
Autom Softw Eng (2016) 23:43–75
DOI 10.1007/s10515-014-0165-z

Diversity maximization speedup for localizing
faults in single-fault and multi-fault programs

Xin Xia · Liang Gong · Tien-Duy B. Le ·
David Lo · Lingxiao Jiang · Hongyu Zhang

Received: 1 September 2013 / Accepted: 6 August 2014 / Published online: 6 September 2014
© Springer Science+Business Media New York 2014

Abstract Fault localization is useful for reducing debugging effort. Such techniques
require test cases with oracles, which can determine whether a program behaves cor-
rectly for every test input. Although most fault localization techniques can localize
faults relatively accurately even with a small number of test cases, choosing the right
test cases and creating oracles for them are not easy. Test oracle creation is expensive
because it can take much manual labeling effort (i.e., effort needed to decide whether
the test cases pass or fail). Given a number of test cases to be executed, it is challenging

This work was done while the author was visiting Singapore Management University.

Xin Xia and Liang Gong have contribute equally for this work.

X. Xia (B)
College of Computer Science and Technology, Zhejiang University, Hangzhou, China
e-mail: xxkidd@zju.edu.cn

L. Gong
Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
e-mail: gongliang13@eecs.berkeley.edu

T.-D. B. Le · D. Lo · L. Jiang
School of Information Systems, Singapore Management University, Singapore, Singapore
e-mail: btdle.2012@phdis.smu.edu.sg

D. Lo
e-mail: davidlo@smu.edu.sg

L. Jiang
e-mail: lxjiang@smu.edu.sg

H. Zhang
Microsoft Research, Beijing, China
e-mail: honzhang@microsoft.com

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-014-0165-z&domain=pdf

44 Autom Softw Eng (2016) 23:43–75

to minimize the number of test cases requiring manual labeling and in the meantime
achieve good fault localization accuracy. To address this challenge, this paper presents
a novel test case selection strategy based on Diversity Maximization Speedup (Dms).
Dms orders a set of unlabeled test cases in a way that maximizes the effectiveness of
a fault localization technique. Developers are only expected to label a much smaller
number of test cases along this ordering to achieve good fault localization results.
We evaluate the performance of Dms on 2 different types of programs, single-fault
and multi-fault programs. Our experiments with 411 faults from the Software-artifact
Infrastructure Repository show (1) that Dms can help existing fault localization tech-
niques to achieve comparable accuracy with on average 67 and 6 % fewer labeled
test cases than previously best test case prioritization techniques for single-fault and
multi-fault programs, and (2) that given a labeling budget (i.e., a fixed number of
labeled test cases), Dms can help existing fault localization techniques reduce their
debugging cost (in terms of the amount of code needed to be inspected to locate faults).
We conduct hypothesis test and show that the saving of the debugging cost we achieve
for the real C programs are statistically significant.

Keywords Fault localization · Test case prioritization · Single-fault program ·
Multi-fault program

1 Introduction

Software testing and debugging activities are often labor-intensive, accounting for
30–90 % of labor spent for a project (Beizer 1990). Establishing sufficient testing and
debugging infrastructure canhelp reduce software errors that cost theUSeconomy59.5
billion dollars (0.6% of 2002’s GDP) (National Institute of Standards and Technology,
NIST 2002). Many automated testing and debugging techniques have been proposed
to reduce the high cost in such activities.

Spectrum-based fault localization (e.g. Jones et al. 2002; Abreu et al. 2009; Campos
et al. 2013) is an automated debugging technique that can narrow down the possible
locations of software faults and help save developers’ debugging time.Many spectrum-
based fault localization techniques take as input a set of executions with labels (i.e.,
indicating whether an execution passes or fails), compare between failed and passed
executions, and statistically locate faulty program entities. Such techniques require
each execution to be labeled as a failure or a success, which often needs human
interpretation of an execution result and may not be easy to determine when a failure
is not as obvious as a program crash or invalid output formats. Labeling all executions
or test cases as passing or failing for a programmay require much manual effort and is
often tedious, and thus, the effectiveness of existing spectrum-based fault localization
techniques may be potentially hampered due to the unavailability of labeled test cases.

With test case generation techniques (Godefroid et al. 2005; Sen et al. 2005), we
may be less concernedwith lacking test cases. However, we still face the same problem
of lacking test oracles that can determine whether a program behaves correctly for
an input. Note that many software failures do not have obvious symptoms, such as
crashes or violation of predefined specifications; they may simply produce a wrong

123

Autom Softw Eng (2016) 23:43–75 45

number or display a widget in an inappropriate place, and they still need a human to
decide whether the results are good or not, which could be a laborious and error-prone
activity. Recently, Artzi et al. (2010) propose a directed test case generation approach
for fault localization. They however only handle two kinds of errors inweb applications
that automated test oracles can be constructed: program crashes and invalid HTML
documents. Campos et al. (2013) use probability concepts to generate new test cases
that could minimize the entropy of fault localization results. Although their approach
reduces the diagnosis costs of fault localization results, it does not directly aim to
minimize the number of test cases generated that may require manual labelling. In
general programs, constructing automated test oracles is much more complicated and
still requires much manual effort.

