT, andEquinox p2 projects by applying
Wilcoxon signed-rank test with Bonferroni correction, respectively. Statistical testing
shows that the improvements ofSupLocator over the those of Park et al.’s approaches
and FRAN are significant at 95% confidence level across the three projects (i.e., the
p-values are less than 0.05).

We notice the performance of the approaches proposed by Park et al. are extremely
low; on average across the three projects, the top-1, top-5, top-10, and top-20 prediction

123

Autom Softw Eng (2017) 24:455–498 473

Table 7 P-values of SupLocator compared with the baseline approaches for bugs in Equinox p2 project
(after Bonferroni correction)

Sup. versus baseline Top-1 Top-5 Top-10 MRR MAP

Sup. versus ParkStructure 6.6e−16 6.6e−16 6.6e−16 6.6e−16 6.6e−16

Sup. versus ParkChange 6.6e−16 6.6e−16 6.6e−16 6.6e−16 6.6e−16

Sup. versus ParkContent 6.6e−16 6.6e−16 6.6e−16 6.6e−16 6.6e−16

Sup. versus ParkName 6.6e−16 6.6e−16 6.6e−16 6.6e−16 6.6e−16

Sup. versus ParkSel 6.6e−16 6.6e−16 6.6e−16 6.6e−16 6.6e−16

Sup. versus ParkDev 6.6e−16 6.6e−16 6.6e−16 6.6e−16 6.6e−16

Sup. versus ParkPack 6.6e−16 6.6e−16 6.6e−16 6.6e−16 6.6e−16

FRAN 4.2e−12 8.7e−10 4.8e−8 5.4e−7 6.9e−8

accuracies, MRR, and MAP of the best approach (ParkName) are 0.03, 0.09, 0.10,
0.12, 0.06, and 0.02, respectively. Our findings are consistent with the conclusion in
Park et al.’s study which describes the authors’ skepticism on the ability of existing
change recommendation techniques for supplementary bug fixes.

Notice Park et al.’s approaches only recommend methods that are one hop away
from the methods that are fixed in the initial bug fix. As shown in Sect. 4.2, a number
of methods changed in the supplementary bug fixes are more than one hop away from
the methods that are fixed in the initial bug fix. Random walk technique can help to
identify methods which are more than one hop away from the methods that are fixed in
the initial bug fix. Also, Park et al.’s approaches and FRAN only consider one type of
CRG, while SupLocator considers six types of CRGs and combine them to achieve
a better performance. These differences make our SupLocator achieves substantial
improvements over the baseline approaches.

SupLocator outperforms the approaches proposed by Park et al. and FRAN pro-
posed by Saul et al. by substantial margins, and the improvements are statistically
significant.

6.4.2 RQ2: What is the performance of the six random walk components? And what
is the benefit of our composite GA model?

Motivation SupLocator has six random walk components which processes the six
different CRGs. In this RQ, we would like to investigate the performance of each of
them. We want to see whether the combination of the six random walk components
can achieve better result than the individual random walk components.

Approach to address RQ2, we compare SupLocator with its six random walk
components built on the six different CRGs. We denote the six random walk compo-
nents as RWMethod , RWContainment , RW Inheri tance, RWChange, RWContent , and
RWName. We evaluate them by using the longitudinal data setup, and record the
top-k prediction accuracies (k=1, 5, and 10), MRR, and MAP.

123

474 Autom Softw Eng (2017) 24:455–498

Table 8 Spearman’s rho and
correlation level

Spearman’s rho Correlation levels

0.0–0.1 None

0.1–0.3 Small

0.3–0.5 Moderate

0.5–0.7 High

0.7–0.9 Very high

0.9–1.0 Perfect

Table 9 Top-k accuracies (k=1,
5, and 10), MRR and MAP for
Suplocator compared with
those of its six random walk
components (denoted as
RWMethod , RWContainment ,

RW Inheri tance, RWHistorical ,

RWContent , and RWName) for
bug reports in Eclipse JDT
project
The best performance is
highlighted in bold

Approaches Top-1 Top-5 Top-10 MRR MAP

SupLocator 0.61 0.74 0.78 0.67 0.39

RWMethod 0.04 0.17 0.28 0.12 0.06

RWContainment 0.00 0.56 0.67 0.19 0.13

RW Inheri tance 0.58 0.71 0.74 0.64 0.37

RWChange 0.22 0.37 0.46 0.30 0.16

RWContent 0.50 0.67 0.69 0.58 0.33

RWName 0.18 0.41 0.54 0.29 0.17

Table 10 Top-k accuracies (k=
1, 5, and 10), MRR and MAP for
Suplocator compared with
those of its six random walk
components for bug reports in
Eclipse SWT project

The best performance is
highlighted in bold

Approaches Top-1 Top-5 Top-10 MRR MAP

SupLocator 0.57 0.70 0.73 0.63 0.33

RWMethod 0.02 0.07 0.17 0.06 0.03

RWContainment 0.00 0.55 0.66 0.18 0.11

RW Inheri tance 0.50 0.67 0.69 0.57 0.30

RWChange 0.16 0.32 0.42 0.24 0.10

RWContent 0.32 0.50 0.56 0.40 0.21

RWName 0.16 0.44 0.56 0.28 0.15

We use Spearman’s rho to measure the correlation level of our SupLocator to its
six components. The Spearmans rho ranges from −1 to 1, where −1 and 1 separately
mean that a perfect negative and positive monotonic correlation, and 0 means the
variables are independent of each other. Table 8 describes the meanings of various
correlation coefficient values and the corresponding correlation levels (Hopkins 1997).
To do so, for the each dataset, we compute the Spearmans rho on the paired data
which corresponds to the top-k accuracies, MRR, and MAP scores of two competing
approaches, respectively. Sincewehave three projects, for each evaluationmetrics (i.e.,
top-k accuracies, MRR, and MAP), we also use Bonferroni correction to counteract
the results of multiple comparisons.

Results Tables 9, 10, and 11 present the top-k accuracies (k=1, 5, and 10), MRR
and MAP for Suplocator compared with those of the six random walk components

123

Autom Softw Eng (2017) 24:455–498 475

Table 11 Top-k accuracies
(k=1, 5, and 10), MRR and
MAP for Suplocator
compared with those of its six
random walk components for
bug reports in Equinox p2
project

The best performance is
highlighted in bold

Approaches Top-1 Top-5 Top-10 MRR MAP

SupLocator 0.38 0.49 0.52 0.43 0.23

RWMethod 0.04 0.14 0.21 0.10 0.04

RWContainment 0.00 0.32 0.40 0.11 0.07

RW Inheri tance 0.33 0.45 0.47 0.38 0.20

RWChange 0.18 0.34 0.40 0.26 0.12

RWContent 0.33 0.45 0.47 0.38 0.20

RWName 0.15 0.35 0.40 0.23 0.12

for bug reports in Eclipse JDT, Eclipse SWT, and Equinox p2 projects, respectively.
Among the 6 randomwalk components, RW Inheri tance achieves the best performance,
i.e., top-1, top-5, and top-10 prediction accuracies,MRR, andMAP of 0.47, 0.61, 0.63,
0.53, and 0.29 on average across the three projects, respectively. Still our Suploca-
tor achieve a better performance, it improves the inheritance component by 10.47,
5.99, 6.54, 8.80, and 10.85% in terms of top-1, top-5, top-10, and top-20 prediction
accuracies, MRR, and MAP.

To investigate why RW Inheri tance achieves the best performance among the six
components, we find that in our datasets, if method A is changed in the initial patch, the
methods that A overrides would have high chances to be changed in the supplementary
fixes. Moreover, recall that the inheritance graph consists of different types of edges
(i.e., edges between packages, classes, and method nodes), and these multiple types of
edges provide more information for our random walk component to more effectively
estimate buggy methods requiring additional fixes.