The key research question for this paper is as follows:

How can we minimize the number of test cases requiring human labeling while
achieving comparable fault localization effectiveness as when all test cases are
labeled, for both single-fault and multi-fault programs?

In this paper, we propose the concept of diversity maximization speedup (Dms) and
an associated test case prioritization strategy to minimize the human effort needed to
label test cases while maintaining the effectiveness of existing spectrum-based fault
localization techniques. The concept is based on our observation that when given a
sufficient number of suitable test cases, an effective fault localization technique would
assign a unique suspiciousness score to most program elements (e.g., a function,
a statement, a branch, or a predicate), and high scores to faulty elements and low
scores to non-faulty ones. We thus designDms to speedup the changing process of the
suspiciousness scores generated by a fault localization technique by using as few test
cases as possible.

This concept can be applied to both single-fault and multi-fault programs to reduce
human effort required for labelling test cases. On the other hand, the amount of reduc-
tion achieved by the concept can be different for single-fault and multi-fault scenarios.
We present detailed evaluation and comparison in Sect. 5. When we describe the intu-
ition of this concept and the algorithmic details for realizing the concept, we do not
explicitly distinguish these two scenarios from each other.

1.1 Running example

Figure 1a, b illustrate how our concept helps reduce the number of test cases while
maintaining the effectiveness of fault localization techniques.

There are 11 statements s1, . . . , s11 in the program in Fig. 1a (adapted from pre-
vious papers (González-Sanchez et al. 2011b; Jiang et al. 2011)), where s7 is faulty.
Suppose the program has 12 test cases t1, . . . , t12. A dot for a statement under a test
case means the corresponding statement is executed (or hit) in the corresponding test
case. The collection of such dots (or represented as sequences of 1 and 0 as shown in
Fig. 1b) are called program spectra. With the spectra for all of the test cases and their
pass/fail information, fault localization techniques may calculate various suspicious-
ness scores for each of the statements and rank them differently. In this case, three

123

46 Autom Softw Eng (2016) 23:43–75

(a)

(b)

Fig. 1 Running example. a Fault localization with all test cases. b Evolution of suspiciousness scores with
test cases selected by our approach

well-known techniques, Ochiai (Abreu et al. 2009), Tarantula (Jones and Harrold
2005), and Jaccard (Abreu et al. 2009) all rank s7 as the most suspicious statement
(the last three columns in the highlighted row for s7 in Fig. 1a). However, the fault
localization techniques can in fact achieve the same effectiveness (i.e., ranking s7 as
the top suspicious one) with much fewer test cases when our concept is applied.

UseOchiai as an example. First, we select an initial small number of test cases (t2 in
the example). After a programmer labels the execution result of t2,Ochiai can already
assign a suspiciousness score to each statement, although the ranks are not accurate
(as in the last 11 columns of the row for t2 in Fig. 1b). Then, our approach calculates
the potential rank changes that may be caused if a new test case is used by Ochiai,
and selects the next test case with the maximal change potential (t8 in our case) for
manual labeling. With a label for t8, Ochiai updates the suspiciousness scores for the
statements (as in the last 11 columns of the row for t8). Repeating such a process three
more times, test cases t6, t4 and t9 are added, and Ochiai can already rank s7 as the
most suspicious statement. Thus, our approach helps Ochiai to effectively locate the
fault in this case with only five test cases, instead of 12. Sections 3 and 4 present more
details about our approach.

1.2 Contributions

We have evaluated our approach on five real C programs and seven Siemens test
programs from the Software-artifact Infrastructure Repository (SIR Do et al. 2005).
In total, we analyze 411 faults. Two hundred and fifty-four of them are in single-fault
versions from these 12 programs, while the other 157 faults are in 173 versions of 8 of
these programs. The results demonstrate that our approach outperforms existing test
case selection methods for fault localization.

1. Given a target fault localization accuracy, our approach can significantly reduce
the number of test cases needed to achieve it. In particular, we compare with

123

Autom Softw Eng (2016) 23:43–75 47

several state-of-the-art test case prioritization strategies, including coverage-based
[e.g., Stmt-Total (Rothermel et al. 2001; Elbaum et al. 2002), Art (Jiang et al.
2009)], fault-exposing potential based (Rothermel et al. 2001), and diagnostic pri-
oritization (González-Sanchez et al. 2011a, b; Jiang et al. 2011), and our approach
achieves, on average, test case reduction rates from 10 to 96 % for single-fault
programs, and 6–67 % for multi-fault programs.

2. Given a maximum number of test cases that a programmer can manually label
(i.e., given a fixed number of test cases to be used for fault localization or a
testing budget),Dms can improve the accuracy of fault localization and thus helps
reduce the amount of code programmers need to investigate to locate faults and
reduce testing and debugging cost. In comparison with other test case selection
techniques, we show, with Wilcoxon signed-rank test (Wilcoxon 1943) at 95 %
confidence level, that the cost saving achieved by Dms is statistically significant
on real-life programs.

1.3 Paper outline

The rest of this paper is organized as follows: Section 2 describes fault localization
and test case prioritization techniques that we use in our study. Section 3 formally
introduces the problemwe address. Section 4 presents our approach in detail. Section 5
presents our empirical evaluation. Section 6 describes more related works. Finally,
Sect. 7 concludes with future work.

2 Preliminaries

In this section, we summarize relevant materials on software fault localization and test
case prioritization that we use in our empirical evaluation.

2.1 Fault localization

Spectrum-based fault localization aims to locate faults by analyzing program spectra
of passed and failed executions. A program spectra often consists of information about
whether a program element (e.g., a function, a statement, or a predicate) is hit in an
execution. Program spectra between passed and failed executions are used to compute
the suspiciousness score for every element. All elements are then sorted in descending
order according to their suspiciousness for developers to investigate. Empirical studies
(e.g. Nainar et al. 2007; Jones and Harrold 2005) show that such techniques can be
effective in guiding developers to locate faults. Parnin and Orso (2011) conduct a user
study and show that by using a fault localization tool, developers can complete a task
significantly faster than without the tool on simpler code. However, fault localization
may be much less useful for inexperienced developers.

The key for a spectrum-based fault localization technique is the formula used to
calculate suspiciousness. Table 1 lists the formulae of three well-known techniques:
Tarantula (Jones and Harrold 2005), Ochiai (Abreu et al. 2009), and Jaccard (Abreu

123

48 Autom Softw Eng (2016) 23:43–75

Table 1 Spectrum-based fault
localization

Name Formula

Tarantula

Nef (s)
Nef (s)+Nn f (s)

Nef (s)
Nef (s)+Nn f (s)

+ Nep(s)
Nep(s)+Nnp(s)

Ochiai
Nef (s)√

(Nef (s) + Nn f (s)) · (Nef (s) + Nep(s))

Jaccard
Nef (s)

Nef (s) + Nn f (s) + Nep(s)

et al. 2009). Given a program element s, Nef (s) is the number of failed executions
that execute s; Nnp(s) numerates passed executions that do not hit s; by the same
token, Nnf (s) counts failed executions that do not hit s and Nep(s) counts passed
executions that execute s.

Example Each column for ti in Fig. 1a is a spectrum. The columns Nef , Nep, Nnf , and
Nnp can thus be calculated from the spectra. The suspiciousness scores of Tarantula,
Ochiai, and Jaccard for each statement are then calculated based on the formulae in
Table 1.

2.2 Test case prioritization

Rothermel et al. (2001) define the problem of test case prioritization as follows:

Definition 1 (Test case prioritization) Given (1) T , a set of test cases, (2) PT , the set
of permutations of T , and (3) f , a function mapping PT to real numbers, the problem
is to find a permutation p ∈ PT such that: ∀p′ ∈ PT . f (p) ≥ f (p′).

In this definition, PT represents the set of all possible orderings of T ; f is an award
function indicating the value for each ordering. The higher the value, the better it
is. For easier implementation, award functions in the literature are often defined as a
priority function mapping test cases to real numbers, and then the optimal permutation
is simply to sort the test cases in descending order according to their values. The key
for a test case prioritization technique to be effective is to design a priority function
that assigns appropriate priority to the test cases under given situations. The following
subsections highlight some test case prioritization techniques that we compare with
our approach.

2.2.1 Coverage based prioritization

STMT-TOTAL (Rothermel et al. 2001) is a test case prioritization strategy that assigns
higher priorities to a test case that executes more statements in a program. STMT-
ADDTL (Rothermel et al. 2001) extends STMT-TOTAL by selecting next test case that
covers more statements that have not been covered by previously selected test cases.
Adaptive Random Test Prioritization (ART) (Jiang et al. 2009) starts by randomly
selecting a set of test cases that achievesmaximal coverage, and then sort the unlabeled

123

Autom Softw Eng (2016) 23:43–75 49

test cases based on their Jaccard distances to previous selected test cases. Among its
several variants, ART-MIN was shown to be the best test case prioritization strategy
(Jiang et al. 2009). However, recent study (Arcuri and Briand 2011) shows that Art
may not be effective when the failure rate is low and the high distance calculations
cost might overshadow the reduction on test execution times.

2.2.2 Fault-exposing potential based prioritization

FEP-ADDTL (Rothermel et al. 2001) aims to sort test cases so that the rate of failure
detection of the prioritized test cases can be maximized. To reduce the need for test
oracles, the rate of failure detection is approximated by the fault-exposing potential
(Fep) of a test case, which is in turn estimated based on program mutation analysis
(Hamlet 1977): each program element s j is mutated many times and the test case ti
is executed on each mutant; the Fep of ti for s j (Fepi j) is calculated as the ratio of
mutants of s j detected by ti over the total number of mutants of s j ; then, the Fep of ti
(Fepi) is the sum of the FEP of ti for all elements (

∑
j Fepi j).