Notice in Tables 9, 10, and 11, the performance of RWMethod is very low compared
with the other components. We manually check the results, and we notice that the
method invocation graph typically contains many more nodes and edges among the 6
graphs, andmany of these nodes are irrelevant ones. Thismakes itmore difficult to rank
the correct nodes (i.e., methods that are fixed in the supplementary bug fixes) higher.
Also, we notice that for RWContainment , its top-1 accuracy is 0while its top-5 accuracy
is much higher in these three tables. We also manually check the results, and we find
that in the ranking list outputted by RWContainment , the methods with the highest in-
degrees and out-degrees are always listed first, however, thesemethods are not changed
in the supplementary bug fixes. Thus, the top-1 accuracies for RWContainment are 0
in all of the above tables. Also, for many cases, RWContainment can recommend the
right methods in the top-5 positions.

Tables 12, 13, and 14 present the Spearman’s rho and p-values of SupLocator
compared with those of its six random walk components for bugs in Eclipse JDT,
Eclipse SWT, and Equinox p2 projects, respectively. We notice that the values of
Spearman’s rho are less than 0.3, thus the correlation levels of SupLocator rankings
compared with those of its six components are small or none.

SupLocator achieves a better performance than its six random walk components.
And in most cases, the improvements are statistically significant.

123

476 Autom Softw Eng (2017) 24:455–498

Table 12 Spearman’s rho and p-values of SupLocator compared with its six random walk components
for bugs in Eclipse JDT project

Sup. versus
baseline

Top-1 Top-5 Top-10 MRR MAP

Rho p-value Rho p-value Rho p-value Rho p-value Rho p-value

Sup. versus
RWMethod

0.04 6.6e−16 0.05 2.1e−15 0.02 7.2e−10 0.04 6.3e−10 0.02 1.8e−9

Sup. versus
RWContainment

0.00 6.6e−16 0.10 3.6e−12 0.11 2.4e−9 0.05 3.6e−9 0.04 3.9e−7

Sup. versus
RW Inheri tance

0.15 0.0028 0.16 0.042 0.22 0.030 0.17 0.009 0.25 0.006

Sup. versus
RWChange

0.08 2.4e−10 0.04 1.8e−16 0.08 6.3e−10 0.08 2.7e−8 0.04 2.4e−5

Sup. versus
RWContent

0.12 0.0012 0.12 0.0027 0.10 0.0018 0.11 0.0024 0.12 0.0013

Sup. versus
RWName

0.06 3.3e−10 0.08 1.2e−9 0.04 1.5e−11 0.04 5.4e−10 0.02 5.7e−9

Table 13 Spearman’s rho and p-values of SupLocator compared with its six random walk components
for bugs in Eclipse SWT project

Sup. versus
baseline

Top-1 Top-5 Top-10 MRR MAP

Rho p-value Rho p-value Rho p-value Rho p-value Rho p-value

Sup. versus
RWMethod

0.02 2.4e−15 0.01 6.6e−15 0.01 5.7e−10 0.03 7.8e−10 0.01 6.6e−16

Sup. versus
RWContainment

0.00 6.6e−16 0.11 4.2e−6 0.18 2.1e−9 0.05 2.4e−9 0.03 4.8e−13

Sup. versus
RW Inheri tance

0.12 0.0012 0.19 0.003 0.24 0.0027 0.18 0.0012 0.27 0.0045

Sup. versus
RWChange

0.05 3.6e−9 0.04 7.5e−10 0.09 3.6e−8 0.06 2.4e−7 0.03 2.7e−10

Sup. versus
RWContent

0.08 3.9e−14 0.09 3.3e−6 0.12 1.2e−6 0.12 4.5e−8 0.09 2.4e−9

Sup. versus
RWName

0.04 4.5e−9 0.11 1.8e−6 0.12 1.8e−9 0.08 5.1e−9 0.07 5.4e−6

6.4.3 RQ3: What is the effect of varying the number of bugs in the training set on the
effectiveness of SUPLOCATOR?

Motivation SupLocator takes as input a training set of bugs with their supplementary
fixes to tune the six parameters of its GA component. By default, this training set
includes the first 10% of all bugs that we investigate in this work. In this research
question, we perform a sensitivity analysis by investigating the impact of varying the
size of the training set on the effectiveness of SupLocator.

123

Autom Softw Eng (2017) 24:455–498 477

Table 14 Spearman’s rho and p-values of SupLocator compared with its six random walk components
for bugs in Equinox p2 project

Sup. versus
baseline

Top-1 Top-5 Top-10 MRR MAP

Rho p-value Rho p-value Rho p-value Rho p-value Rho p-value

Sup. versus
RWMethod

0.02 6.6e−16 0.05 2.7e−15 0.04 8.4e−10 0.02 9.3e−14 0.01 3.6e−11

Sup. versus
RWContainment

0.00 6.6e−16 0.11 5.7e−13 0.12 2.7e−9 0.03 3.6e−14 0.02 7.2e−14

Sup. versus
RW Inheri tance

0.15 0.0018 0.18 0.036 0.18 0.036 0.14 0.0066 0.26 0.0004

Sup. versus
RWChange

0.06 2.7e−6 0.12 2.4e−15 0.15 2.1e−11 0.08 2.4e−12 0.06 2.7e−12

Sup. versus
RWContent

0.16 0.0021 0.20 0.033 0.19 0.033 0.15 0.0063 0.26 0.0012

Sup. versus
RWName

0.05 4.2e−8 0.14 1.8e−6 0.15 1.8e−9 0.06 5.7e−12 0.06 6.6e−13

Approach to answer this research question, we vary the the size of the training set
by including the first 5–30% of the bugs with supplementary fixes, and record the
top-k prediction accuracies (k=1, 5, 10, and 20), MRR, and MAP. Suppose that there
are M bugs with supplementary fixes in our dataset, when we set the number of bugs
in the training set to n%, we would use the remaining (1− n%) × M bugs as the test
set.

Results Figure 3 presents the top-1, top-5, and top-10 accuracies, MRR, and MAP
of SupLocatorwith different percentages of training bugs from Eclipse JDT, Eclipse
SWT, and Equinox p2 datasets, respectively. We notice that as the number of bugs in
the training set increases, the performance of SupLocator is slightly increased. For
example, the MRR and MAP scores for the Eclipse JDT dataset are increased from
0.65 to 0.70, and from 0.38 to 0.43 when the percentage of bugs in the training set is
increased from 5 to 30%. With more bugs in the training set, we find that the model
building time is increased. For example, the model building time for SupLocator
trained using 30% of all bugs in Eclipse SWT project is five times more than that for
SupLocator trained using 10% of all bugs (i.e., 1836 vs. 365 s).

The effectiveness of SupLocator is slightly increased as we increase the number of
bugs in the training set. However, with more bugs in the training set, the time it takes
to build a model is increased. Developers need to judiciously consider training time
and effectiveness in deciding the number of bugs used to train SupLocator.

6.4.4 RQ4: What is the effect of varying the fitness function of the GA component on
the effectiveness of SUPLOCATOR?

Motivation in the GA component of SupLocator, fitness score measures the quality
of a solution in a search space. By default, we set the fitness function as the MAP,

123

478 Autom Softw Eng (2017) 24:455–498

Fig. 3 Top-k accuracies (k=1, 5, and 10), MRR and MAP of SupLocator with different percentages of
training bugs in Eclipse JDT, Eclipse SWT, and Equinox p2

i.e., our target of the model building phase is to find a composition of weights which
maximizes theMAP score on the training data. In this research question,we investigate
the impact of using different fitness functions on the effectiveness of SupLocator.