2.2.3 Diagnostic prioritization

Jiang et al. (2011) investigate the effects of previous test case prioritization techniques
on fault localization and find that coverage-based techniques may be insufficient since
the prioritized test cases may not be useful in supporting effective fault localization.
González-Sanchez et al. (2011b) use the concept of diagnostic distribution that rep-
resents the probability of a program element to be faulty, which is then estimated
by Bayesian inference based on previous selected test cases, and in their tool named
SEQUOIA, sort test cases so that the information entropy of the diagnostic distribution
can be minimized. Soon after, González-Sanchez et al. (2011a) propose another strat-
egy calledAmbiguity Group Reduction to sort test cases. In their tool named RAPTOR,
program elements having the same spectrum record are considered to be in the same
ambiguity group (Ag), and Raptor aims to select next test case that would maximize
the number of ambiguity groups while trying to minimize the deviation on the sizes
of the ambiguity groups.

2.2.4 Practical usage

To use the above mentioned test case prioritization techniques in practice, a program
needs to be instrumented first and executed with test cases to collect the program
spectra (execution traces) of the test cases. Then, developers can apply one of the test
case prioritization techniques to select top-n ranked test cases, and manually judge
whether each of the test cases passes or fails. Based on these selected test cases and
their corresponding labels (passed or failed), a fault localization technique (e.g. Nainar
et al. 2007; Jones and Harrold 2005) can then be applied to locate faults. Our test case
prioritization technique in this paper can also be applied in the same fashion as the
above mentioned test case prioritization techniques.

123

50 Autom Softw Eng (2016) 23:43–75

Fig. 2 Motivating example

3 Problem definition

In this section we show a motivating example and formally introduce our approach:
DiversityMaximization Speedup (Dms).Dms employs trend analysis to give priorities
to test cases that can quickly increase the diversity of suspiciousness scores generated
by fault localization techniques for various program elements. In the subsections, we
illustrate its intuition and formally define it as a variant of test case prioritization.

3.1 Running example revisited

We use the running example (Fig. 1a) to explain the intuitions for Dms. With suffi-
cient test cases, an effective fault localization technique is more likely to assign high
suspiciousness scores to faulty program elements while assigning low scores to non-
faulty elements, and each element should be assigned a unique rank according to their
suspiciousness scores to facilitate further investigation (such as the scores shown in
the last three columns in Fig. 1a).

With fewer test cases, a fault localization technique may not be able to achieve
an effective ranking. Figure 2 shows the evolution trend of the ranks of the running
example’s program statements based on their Ochiai (Abreu et al. 2009) scores as
test cases are added one by one. The test cases are added by Raptor which is the
existing best approach in the literature (González-Sanchez et al. 2011a) for selecting
test cases for fault localization. In this figure, the horizontal axis represents the number
of iterations to select test cases. In each iteration, one test case is picked from the
unlabeled test case pool TU . The vertical axis is the rank of a statement sorted based
on suspiciousness.1 Each line in the figure depicts the evolution of the suspiciousness

1 Program elements with the same suspiciousness score are assigned the same low rank since developers
are expected to investigate all of the elements having the same score if they are ever going to investigate

123

Autom Softw Eng (2016) 23:43–75 51

rank for one specific statement. For example, s7 (the faulty statement) is ranked 11th
in the first iteration, and 6th in the second iteration.

This figure shows that the ranks of different statementsmay evolve in different ways
as more test cases are added. Specifically, some statements keep rising in general (e.g.,
s7); some others oscillate back and forth (e.g., s9). Ideally, we should only use test
cases that could enable a fault localization technique to assign elements the scores
close to the final score when all test cases are used. Comparing to the changes of s7,
the oscillation of s9 is less important as its final rank is the same as its initial rank.
Thus, when we add test cases, we should look for test cases that could offer more
changing opportunities to “promising” elements like s7 (with clear trend) instead of
s9 so that the ranks (for both s7 and s9) may quickly approach their final position.

The following questions prompted us to define Dms:

1. Can we analyze the change trend of every program element and identify “promis-
ing” elements with high change potentials (i.e., elements whose ranks are likely
to change much in a stable way)?

2. For program elements having high change potentials, can we select appropriate
test cases to speed up their rank-changing process so that these elements can reach
their final ranks faster (i.e., with fewer test cases)?

3.2 Formal definition of DMS

Definition 2 (Diversity maximization speedup) Given (1) T , a set of test cases, (2)
PT , the set of permutations of T , and (3) k, a positive integer, we use pk to represent
a permutation p ∈ PT truncated at length k, and PT k to represent all such truncated
permutations (i.e., PT k = {pk |p ∈ PT }).

Then, with f , a function mapping PT k to real numbers, the problem of DMS is to
find a permutation p ∈ PT such that: ∀pki ∈ PT k . f (pk) ≥ f (pki), for the given k.

In Definition 2, f is an award function indicating the value of an ordering in PT k ,
which in our case, would be the effectiveness of a fault localization technique based
on k labeled test cases. The number k can be used as a labeling budget, indicating the
number of test cases developers are willing to label for fault localization. Thus, the
goal for Dms is to quickly maximize the effectiveness of fault localization techniques
with at most k labeled test cases.

4 Approach details

In this section we answer the two questions raised in Sect. 3.1 to conceptualize Dms.

Footnote 1 continued
one. For example, if statements s1, s2, s3 have the highest suspiciousness score, then the ranks of the 3
statements are all 3.

123

52 Autom Softw Eng (2016) 23:43–75

Table 2 Evolution trend of s8 Iteration (xi) 1 2 3 4 5 6 7 …

Rank 11 6 4 2 3 11 5 …

Trend (T) [+] [+] [+] [-] [-] [+] …

yi 0 1 2 3 2 1 2 …

4.1 Identify high change-potential elements

In order to evaluate the change potential of program elements, we first represent
program element’s rank changes as time series data points. We then fit the points to
a linear model using regression analysis. The regression coefficient of the model and
the error (i.e., discrepancy between the model and the real points) are used as proxy
to identify program elements with high change potentials. More details are described
as follows.

4.1.1 Representative time series construction

We capture changes in the ranks of a program element as a series of trend units:

1. When the rank of the program element decreases, its current trend unit is [+].
2. When the rank of the program element increases, its current trend unit is [-].
3. If the element’s rank stays the same, its current trend unit is [0].

For example, the ranks of statement s8 in different iterations and its corresponding
trend units are listed in Table 2. This series of trend units is further converted to a
series of points< xi , yi >, where xi represents the iteration number, and yi represents
cumulated changes in program ranks at iteration i . We set y0 as 0. When the trend in
iteration i is [+], yi = yi−1 + 1. If the ith trend is [-], yi = yi−1 − 1, otherwise,
if the trend does not change([0]) then yi = yi−1. We refer to this series of points as
the evolution trend of the corresponding program element.

4.1.2 Linear model construction

Then we use linear regression analysis (Graybill and Iyer 1994) to model the trend of
each program element. Each trend is modeled as a linear equation:

yi = β1 · xi + β0 + εi (1)

4.1.3 Change potential computation

In order to speed up the overall evolution process, our approach needs to select next
test case that keeps elements with monotonic trends (high change-potential trends)
evolving their rankings. In other words, we do not care about changing elements’
rankingwith unstable trends. In order to identify those high change-potential elements,

123

Autom Softw Eng (2016) 23:43–75 53

Table 3 Trend examples and
their potentials T β̂1 σ̂β1 WT

[+] [+] 1 0 1

[+] [-] 0 0.577 0

[+] [0] 0.5 0.289 0.388

[0] [0] 0 0 0

we need a metric to evaluate and compare trends of different elements. Here we define
the change potential of a program element d with the trend Td as follows:

WTd = |β̂1|
σ̂β1 + 1

(2)

β̂1 is estimated by least squares and σ̂β1 is the error of estimating β1 (Graybill and
Iyer 1994). In this metric, the numerator is the absolute value of the trend slope and
the denominator considers the fitness of the regression model which represents the
deviation of the actual value from the regression model. When the context is clear, we
also useWT orWd to represent the change potential of a trend or a program element.

Rationale of Equation 2:Wewant to evolve the ranks of statements in a fast,monotonic
way. In linearmodels, a fast changingmonotonic trend should have a larger slopeβ1 as
well as a smaller deviation εi from the linear model.Using thismetric in Eq. 2 that uses
the estimated slope in the numerator and the estimated deviation in the denominator,
we may isolate trends that evolve in faster and more stable (less oscillation) ways.
Table 3 shows a few sample trends and their change potentials according to Eq. 2.

4.2 Speed up the rank change process

After evaluating the program elements according to their change potentials, Dms will
try to speed up the evolution trend of the program elements based on the change
potential (WT). First, program elements with the same suspiciousness scores are
grouped together, they are termed as suspicious groups in this paper.2 These suspicious
groups are then assigned change-potential scores based on the change potentials of
their constituent program elements.When new test cases are added, based on the actual
program elements that get executed, some groups can be broken into two. When this
happens, the diversity of the suspiciousness scores increases in most cases. The goal
of Dms is to select a new test case that breaks a group into two sub-groups where the
overall change potentials are maximized.

2 We call such groups as suspicious groups since we simply want to state the fact that every group may
contain potentially suspicious elements. Some other studies (e.g. González-Sanchez et al. 2011a) call them
ambiguity groups as that term may emphasize more on the fact that the elements in the groups have the
same but ambiguous suspiciousness scores.