123

Autom Softw Eng (2017) 24:455–498 479

Table 15 Top-k accuracies (k=1, 5, and 10), MRR and MAP for Suplocator using different fitness
functions for Eclipse JDT, Eclipse SWT, and Equinox p2 datasets

Projects Approaches Top-1 Top-5 Top-10 MRR MAP

JDT SupT OP 0.54 0.73 0.77 0.63 0.37

SupMRR 0.59 0.72 0.78 0.65 0.39

SupMAP 0.61 0.74 0.78 0.67 0.39

SWT SupT OP 0.40 0.67 0.72 0.52 0.30

SupMRR 0.55 0.70 0.73 0.62 0.33

SupMAP 0.57 0.70 0.73 0.63 0.33

Equ. SupT OP 0.29 0.46 0.51 0.36 0.21

SupMRR 0.39 0.50 0.52 0.44 0.23

SupMAP 0.38 0.49 0.52 0.43 0.23

Approach to answer this research question, we choose three different fitness func-
tions such as top-20 prediction accuracy, MRR, and MAP, and record the top-k
prediction accuracies (k=1, 5, and 10), MRR, and MAP. We denote SupLocator
with top-20 prediction accuracy,MRR, andMAPasSupT OP , SupMRR, andSupMAP ,

respectively.
Results Table 15 presents the top-k accuracies (k=1, 5, and 10), MRR andMAP for

Suplocator using different fitness functions for bugs in Eclipse JDT, Eclipse SWT,
and Equinox p2 projects. We notice among the three fitness functions, SupT OP does
not perform as well as SupMRR, and SupMAP . SupMRR and SupMAP perform almost
as well, i.e., the effectiveness of SupMAP is slightly better than that of SupMRR for
Eclipse JDT and Eclipse SWT datasets, and the performance of SupMRR is slightly
better than that of SupMAP for Equinox p2 dataset.

The variants of SupLocator with MAP and MRR used as fitness functions (i.e.,
SupMRR and SupMAP) are almost equally effective and are better than the variant
with top-20 accuracy as fitness function (i.e., SupT OP). In practice, we recommend
developer to use SupMRR and SupMAP instead of SupT OP .

7 Discussion

7.1 Component weights

Table 16 presents the averageweights for the six randomwalks components for Eclipse
JDT, Eclipse SWT, and Equinox p2 datasets, respectively. We notice for different
projects, the weights are different. Across the projects, we notice that the weights
for RW Inheri tance is the highest. This is consistent with our findings to answer RQ2:
we find RW Inheri tance achieves the best performance among the six random walk
components.

123

480 Autom Softw Eng (2017) 24:455–498

Table 16 Average weights for
the six CRGs

Weights Eclipse JDT EclipseSWT Equinox p2

RWMethod 0.02 0.13 0.60

RWContainment 0.01 0.01 0.01

RW Inheri tance 1.00 1.00 0.99

RWChange 0.20 0.56 0.04

RWContent 0.14 0.01 0.97

RWName 0.02 0.04 0.02

Table 17 Top-k accuracies
(k=1, 5, and 10), MRR and
MAP for Suplocator
compared with those for the
approaches proposed by Park et
al. and FRAN for bugs in
Eclipse JDT project after
removing the tangled changes

The best performance is
highlighted in bold

Approaches Top-1 Top-5 Top-10 MRR MAP

SupLocator 0.62 0.74 0.79 0.66 0.40

ParkStructure 0.04 0.08 0.10 0.06 0.04

ParkChange 0.05 0.07 0.10 0.06 0.04

ParkContent 0.04 0.03 0.02 0.01 0.00

ParkName 0.04 0.09 0.12 0.08 0.02

ParkSel 0.03 0.02 0.06 0.02 0.04

ParkDev 0.00 0.05 0.04 0.02 0.00

ParkPack 0.00 0.03 0.04 0.01 0.00

FRAN 0.37 0.57 0.65 0.47 0.27

7.2 Impact on the tangled changes

Notice our datasets may contain changes for other purposes such as functional-
ity enhancement, presentation/output changes, refactoring, re-structuring, etc. Such
changes are commonly referred to as tangled changes (Herzig and Zeller 2013), and
these changes may affect the performance of SupLocator. Here, we use the algorithm
proposed by Herzig and Zeller (2013) to remove the tangled changes in our datasets.
After the clean-up, we have 752, 1023, and 398 changes left in Eclipse JDT, Eclipse
SWT, and Equinox p2, respectively.

Tables 17, 18, and 19 present the top-k accuracies (k=1, 5, and 10), MRR andMAP
of SupLocator compared with those of the approaches proposed by Park et al. and
FRAN proposed by Saul et al. for bugs in Eclipse JDT, Eclipse SWT, and Equinox p2
projects after removing the tangled changes, respectively. We notice the performance
of our SupLocator and the baseline approaches are slightly increased. For example,
for bugs in Eclipse JDT, the MRR and MAP of SupLocator are increased from
0.67 to 0.68, and 0.39 to 0.40, respectively. We use Wilcoxon rank-sum test (1945)
with Bonferroni correction to test whether the performance of SupLocator in the
cleaned datasets is significantly different with its performance in the original datasets.
Notice we use Wilcoxon rank-sum test instead of Wilcoxon signed-rank test since the
cleaned datasets contains less changes than the original datasets. And the statistical test
shows that the performance difference is not statistically significant at the confidence

123

Autom Softw Eng (2017) 24:455–498 481

Table 18 Top-k accuracies
(k=1, 5, and 10), MRR and
MAP for Suplocator
compared with those for the
baseline approaches for bugs in
Eclipse SWT project after
removing the tangled changes

The best performance is
highlighted in bold

Approaches Top-1 Top-5 Top-10 MRR MAP

SupLocator 0.57 0.72 0.74 0.64 0.33

ParkStructure 0.05 0.06 0.09 0.06 0.03

ParkChange 0.05 0.15 0.20 0.11 0.04

ParkContent 0.03 0.05 0.05 0.02 0.00

ParkName 0.06 0.14 0.18 0.10 0.04

ParkSel 0.02 0.05 0.09 0.04 0.02

ParkDev 0.04 0.06 0.08 0.03 0.02

ParkPack 0.04 0.07 0.06 0.02 0.01

FRAN 0.37 0.58 0.64 0.45 0.24

Table 19 Top-k accuracies
(k=1, 5, and 10), MRR and
MAP for Suplocator
compared with those for the
baseline approaches for bugs in
Equinox p2 project after
removing the tangled changes

The best performance is
highlighted in bold

Approaches Top-1 Top-5 Top-10 MRR MAP

SupLocator 0.39 0.50 0.52 0.44 0.23

ParkStructure 0.06 0.11 0.15 0.08 0.05

ParkChange 0.02 0.04 0.09 0.04 0.01

ParkContent 0.00 0.00 0.00 0.00 0.00

ParkName 0.04 0.06 0.09 0.05 0.02

ParkSel 0.03 0.05 0.09 0.05 0.02

ParkDev 0.00 0.04 0.06 0.04 0.05

ParkPack 0.00 0.02 0.05 0.02 0.00

FRAN 0.23 0.42 0.48 0.31 0.15

level of 95% across the three projects. Thus, removing tangled changes has small and
statistically insignificant impact on the performance of SupLocator.

Also, from Tables 17, 18, and 19, SupLocator still outperform the baseline
approaches by a good margin. Wilcoxon signed-rank test with Bonferroni correc-
tion shows that the improvements of SupLocator over the baseline approaches are
statistically significant at the confidence level of 95% across the three projects.

Notice that in Table 19, the top-1, 5, and 10 accuracies, MRR, and MAP for
ParkContent are all zero. We manually check the results, and we find after remov-
ing the tangled changes, the nodes in the content similarity graph are isolated from
one another. Since ParkContent would recommend the nearest neighbors of the start-
ing node, if nodes in the graph are isolated from one another, then there are no nearest
neighbors. Thus, ParkContent cannot recommend any change locations with this con-
tent similarity graph which causes all the values of the evaluation metrics to be zeroes.

7.3 Impact on the token size in content similarity graph

To create content similarity graphs, by default, we set theminimum token size parame-
ter token to 40. Here, we investigate the performance of SupLocator with different

123

482 Autom Softw Eng (2017) 24:455–498

Fig. 4 Top-k accuracies (k=1,
5, and 10), MRR and MAP of
SupLocator with different
token values for bugs in Eclipse
JDT, Eclipse SWT, and Equinox
p2

token values. We vary the value of token from 10 to 100, and report the top-k accura-
cies (k=1, 5, and 10), MRR, and MAP scores. Figure 4 presents the top-k accuracies
(k=1, 5, and 10), MRR and MAP of SupLocator with different token values for
bugs in Eclipse JDT, Eclipse SWT, and Equinox p2.We notice that for different values
of token, the performance of SupLocator is stable. For example, for Eclipse JDT,

123

Autom Softw Eng (2017) 24:455–498 483

Table 20 Completeness@K (K=5, 10, and 20) for Suplocator compared with those for the baseline
approaches for bugs in Eclipse JDT project

Approaches Completeness@5 Completeness@10 Completeness@20

SupLocator 0.47 0.52 0.56

ParkStructure 0.08 0.09 0.10

ParkChange 0.07 0.10 0.13

ParkContent 0.01 0.01 0.01

ParkName 0.07 0.10 0.02

ParkSel 0.02 0.05 0.07

ParkDev 0.01 0.02 0.05

ParkPack 0.02 0.03 0.05

FRAN 0.32 0.38 0.45

RWMethod 0.07 0.13 0.21

RWContainment 0.34 0.43 0.50

RW Inheri tance 0.45 0.49 0.51

RWChange 0.18 0.24 0.32

RWContent 0.40 0.42 0.43

RWName 0.24 0.31 0.39

the MAP of SupLocator varies from 0.38 to 0.39. Thus, in practice, the value of
token has small impact on the performance of SupLocator.