123

54 Autom Softw Eng (2016) 23:43–75

We calculate the potential of a group g by summing up the potential of all program
elements d that belongs to g.

Wg =
∑

d∈g
WTd (3)

where WTd is the change potential of the program element d based on the labelled
execution trace profiles.

Rationale of Equation 3: A group with high change-potential elements should be
given a higher priority to break. We want to diversify the rankings of elements in
the suspicious group that has a high change-potential score. To identify those high
change-potential groups, wemeasure the sumof change-potential scores of itsmember
elements as in Eq. 3.

The overall change-potential score of all suspicious groups (G) is calculated as
follows:

HG =
∑

gi∈G
W2

gi (4)

To evaluate an unlabeled trace t , Dms calculates the difference between the overall
change-potential score of the current groups G (HG) and the overall change-potential
score of all groups when t is added to the pool of labeled test cases (G ⇐ t). Since
we want to stabilize the ranks of all program elements as quickly as possible with as
fewer test cases as possible, we heuristically choose the test case that can maximize
the difference and thus the reduction of change potentials as the next one for labeling.

arg max
t∈TU

{
HG − H(G⇐t)

}
(5)

The new groups (G ⇐ t) and their change potentialH(G⇐t) can be estimated based
on t’s spectrum (i.e., the set of program elements hit by t) even when the pass/fail
label for t is unknown. Given an existing suspicious group, if a newly added test case
t only covers a subset of the group elements, this group may be broken into two:
one contains the elements hit by t , and the other contains the elements uncovered
by t . Then, each subgroup inherits a portion of the original group’s change potential
proportional to its size. For example, suppose a group g in HG contains 2 elements,
whose potentials are 0.4 and 0.6 respectively, and a new test case t breaks g into g1
and g2, each of which contains 1 element; then, the change potentials Wg1 and Wg2
are both 1

2 × (0.4 + 0.6) = 0.5.

Rationale of Equations 4 and 5: A test case that breaks more groups with higher
change potentials should be given a higher priority. Equation 4 measures the overall
change potential score of all suspicious groups and its square form manifests the
diversity of element ranks. As an example, suppose there are two groups g1 and g2.
Group g1 has two high change-potential elements with change-potential score 0.3
and 0.4. Group g2 has two low change-potential elements with change-potential score
0.1 and 0.2. According to Eq. 4, HG = (0.3 + 0.4)2 + (0.1 + 0.2)2 = 0.58. After
choosing a test case that breaks g1 only and does not change the change-potential
score of any element, then according to Eq. 5, the new change potential would be

123

Autom Softw Eng (2016) 23:43–75 55

0.32 + 0.42 + (0.1 + 0.2)2 = 0.34. However, if we choose another test case that
breaks g2 only and does not change the change-potential score of any element, the
new change potential would be (0.3+0.4)2 +0.12 +0.22 = 0.54. As a result, the test
case that breaks the high change-potential group (i.e., g1) leads to a larger decrease of
the overall change potential and thus will be given a higher priority to be selected.

Note that Dms does not intentionally increase suspiciousness scores of promising
statements that could lead to confirmation bias.Dmsmightmake an initially promising
statement become less suspicious if the statement is covered in the next selected trace
and the trace is labeled as pass, or it is not covered in the next selected trace and the
trace is labeled as fail.

4.3 Overall approach

Before prioritization, all test cases will be executed on instrumented program ver-
sions and the corresponding traces would be collected. Our approach (pseudocode in
Algorithm 1) takes in a set of unlabeled traces TU and the labelling budget k (i.e.,
the maximum number of traces to be manually labeled), and outputs k selected traces
for manual analysis. One failed trace (t0 in Line 1) is also used as an input because a
developer usually starts debugging only when at least one test fails,3 and fault local-
ization techniques rarely produce meaningful results if all spectra consists of only
passed executions.

To collect indicative trends for analyzing and speedup, at Lines 3–9wefirst collectw
traces by one generic prioritization techniqueP and record evolution trend Td for each
program element d. This step is desirable since it helps bootstrap the trend analysis in
our solution. At Lines 12–24, we perform the second stage which speeds up the change
process based on existing trends. Note that after selecting each test case t in this stage,
we will update the trend for all elements. fT represents a fault localization technique
(e.g.,Ochiai), built based on the set of test cases T . fT (d) returns the suspicious score
for the program element d.

In the pseudocode, manual_label(t) asks a user to check the correctness of
the outcome from the test case t . Procedure div(T) counts the number of unique
suspicious scores (diversity) generated by fT , which is defined as follows:

div(T) =
∣
∣
∣
∣
∣

⋃

d∈D
{ fT (d)}

∣
∣
∣
∣
∣

(6)

The diversity of small programs may reach the maximum after selecting a small
number of test cases. To avoid random selection after that happens, the pseudo-code
at Lines 20–23 resets the set Ttmp based on which the suspiciousness scores of all
program elements are calculated. With this step, Dms can continually choose test
cases from TU that maximally diversify suspicious scores calculated based on Ttmp.
Repeating the diversity selection process may help to confirm the previously selected
test cases and make the final result more robust.

3 If there is more than one test that fails, Dms randomly selects one of them to begin with.

123

56 Autom Softw Eng (2016) 23:43–75

Algorithm 1 Diversity Maximization Speedup

Procedure DiversityMaximizationSpeedup
Input:
k - Maximum number of traces to be selected
w - Switching threshold
TU - Unlabeled trace set, where |TU | > k
t0 - Initial failed trace

Output:
k selected test cases prioritized

Method:
1: Ttmp ← {< t0, f ail >}
2: //Bootstraping with another prioritization technique P
3: while |Ttmp | ≤ k and

∣
∣Ttmp

∣
∣ ≤ w do

4: Select t by P
5: c ←manual_label(t)
6: Ttmp ← Ttmp ∪ { < t, c > }; TU ← TU \ {t}
7: ∀d ∈ D, calculate suspicious score fTtmp (d)

8: ∀d ∈ D, update trend Td based on fTtmp (d)

9: end while
10: TS ← Ttmp
11: //Speedup
12: while |TS | ≤ k do
13: ∀d ∈ D, calculate WTd by Equation 2
14: Select t by Equation 5
15: c ←manual_label(t)
16: Ttmp ← Ttmp ∪ { < t, c > }; TU ← TU \ {t}
17: ∀d ∈ D, calculate suspicious score fTtmp (d)

18: ∀d ∈ D, update Td based on fTtmp (d)

19: TS ← TS ∪ Ttmp
20: if div(Ttmp) cease growing then
21: Ttmp ← {< t0, f ail >}
22: ∀d ∈ D, clear Td
23: end if
24: end while
25: return TS

4.4 Example

We describe step by step how Dms minimizes the number of test cases needed by
Ochiai to locate the fault in the running example in Fig. 1a, b.

Since the example code snippet is quite small, there is no need to use a large number
of initial test cases to bootstrap our trend analysis. We set w = 1 and thus only use
one test case (in addition to t0) for bootstrapping. In this example and our evaluation
in Sect. 5, we use Raptor, one of the previously best techniques, in the bootstrapping
process for better comparison.

Initially, users execute the program and expose a failure (t2 in this example) inwhich
all statements are covered. Thus all statements get equal non-zero suspiciousness and
constitute one suspicious group g (cf. either Fig. 1b; Table 4). All non-zero suspicious
groups compose a group set G = {g}. Raptor would then choose t8 since t8 has
the maximum ambiguity reduction values, and present it to developers for labeling as
either pass or fail).

123

Autom Softw Eng (2016) 23:43–75 57

Ta
bl
e
4

E
vo
lu
tio

n
of

su
sp
ic
io
us
ne
ss

sc
or
es

fo
r
th
e
ru
nn

in
g
ex
am

pl
e
in

Fi
g.
1a

us
in
g
R
A
PT

O
R
(G

on
zá
le
z-
Sa

nc
he
z
et
al
.2

01
1a
)

Su
sp
ic
io
us

sc
or
es

fo
r
S7

ar
e
in

bo
ld

an
d
se
le
ct
ed

te
st
ca
se
s
ar
e
in

ita
lic
s

123

58 Autom Softw Eng (2016) 23:43–75

After the bootstrapping stage, Ochiai updates the suspiciousness score for each
statement based on the selected traces and the existing suspicious group set are broken
into {s1,s2,s3,s4,s11} and {s5,s6,s7,s8,s9,s10} (cf. either Fig. 1b; Table 4), they are called
g1 and g2 respectively. At this time, the trend for the statements in g1 is [+], because
the ranks of these statements change from 11 to 6, while the trend for the statements
in g2 is [0], because their ranks are still 11. The corresponding time series of the
statements in g2 are: y0 = 0 and y1 = 1. Applying Eq. 2, we obtain the change
potential of the trend of the program elements in g2 as 1.

We now calculateHG for the current suspicious group set G = {g1, g2} according
to Eq. 3:

HG = W2
g1 + W2

g2 =
⎛

⎝
∑

d∈g1
0

⎞

⎠

2

+
⎛

⎝
∑

d∈g2
1

⎞

⎠

2

= 36.

Now there are 10 candidate traces: {ti |1 ≤ i ≤ 12 ∧ i /∈ {2, 8}} to be evaluated.
We will use each candidate trace ti to break ties in G (G ⇐ ti). Then we calculate the
score that evaluates the breaking effect: H(G⇐ti).

For example, when evaluating t6, t6 covers s1,s2,s3,s4,s5,s6 and s11, thus breaks
suspicious g2 into {s5,s6} and {s7,s8,s9, s10}, let us call them g21 and g22 respectively.
Now, the scoreWg21 = 2

6 ×Wg = 2,Wg22 = 4
6 × 6 = 4. So if choosing t6, the score

for (G ⇐ t6) is

H(G⇐t6) = W2
g21 + W2

g22 = 20

And the reduction is

HG − H(G⇐t6) = 36 − 20 = 16.