7.4 Completeness of SupLocator’s recommendation

Here, we also investigate the completeness of SupLocator’s recommendation.
SupLocator returns a ranked list of change locations, and we would like to investi-
gate the proportion of ground truth of change locations which are correctly suggested
in the top-k results. Tables 20, 21, and 22 present the Completeness@K scores
for SupLocator compared with the baseline approaches for bugs in Eclipse JDT,
Eclipse SWT, and Equinox p2 projects. On average across the three projects, SupLo-
cator achieves Completeness@5, Completeness@10, and Completeness@20
scores of 0.37, 0.41, and 0.44, respectively. SupLocator outperforms all the base-
line approaches. Among the 14 baseline approaches, we notice RW Inheri tance

shows the best performance, and on average across the three projects, SupLoca-
tor improves the Completeness@5, Completeness@10, and Completeness@20
scores of RW Inheri tance by 8.50, 10.55, and 14.38%, respectively. Statistical test-
ing shows that the improvements of SupLocator over the baseline approaches are
significant at the confidence level of 95% across the three projects.

7.5 Precision-related versus completeness-related fitness functions

In our previous section, we use precision-related fitness functions such asMAP,MRR,
and top-20 accuracy in our SupLocator. Notice that our approach is meant to be a

123

484 Autom Softw Eng (2017) 24:455–498

Table 21 Completeness@K (K=5, 10, and 20) for Suplocator compared with those for the baseline
approaches for bugs in Eclipse SWT project

Approaches Completeness@5 Completeness@10 Completeness@20

SupLocator 0.37 0.41 0.44

ParkStructure 0.04 0.05 0.06

ParkChange 0.08 0.09 0.10

ParkContent 0.02 0.02 0.03

ParkName 0.06 0.10 0.14

ParkSel 0.05 0.09 0.12

ParkDev 0.01 0.02 0.05

ParkPack 0.04 0.07 0.09

FRAN 0.25 0.29 0.33

RWMethod 0.02 0.05 0.10

RWContainment 0.27 0.35 0.38

RW Inheri tance 0.34 0.37 0.38

RWChange 0.12 0.17 0.23

RWContent 0.24 0.27 0.29

RWName 0.24 0.27 0.29

Table 22 Completeness@K (K=5, 10, and 20) for Suplocator compared with those for the baseline
approaches for bugs in Equinox p2 project

Approaches Completeness@5 Completeness@10 Completeness@20

SupLocator 0.28 0.31 0.34

ParkStructure 0.06 0.07 0.08

ParkChange 0.03 0.05 0.06

ParkContent 0.00 0.00 0.00

ParkName 0.02 0.02 0.03

ParkSel 0.02 0.03 0.04

ParkDev 0.02 0.03 0.05

ParkPack 0.03 0.04 0.06

FRAN 0.19 0.24 0.29

RWMethod 0.05 0.08 0.15

RWContainment 0.18 0.23 0.26

RW Inheri tance 0.24 0.26 0.27

RWChange 0.16 0.21 0.25

RWContent 0.24 0.26 0.27

RWName 0.18 0.19 0.22

123

Autom Softw Eng (2017) 24:455–498 485

recommendation tool. The goal is to find as many relevant locations as possible in
the top-k recommended locations. For such setting, precision-related measures (such
as top-k accuracy, MRR, and MAP) are more important than completeness-related
measures (such as Completeness@k). Thus, to further improve the precision-related
measures, we use precision-related fitness functions in our SupLocator.

Here, we also investigate the performance of SupLocator by using the
completeness-related objective functions such as Completeness@20, and we denote
SupLocator with Completeness@20 as fitness function by SupCOMP .

Moreover, since MAP and Completeness@20 are likely to be conflictive, we also
leverage multi-objective GA to consider these two fitness functions together, and we
denote it as SupMULT I . In SupMULT I , we use a multi-objective GA (i.e., vNSGA-II
(Zhang and Li 2007) to optimize the values of some parameters (e.g., the weights).
Since we have two fitness functions to be maximized, SupLocator will find a set of
Pareto optimal solutions (Deb 2001) defined in Definition 3.

Definition 2 (dominance and Pareto optimal solutions) A set of parameters Pari
dominates another set of parameters Par j if and only if the values of the two objective
functions (i.e., MAP and Completeness@20) satisfy:

MAP (Pari) > MAP
(
Par j

)
and Comp@20 (Pari) ≥ Comp@20

(
Par j

)

or

MAP (Pari) ≥ MAP
(
Par j

)
and Comp@20 (Pari) > Comp@20

(
Par j

)
.

A set of parameters Pari is Pareto optimal if and only if no other set of parameters
dominates it in the feasible region, i.e, no other set of parameters Par j exists thatwould
improve the MAP, without worsening Completeness@20 scores, and vice versa.

There would be a number of solutions which are Pareto optimal. We further reduce
these solutions by selecting the following subset:

Par Setselected = argmax
Pari∈Pareto

M AP (Pari) × Comp@20 (Pari) . (9)

In other words, we select solutions from the Pareto optimal set which has the highest
product of MAP and Completeness@20 scores. We randomly pick a solution from
this set as the near optimal solution.

Table 23 presents the top-k accuracies (k=1, 5, and 10), MRR, MAP, Complete-
ness@k (k=5, 10, and 20) for SupLocator using different fitness functions for
Eclipse JDT, Eclipse SWT, and Equinox p2 datasets. We notice that among the three
approaches, i.e., SupMAP , SupCOMP , and SupMULT I , our SupMAP still achieves the
best performance, although the difference among the three approaches are small.

Notice SupMAP aims to maximize the precision-related measures, and it still
achieves the acceptable completeness@k scores. Among the three projects, SupMAP

achieves similar Completeness@k scores as the other two approaches. And SupMAP

slightly improves over the other two approaches in terms of precision-related mea-
sures such as top-k accuracies, MRR, and MAP. Thus, in practice, we recommend
developers to use MAP as the fitness function.

123

486 Autom Softw Eng (2017) 24:455–498

Table 23 Top-k accuracies (k=1, 5, and 10), MRR, MAP, Completeness@k (C@k) (k=5, 10, and 20) for
Suplocator using different fitness functions for Eclipse JDT, Eclipse SWT, and Equinox p2 datasets

Pro. Approaches Top-1 Top-5 Top-10 MRR MAP C@5 C@10 C@20

JDT SupMAP 0.61 0.74 0.78 0.67 0.39 0.47 0.52 0.56

SupCOMP 0.59 0.74 0.78 0.66 0.37 0.47 0.51 0.56

SupMULT I 0.60 0.73 0.78 0.66 0.39 0.47 0.52 0.56

SWT SupMAP 0.57 0.70 0.73 0.73 0.33 0.37 0.41 0.44

SupCOMP 0.51 0.68 0.73 0.59 0.32 0.35 0.40 0.45

SupMULT I 0.55 0.70 0.72 0.62 0.33 0.36 0.40 0.42

Equ. SupMAP 0.38 0.49 0.52 0.43 0.23 0.28 0.31 0.34

SupCOMP 0.38 0.48 0.50 0.43 0.23 0.28 0.31 0.34

SupMULT I 0.36 0.49 0.51 0.42 0.23 0.28 0.31 0.34

In terms of precision, our DelPredictor does not perform as well as Correa and
Sureka’s approach, however in terms of recall, DelPredictor shows much better per-
formance compared to the baseline approaches. Neither our approach nor Correa et
al.’s approach is ready for full automation yet (i.e., automatic deletion of questions
without human intervention) since the precisions of these approaches are still relatively
low.

7.6 Genetic algorithms versus other optimization approaches

In SupLocator, we use GA to combine multiple lists outputted by the six types of
CRGs. There are other techniques to combine multiple lists, for example, learning to
rank (Liu 2009), averaging voting (Zhou 2012), or maximum voting (Zhou 2012).

7.6.1 Learning to rank

Weaim to rank themethods changed in the supplementary bug fixes above themethods
not changed in the supplementary bug fixes. Given a bug B, we denote a method
changed in the supplementary bug fixes as v+, and a method not changed in the
supplementary bug fixes as v−. Then for any pairs 〈v+, v−〉 in B,we aim to minimize
the following loss function:

Loss =
∑

〈v+, v−〉

∥∥CRank
(
v+) ≤ CRank

(
v−)∥∥ . (10)

In the above equation, CRank(v+) and CRank(v−) refer to the composite rank
score of the method v+ and v−. The definition of composite rank score can be found
in Definition 1. The value of ‖CRank(v+) ≤ CRank(v−)‖ is 0 if CRank(v+) ≤
CRank(v−) else it is−1. In such away,we cast the ranking problemas an optimization
problem. A number of learning to rank techniques have been proposed (c.f., Freund
et al. 2003; Burges et al. 2005; Joachims 2002; Tsai et al. 2007), and in this paper,

123

Autom Softw Eng (2017) 24:455–498 487

we use one of the state-of-the-art learning to rank techniques that comes with a pub-
licly available implementation (i.e., RankSVM Joachims 2002) to tune the weights.
RankSVM uses SVM to learn a hyperplane that separates v+ from v−.

7.6.2 Average voting and maximum voting

We denote the rank of a method v produced by the six random walk components
as Rank1(v), Rank2(v), . . . , Rank6(v). Then, for average voting, the average rank
score of v [denoted as Average(v)] is computed as:

Average(v) =
∑6

i=1 Ranki (v)

6
. (11)

For maximum voting, the maximum rank score of v [denoted as Max(v)] is com-
puted as:

Max(v) = Maximum (Rank1(v), Rank2(v), . . . , Rank6(v)) . (12)

7.6.3 Results

Table 24 presents the top-k accuracies (k=1, 5, and 10), MRR, MAP, and Com-
pleteness@k (k=5, 10, and 20) for SupLocator compared with RankSVM, average
voting, and maximum voting for Eclipse JDT, Eclipse SWT, and Equinox p2 datasets.
Wenotice still ourSupLocator achieves the best performance.AndWilcoxon signed-
rank test with Bonferroni correction shows that the improvements of SupLocator
over RankSVM, average voting, and maximum voting are statistically significant at
the confidence level of 95% across the three projects.

Table 24 Top-k accuracies (k= 1, 5, and 10), MRR, MAP, Completeness@k (C@k, k=5, 10, and 20) for
Suplocator compared with RankSVM, averaging voting (Average), and maximum voting (Maximum)
for Eclipse JDT, Eclipse SWT, and Equinox p2 datasets

Pro. Approaches Top-1 Top-5 Top-10 MRR MAP C@5 C@10 C@20

JDT Sup. 0.61 0.74 0.78 0.67 0.39 0.47 0.52 0.56

RankSVM 0.50 0.62 0.71 0.62 0.34 0.41 0.46 0.50

Average 0.32 0.45 0.58 0.51 0.29 0.38 0.44 0.48

Maximum 0.34 0.47 0.60 0.49 0.32 0.40 0.47 0.49

SWT Sup. 0.57 0.70 0.73 0.73 0.33 0.37 0.41 0.44

RankSVM 0.48 0.61 0.66 0.64 0.28 0.33 0.38 0.42

Average 0.44 0.56 0.62 0.60 0.25 0.30 0.34 0.40

Maximum 0.45 0.57 0.64 0.62 0.26 0.33 0.37 0.42

Equ. Sup. 0.38 0.49 0.52 0.43 0.23 0.28 0.31 0.34

RankSVM 0.32 0.43 0.47 0.37 0.19 0.24 0.28 0.31

Average 0.29 0.40 0.45 0.34 0.16 0.22 0.26 0.29

Maximum 0.30 0.42 0.47 0.34 0.17 0.23 0.28 0.31

123

488 Autom Softw Eng (2017) 24:455–498

7.7 Threats to validity

Threats to internal validity relates to errors in our code and experiment bias. We have
double-checked our code, still there could be errors that we did not notice. Also, in this
paper, we use a longitudinal data setup to simulate the actual usage of SupLocator.
In practice, we can only use bugs reported before to build a model, and we can not
use future bugs to build the model.

Another threat to internal validity relates to the GA configuration and the random-
ness involved. In this paper, we use a single point crossover operator with crossover
probability of 0.35, and a randommutation operator with mutation probability of 0.08.
We use this setting since we find it can achieve reasonable results for our SupLoca-
tor. It is unclear whether these configurations perform equally well for other datasets
and whether other more optimal settings exist. Another threat is due to the randomness
of GA. To deal with the randomness issue, we run SupLocator 10 times following
the recommendations made by Arcuri and Briand (2011), Liu et al. (2010), Canfora
et al. (2013), and Xia et al. (2014a).

Threats to external validity relate to the generalizability of our results. We have
analyzed 2543 bugs with supplementary fixes from three open source projects. In
the future, we plan to reduce this threat further by analyzing even more bugs from
additional projects.

Threats to construct validity refer to the suitability of our evaluation metrics. We
use top-k prediction accuracies, MRR, and MAP which are also used by past studies
to evaluate the effectiveness of various automated software engineering techniques
(Thongtanunam et al. 2015; Zhou et al. 2012; Rao and Kak 2011; Xia et al. 2014c;
Tamrawi et al. 2011; Saha et al. 2013). Thus, the threat to validity is mitigated.

Another threat to construct validity corresponds to the selection of fitness func-
tion. In this paper, we mainly consider the precision-related fitness functions such as
MAP, MRR, and top-k accuracy. To reduce the threat due to the selection of fitness
functions, in the discussion section, we also consider the completeness-related fitness
functions, and we also use a multi-objective GA to consider both precision-related
and completeness-related fitness functions. The experimental results show that still
SupLocator with MAP as the fitness function achieves the best performance.

8 Related work

8.1 Studies on change recommendation

Park et al. is the first to study change recommendation problem for supplementary
bug fixes (Park et al. 2014). They propose the usage of multiple CRGs to generalize a
number of previous change recommendation approaches (Ying et al. 2004; Zimmer-
mann et al. 2005; Hassan and Holt 2004; Nguyen et al. 2010). However, they findmost
of the change recommendation approaches can not work well for supplementary bug
fixes. Our study extends their work by:

(1) We propose a more accurate change recommendation approach by leveraging a
random walk technique. Different from Park et al.’s approach, in our approach,

123

Autom Softw Eng (2017) 24:455–498 489

the recommended nodes do not need to be one hop away from the initial nodes
(which represent methods that are fixed in the initial bug fix) in one of the
graphs.

(2) We propose a new composite approach that integrates the analysis of multiple
CRGs leveraging a search-based algorithm. Park et al.’s approachperforma simple
boosting step that uses edges in multiple CRGs that connect two adjacent nodes
to predict additional buggy methods. The edge combinations that perform better
in a training data are selected and applied on the test data. Our approach, on the
other hand, performs a different heuristics; it merges different recommendations
that are produced by the random walk components by learning a set of weights
leveraging a GA.

There have been a number of other studies on change recommendations (Ying
et al. 2004; Zimmermann et al. 2005; Hassan and Holt 2004, 2006; Herzig and Zeller
2011; Nguyen et al. 2010). Zimmermann et al. and Ying et al. leverage association
rule mining techniques to predict change locations based on historical co-change
patterns mined from version control systems (Ying et al. 2004; Zimmermann et al.
2005). The average precision and recall scores of Zimmermann et al.’s approach
are 0.33 and 0.29, while the scores for Ying et al.’s approach are around 0.4 and
0.2. Hassan and Holt propose different kinds of change recommendation heuristics,
and their approach uses a combination of historical co-change patterns and structural
dependencies in a program to predict change locations (Hassan and Holt 2004, 2006).
In a later work, Malik and Hassan propose various change propagation heuristics
such as history heuristic, containment heuristic, call use depends heuristic, and code
ownership heuristic, to improve the performance of change location prediction (Malik
and Hassan 2008). Nguyen et al. propose FixWizard which leverages code clones
to suggest code peers that should be changed together (Nguyen et al. 2010). Herzig
and Zeller propose GENEVA to predict change locations by utilizing temporal rules
mined fromaproject’s version historywhich capture key features of the change process
followed by the project (Herzig and Zeller 2011).

Our work is related to the above studies, however we focus on the applica-
tion of change recommendation for supplementary bug fixes. The above-mentioned
approaches were evaluated using general software commit data, i.e., commits are
grouped into a set of transactions, a model is built on a subset of commits in a trans-
action, and this model is used to predict the entities that are changed in the remaining
commits of the transaction. A prior study by Park et al. show that applying change
recommendation for supplementary bug fixes is a much more difficult problem which
tests the limit of existing change recommendation approaches (Park et al. 2014).

8.2 Studies on change management

Robillard and Murphy propose concern graph which abstracts the implementation
details of a concern by storing the key structure implementing a concern (Robillard
and Murphy 2002), and it can be automatically extracted from the source code or
an intermediate representation of a program. Concern graph consider seven types
of structural dependency relationships among the methods, fields, and classes. For

123

490 Autom Softw Eng (2017) 24:455–498

example, if method A contains a call that can be bind to method B, A and B has the
call relationship. Different from Robillard and Murphy’s study, in this paper, we not
only consider structural dependency relationships in a program, but also other kinds
of dependency relationship such as name similarity and content similarity.

Kawrykow and Robillard propose an approach named DiffCat to detect non-
essential changes in version histories (Kawrykow and Robillard 2011). DiffCat
rollbacks rename refactorings, and matches differences against a number of templates
to identify non-essential changes. Our study is different from theirs since the target
of these two studies are different; in this paper, we focus on recommending methods
that require supplementary fixes given a set of methods fixed by an initial bug fix.
Furthermore, rolling back rename refactorings and identifying differences that fit Dif-
fCat templates cannot help to identify additional buggy methods given a set of initial
changes.

Tao et al. perform a large-scale empirical study on the impact of code changes
during the software development process (Tao et al. 2012). They find that it is an
important but yet a difficult task to determine a changes risk, and there is a crucial
need to assess a changes quality (e.g., its completeness and consistency). Their study
also highlights that we still lack good tool supports. Our study complements theirs by
proposing a tool to recommend methods for supplementary bug fixes.

Herzig and Zeller perform an empirical study on the impact of tangled changes,
and they find that up to 15% of all bug fixes are tangled changes (Herzig and Zeller
2013). Based on the observation, they propose a tool to untangle the tangled changes.
In this paper, we use their proposed tool to untangle the tangled changes, to clean the
datasets. Our experiments show that there is no statistically significant difference in
the performance of SupLocator before and after the clean-up.

8.3 Reopened bug report prediction

There have been a number of studies on reopened bug report prediction. Reopened bug
reports refer to the bugs which are incompletely fixed, and thus supplementary fixes
are required. Shihab et al. propose the problem of reopened bug report prediction and
develop an approach that is based on machine learning algorithms to predict reopened
bugs in three open source projects (Shihab et al. 2013). Zimmermann et al. study
reopened bugs in Microsoft Windows operating system to investigate the different
reasons for bug report reopenings (Zimmermann et al. 2012). Xia et al. propose a
composite approach ReopenPredictor which combines textual and meta features
extracted from bug reports to achieve a better performance as compared to Shihab
et al.’s approach (Xia et al. 2014b). An et al. perform an empirical study on the
reopened bugs with supplementary fixes, and their prediction model can achieve a
precision between 72.2 and 97%, and a recall between 47.7 and 65.3% (An et al.
2014). Our work nicely complements the above studies: the above studies predict bug
reports that will be reopened and thus requiring supplementary fixes, while our study
predicts locations that developers need to change when they create supplementary
fixes.

123

Autom Softw Eng (2017) 24:455–498 491

8.4 Search-based software engineering

There have been a number of studies on search-based software engineering (Harman
and Jones 2001; Harman et al. 2012; Panichella et al. 2013; Le Goues et al. 2012).
Harman and Jones propose the concept of search-based software engineering and they
demonstrate how to reformulate a SE problem as a search-based problem (Harman
and Jones 2001; Harman et al. 2012). Panichella et al. propose a search-based GA
which tunes latent Dirichlet allocation parameters (Panichella et al. 2013). Le Goues
et al. proposeGenProg, which leverages genetic programming to automatically repair
defects in software projects (Le Goues et al. 2012).Wang et al. propose a search-based
approach named EvaClone which finds suitable configurations by leveraging GA for
clone detection (Wang et al. 2013). Lohar et al. propose a search-based approach
which identifies the best configuration for a trace retrieval technique that recovers
traceability links between software artifacts (e.g., requirement to code, requirement to
design, etc.) (Lohar et al. 2013). Panichella et al. propose CODEPwhich combines the
results from multiple classifiers to improve the performance of cross-project defect
prediction (Panichella et al. 2014).

In thiswork,we also use a search-based technique to learn a composition ofmultiple
random walk components. Different from the above mentioned studies, we address a
different problem namely change recommendation for supplementary bug fixes.

9 Conclusion and future work

In this paper, we propose an effective change recommendation approach SupLoca-
tor for supplementary bug fixes. SupLocator first extracts six CRGs from the source
code and the version history of a target software system, and performs randomwalk on
the six CRGs. Then, SupLocator leverages GA to combine the multiple results out-
putted by the random walk components. To investigate the benefits of SupLocator,
we perform experiments on Eclipse JDT, Eclipse SWT, and Equinox p2. The experi-
mental results show that on average SupLocator can achieve top-1, top-5, and top-10
accuracies, MRR, and MAP of 0.51, 0.65, 0.67, 0.58 and 0.32 for the three projects,
which improve the best approaches proposed by Park et al. by a substantial margin.

In the future, we plan to evaluate SupLocator with datasets from more software
projects, and develop a better technique which could improve the recommendation
accuracy further. We also plan to integrate the concern graph proposed by Robillard
and Murphy (2002) to further improve the performance of SupLocator.

Acknowledgements We would like to thank Jihun Park for providing us the datasets and source code
used in their study (Park et al. 2014). This research was supported by NSFC Program (Nos. 61602403 and
61402406) and National Key Technology R&D Program of the Ministry of Science and Technology of
China under grant 2015BAH17F01.

123

492 Autom Softw Eng (2017) 24:455–498

Appendix

Impact of the GA configurations

In this paper, by default, we set the population size (PopSize) as 500 chromosomes,
the maximum number of generations (MaxGen) as 200, the crossover probability

Fig. 5 Top-k accuracies (k=1,
5, and 10), MRR and MAP of
SupLocator with different
population size for bugs in
Eclipse JDT, Eclipse SWT, and
Equinox p2

123

Autom Softw Eng (2017) 24:455–498 493

Fig. 6 Top-k accuracies (k=1,
5, and 10), MRR and MAP of
SupLocator with different
maximum number of
generations for bugs in Eclipse
JDT, Eclipse SWT, and Equinox
p2

(CrossProb) as 0.35, and the mutation probability (MutProb) as 0.08. Here, we inves-
tigate the performance ofSupLocatorwith otherGAconfigurations (i.e., other values
of the four parameters). For each parameter p, we keep the default values of the other
three parameters, and we investigate the performance of SupLocator with various
values of p. We vary the value of PopSize from 100 to 1000, MaxGen from 50 to 500,
CrossProb from 0.10 to 0.50, and MutProb from 0.05 to 0.14.

123

494 Autom Softw Eng (2017) 24:455–498

Fig. 7 Top-k accuracies (k=1,
5, and 10), MRR and MAP of
SupLocator with different
crossover probabilities for bugs
in Eclipse JDT, Eclipse SWT,
and Equinox p2

Figure 5 presents the top-k accuracies (k=1, 5, and 10), MRR andMAP of SupLo-
cator with different population size for bugs in Eclipse JDT, Eclipse SWT, and
Equinox p2, respectively. We notice the performance of SupLocator is stable when
we vary population size from 100 to 1000. Thus, in practice, the value of population
size has a limited impact to the performance of SupLocator.

123

Autom Softw Eng (2017) 24:455–498 495

Fig. 8 Top-k accuracies (k=1,
5, and 10), MRR and MAP of
SupLocator with different
mutation probabilities for bugs
in Eclipse JDT, Eclipse SWT,
and Equinox p2

Figure 6 presents the top-k accuracies (k=1, 5, and 10), MRR andMAP of SupLo-
catorwith differentmaximumnumber of generations for bugs inEclipse JDT,Eclipse
SWT, andEquinox p2, respectively.Wenoticewhenwe increase themaximumnumber
of generations from 50 to 200, the performance of SupLocator is slightly increased.
When we increase the maximum number of generations from 200 to 500, the perfor-
mance of SupLocator is relatively stable. Note that the larger the maximum number

123

496 Autom Softw Eng (2017) 24:455–498

of generations, the more time it takes to run our SupLocator. Thus, in practice, we
recommend users to set the maximum number of generations as 200.

Figure 7 presents the top-k accuracies (k=1, 5, and 10), MRR andMAP of SupLo-
cator with different crossover probabilities for bugs in Eclipse JDT, Eclipse SWT,
and Equinox p2, respectively. We notice when we increase the crossover probability
from0.10 to 0.35, the performance ofSupLocator is increased.Whenwe increase the
crossover probability from0.35 to 0.50, the performance ofSupLocator is decreased.
If the crossover probability is set too large (e.g., 0.5) or too small (e.g., 0.1), the per-
formance of SupLocator is low. And the performance of SupLocator is relatively
stable when we set the crossover probability in the range of 0.3 and 0.4. Thus, in
practice, we recommend users to set the crossover probability between 0.3 and 0.4.

Figure 8 presents the top-k accuracies (k=1, 5, and 10), MRR andMAP of SupLo-
cator with different mutation probabilities for bugs in Eclipse JDT, Eclipse SWT,
and Equinox p2, respectively. We notice when we increase the mutation probability
from0.05 to 0.08, the performance ofSupLocator is increased.Whenwe increase the
mutation probability from 0.08 to 0.14, the performance of SupLocator is decreased.
If the mutation probability is set too small (e.g., 0.05) or too large (e.g., 0.14), the
performance of SupLocator is low. And the performance of SupLocator is rel-
atively stable when we set the mutation probability in the range of 0.07 and 0.09.
Thus, in practice, we recommend user to set the mutation probability between 0.07
and 0.09.

References

Abdi, H.: Bonferroni and Šidák corrections for multiple comparisons. In: Salkind, N.J. (ed.) Encyclope-
dia ofMeasurement and Statistics. https://www.utdallas.edu/~herve/Abdi-Bonferroni2007-pretty.pdf
(2007). Accessed 12 Aug 2016

An,L.,Khomh, F.,Adams,B.: Supplementary bugfixes vs. re-opened bugs. In: 2014 IEEE14th International
Working Conference on Source Code Analysis andManipulation (SCAM), pp. 205–214. IEEE (2014)

Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess randomized algorithms in
software engineering. In: 2011 33rd International Conference on Software Engineering (ICSE), pp.
1–10. IEEE (2011)

Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern Information Retrieval, vol. 463. ACM Press, New York
(1999)

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.: Learning to rank
using gradient descent. In: Proceedings of the 22nd International Conference on Machine Learning,
pp. 89–96. ACM, New York (2005)

Canfora, G., De Lucia, A., Di Penta, M., Oliveto, R., Panichella, A., Panichella, S.: Multi-objective
cross-project defect prediction. In: 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation (ICST), pp. 252–261. IEEE (2013)

Dagenais, B., Hendren, L.: Enabling static analysis for partial Java programs. ACM Sigplan Notices 43,
313–328 (2008)

Dai, N., Shokouhi, M., Davison, B.D.: Learning to rank for freshness and relevance. In: Proceedings of the
34th International ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 95–104. ACM, New York (2013)

Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, vol. 16. Wiley, Hoboken (2001)
Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for combining preferences.

J. Mach. Learn. Res. 4, 933–969 (2003)
Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3(2), 95–99 (1988)
Harman, M., Jones, B.F.: Search-based software engineering. Inf. Softw. Technol. 43(14), 833–839 (2001)

123

https://www.utdallas.edu/~herve/Abdi-Bonferroni2007-pretty.pdf

Autom Softw Eng (2017) 24:455–498 497

Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering: trends, techniques and appli-
cations. ACM Comput. Surv. (CSUR) 45(1), 11 (2012)

Hassan, A.E., Holt, R.C.: Predicting change propagation in software systems. In: 20th IEEE International
Conference on SoftwareMaintenance, 2004. Proceedings, pp. 284–293. IEEE,Washington,DC (2004)

Hassan, A.E., Holt, R.C.: Replaying development history to assess the effectiveness of change propagation
tools. Empir. Softw. Eng. 11(3), 335–367 (2006)

Herzig, K., Zeller, A.: Mining cause–effect-chains from version histories. In: 2011 IEEE 22nd International
Symposium on Software Reliability Engineering (ISSRE), pp. 60–69. IEEE, Washington, DC (2011)

Herzig, K., Zeller, A.: The impact of tangled code changes. In: 2013 10th IEEE Working Conference on
Mining Software Repositories (MSR), pp. 121–130. IEEE (2013)

Hopkins, W.G.: A New View of Statistics. Will G. Hopkins (1997)
Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the Eighth ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 133–142. ACM,
New York (2002)

Kamiya, T., Kusumoto, S., Inoue, K.: Ccfinder: a multilinguistic token-based code clone detection system
for large scale source code. IEEE Trans. Softw. Eng. 28(7), 654–670 (2002)

Kawrykow, D., Robillard, M.P.: Non-essential changes in version histories. In: Proceedings of the 33rd
International Conference on Software Engineering, pp. 351–360. ACM, New York (2011)

Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)
Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: Genprog: a generic method for automatic software

repair. IEEE Trans. Softw. Eng. 38(1), 54–72 (2012)
Liu, T.Y.: Learning to rank for information retrieval. Found. Trends Inf. Retr. 3(3), 225–331 (2009)
Liu, Y., Khoshgoftaar, T.M., Seliya, N.: Evolutionary optimization of software quality modeling with mul-

tiple repositories. IEEE Trans. Softw. Eng. 36(6), 852–864 (2010)
Lohar, S., Amornborvornwong, S., Zisman, A., Cleland-Huang, J.: Improving trace accuracy through data-

driven configuration and composition of tracing features. In: Proceedings of the 2013 9th JointMeeting
on Foundations of Software Engineering, pp. 378–388. ACM, Saint Petersburg (2013)

Malik, H., Hassan, A.E.: Supporting software evolution using adaptive change propagation heuristics. In:
IEEE International Conference on Software Maintenance, 2008. ICSM 2008, pp. 177–186. IEEE
(2008)

Meffert, K., Rotstan, N., Knowles, C., Sangiorgi, U.: Jgap-java genetic algorithms and genetic programming
package. http://jgap.sourceforge.net/ (2011). Accessed 12 Aug 2016

Nguyen, T.T., Nguyen, H.A., Pham, N.H., Al-Kofahi, J., Nguyen, T.N.: Recurring bug fixes in object-
oriented programs. In: Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering, vol. 1, pp. 315–324. ACM (2010)

Page, L., Brin, S., Motwani, R., Winograd, T.: The Pagerank Citation Ranking: Bringing Order to the Web
(1999)

Panichella, A., Dit, B., Oliveto, R., Di Penta, M., Poshyvanyk, D., De Lucia, A.: How to effectively use topic
models for software engineering tasks? An approach based on genetic algorithms. In: Proceedings of
the 2013 International Conference on Software Engineering, pp. 522–531. IEEE Press, Piscataway
(2013)

Panichella, A., Oliveto, R., De Lucia, A.: Cross-project defect prediction models: L’union fait la force.
In: IEEE Conference on Software Maintenance, Reengineering and Reverse Engineering (CSMR-
WCRE), 2014 Software Evolution Week, pp. 164–173. IEEE (2014)

Park, J., Kim,M., Ray, B., Bae, D.H.: An empirical study of supplementary bug fixes. In: Proceedings of the
9th IEEEWorking Conference onMining Software Repositories, pp. 40–49. IEEE Press, Washington,
DC (2012)

Park, J., Kim, M., Bae, D.H.: An empirical study on reducing omission errors in practice. In: Proceedings
of the 29th ACM/IEEE International Conference on Automated Software Engineering, pp. 121–126.
ACM (2014)

Poshyvanyk, D.,Marcus, A., Ferenc, R., Gyimóthy, T.: Using information retrieval based couplingmeasures
for impact analysis. Empir. Softw. Eng. 14(1), 5–32 (2009)

Rao, S., Kak, A.: Retrieval from software libraries for bug localization: a comparative study of generic
and composite text models. In: Proceedings of the 8th Working Conference on Mining Software
Repositories, pp. 43–52. ACM, New York (2011)

Robillard, M.P.: Automatic generation of suggestions for program investigation. ACM SIGSOFT Softw.
Eng. Notes 30, 11–20 (2005)

123

http://jgap.sourceforge.net/

498 Autom Softw Eng (2017) 24:455–498

Robillard, M.P., Murphy, G.C.: Concern graphs: finding and describing concerns using structural program
dependencies. In: Proceedings of the 24th International Conference on Software Engineering, pp.
406–416. ACM, New York (2002)

Saha, R.K., Lease, M., Khurshid, S., Perry, D.E.: Improving bug localization using structured information
retrieval. In: 2013 IEEE/ACM 28th International Conference on Automated Software Engineering
(ASE), pp. 345–355. IEEE (2013)

Saul, Z.M., Filkov, V., Devanbu, P., Bird, C.: Recommending randomwalks. In: Proceedings of the 6th Joint
Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on
The Fundations of Software Engineering, pp. 15–24. ACM, New York (2007)

Shihab, E., Ihara, A., Kamei, Y., Ibrahim, W.M., Ohira, M., Adams, B., Hassan, A.E., Ki, M.: Studying
re-opened bugs in open source software. Empir. Softw. Eng. 18(5), 1005–1042 (2013)

Sivanandam, S., Deepa, S.: Introduction to Genetic Algorithms. Springer, Berlin (2007)
Tamrawi, A., Nguyen, T.T., Al-Kofahi, J.M., Nguyen, T.N.: Fuzzy set and cache-based approach for bug

triaging. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference
on Foundations of Software Engineering, pp. 365–375. ACM, New York (2011)

Tao, Y., Dang, Y., Xie, T., Zhang, D., Kim, S.: How do software engineers understand code changes? An
exploratory study in industry. In: Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering, p. 51. ACM, New York (2012)

Thongtanunam, P., Tantithamthavorn, C., Kula, R.G., Yoshida, N., Iida, H., Matsumoto, K.i.: Who should
review my code? A file location-based code-reviewer recommendation approach for modern code
review. In: 2015 IEEE 22nd International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), pp. 141–150. IEEE (2015)

Tsai, M.F., Liu, T.Y., Qin, T., Chen, H.H., Ma, W.Y.: Frank: a ranking method with fidelity loss. In:
Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 383–390. ACM, New York (2007)

Wang, T., Harman, M., Jia, Y., Krinke, J.: Searching for better configurations: a rigorous approach to clone
evaluation. In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
pp. 455–465. ACM, New York (2013)

West, D.B., et al.: Introduction to Graph Theory, vol. 2. Prentice Hall, Upper Saddle River (2001)
Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1, 80–83 (1945)
Xia, X., Feng,Y., Lo,D., Chen, Z.,Wang,X.: Towardsmore accuratemulti-label software behavior learning.

In: IEEE Conference on Software Maintenance, Reengineering and Reverse Engineering (CSMR-
WCRE), 2014 Software Evolution Week, pp. 134–143. IEEE (2014a)

Xia, X., Lo, D., Shihab, E., Wang, X., Zhou, B.: Automatic, high accuracy prediction of reopened bugs.
Autom. Softw. Eng. 22(1), 75–109 (2014b)

Xia, X., Lo, D., Wang, X., Zhang, C., Wang, X.: Cross-language bug localization. In: Proceedings of the
22nd International Conference on Program Comprehension, pp. 275–278. ACM (2014c)

Xing, Z., Stroulia, E.: Umldiff: an algorithm for object-oriented design differencing. In: Proceedings of the
20th IEEE/ACM International Conference on Automated Software Engineering, pp. 54–65. ACM,
New York (2005)

Ying, A.T., Murphy, G.C., Ng, R., Chu-Carroll, M.C.: Predicting source code changes by mining change
history. IEEE Trans. Softw. Eng. 30(9), 574–586 (2004)

Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans.
Evol. Comput. 11(6), 712–731 (2007)

Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. CRC Press, Boca Raton (2012)
Zhou, J., Zhang, H., Lo, D.: Where should the bugs be fixed?More accurate information retrieval-based bug

localization based on bug reports. In: 2012 34th International Conference on Software Engineering
(ICSE), pp. 14–24. IEEE (2012)

Zimmermann, T., Zeller, A., Weissgerber, P., Diehl, S.: Mining version histories to guide software changes.
IEEE Trans. Softw. Eng. 31(6), 429–445 (2005)

Zimmermann, T., Nagappan, N., Guo, P.J., Murphy, B.: Characterizing and predicting which bugs get
reopened. In: 2012 34th International Conference on Software Engineering (ICSE), pp. 1074–1083.
IEEE, Piscataway (2012)

123

	An effective change recommendation approach for supplementary bug fixes
	Abstract
	1 Introduction
	2 SupLocator architecture
	2.1 Training phase
	2.2 Recommendation phase

	3 Change relationship graph (CRG)
	3.1 Method invocation, containment, and inheritance graphs
	3.2 Historical co-change graph
	3.3 Content similarity graph
	3.4 Name similarity graph

	4 Random walk component
	4.1 Subgraph extraction
	4.2 Random walk

	5 Genetic algorithm component
	5.1 Search space and fitness functions
	5.1.1 Search space
	5.1.2 Fitness function

	5.2 Detailed procedure

	6 Experiments and results
	6.1 Experiment setup
	6.2 Evaluation metrics
	6.2.1 Top-k prediction accuracy
	6.2.2 Mean reciprocal rank (MRR)
	6.2.3 Mean average precision (MAP)
	6.2.4 Completeness@K

	6.3 Research questions
	6.4 Results
	6.4.1 RQ1: How effective is SupLocator in recommending change locations? How much improvement can it achieve over the state-of-the-art approaches?
	6.4.2 RQ2: What is the performance of the six random walk components? And what is the benefit of our composite GA model?
	6.4.3 RQ3: What is the effect of varying the number of bugs in the training set on the effectiveness of SupLocator?
	6.4.4 RQ4: What is the effect of varying the fitness function of the GA component on the effectiveness of SupLocator?

	7 Discussion
	7.1 Component weights
	7.2 Impact on the tangled changes
	7.3 Impact on the token size in content similarity graph
	7.4 Completeness of SupLocator's recommendation
	7.5 Precision-related versus completeness-related fitness functions
	7.6 Genetic algorithms versus other optimization approaches
	7.6.1 Learning to rank
	7.6.2 Average voting and maximum voting
	7.6.3 Results

	7.7 Threats to validity

	8 Related work
	8.1 Studies on change recommendation
	8.2 Studies on change management
	8.3 Reopened bug report prediction
	8.4 Search-based software engineering

	9 Conclusion and future work
	Acknowledgements
	Appendix
	Impact of the GA configurations

	References