In the same way, we evaluate all candidate traces and find that the reduction of t6 is
maximal, so we select t6 as the next trace and ask a developer to manually label t6. The
developer then labels it as “pass”. After adding newly labeled trace t6 into the selected
trace set TS , we recalculate the suspicious score of all program elements according to
the current selected trace set. After calculation, the normalized suspicious score of the
elements in {s5,s6} reduced from 0.1049 to 0.0852 and their ranks remains the same.
The suspicious scores of the elements in {s7,s8,s9,s10} increase from 0.1049 to 0.1205
and thus their ranks rises from 6 to 4. After that, the trends of program elements are
updated. For example, the trend of elements in {s1,s2,s3,s4,s13} becomes ([0][0]),
the trend of the statements in {s5,s6} becomes ([+][0]) and those in {s7,s8,s9,s10}
corresponds to ([+][+]).

Note that right now {s7,s8,s9,s10} gets the highest change-potential score and thus
can get more chances to be broken up. As shown in Fig. 1b, after three iterations,Dms
selects (t8 → t6 → t4). In the next iteration, Dms chooses t9 and breaks {s7,s8} and
{s5,s6} which have greater change potentials and consequently ranks s7 the highest.
Overall, Dms only requires user to manually label four additional traces (t8 → t6 →
t4 → t9).

123

Autom Softw Eng (2016) 23:43–75 59

As a comparison, Raptor always chooses the test case that maximally reduces the
overall sizes of groups of statements that have the spectrum records (i.e., Ambiguity
Group Reduction, c.f. Sect. 2.2.3). As shown in Table 4, Raptor effectively selects
the same test cases asDms in the first four iterations; however, it chooses t7 in the next
iteration to break {s1,s2,s3,s4,s9,s10,s11} and {s5,s6}, and it takes one more iteration
to rank s7 the highest. It thus requires users to label five additional test cases besides
t2 (t8 → t6 → t4 → t7 → t9).

4.5 Approach complexity and robustness

The time and space complexity of our approach depend on many various factors. It
takes linear time with respect to the number of iterations or test cases we want to
select, takes quadratic time with respect to the total number of available test cases,
takes cubic time with respect to the number of program elements, takes cubic time
with respect to the number of suspicious groups in each iteration. Our approach would
also store all of the test spectra in the memory for convenience. In comparison with the
other existing approach Raptor, the trend analysis step in our approach may be more
computationally expensive. However, the step would still take short absolute amount
of time since the number of selected test cases can be limited to tens or hundreds to
achieve effective fault localization.

The results of our approach may not be deterministic either since there are random
factors (e.g., the first failed test case to choose) and several user-defined parameters
(e.g., the maximal number of test cases to select) employed in the approach. Thus,
we repeat running our approach for multiple times in our evaluation to take average
performance. The maximal number of test cases to select (i.e., k in Algorithm 1) and
the switching thresholdw in the bootstrap phasewould affect howmuch improvements
our approach can achieve over other existing techniques, but they do not matter for the
main focus of our evaluation, which is to evaluate whether Diversity Maximization
Speedup (Dms) is effective for reducing manual labelling effort and diagnostic cost.
Although we expect different optimal k and w for different kinds of programs and
faults, we use a consistent setting k <= 500 and w = 10 in our evaluation and would
suggest potential users to starts with a small setting where they can tolerate the manual
labelling cost.

5 Empirical evaluation

In this section we present empirical evaluation that analyzes the impact of Dms on
manual effort needed for test case labeling, and compares our approach with multiple
previous test case prioritization methods.

In particular, our seek for answers to the following two research questions:

RQ1 What is the effectiveness of Dms on single-fault programs?
RQ2 What is the effectiveness of Dms on multi-fault programs?

123

60 Autom Softw Eng (2016) 23:43–75

Section 5.1 shows our experimental results that answer the first research question.
Section 5.2 presents answers to the second research question. Section 5.3 describe the
discussion and some threats to validity.

5.1 RQ1: Single-fault programs

Section 5.1.1 gives details about our experimental setup for single-fault pro-
grams. In Sect. 5.1.2, we introduce the subject programs used in our study. Sec-
tions 5.1.3 and 5.1.4 show the results.

5.1.1 Experimental setups and measures

In our experiment, every test case prioritization technique starts from an arbitrary
labeled failed trace because developers start debugging only when test cases fail.

In this paper, we use Raptor as the bootstrapping technique (P in Fig. 1). During
the bootstrapping process, w is set to 10 to facilitate trend analysis.

Following Jiang et al. (2011), for each faulty version, we repeat each prioritization
technique 20 times to obtain its average cost. For each time, a randomly chosen failed
trace is used as the starting point to alleviate the sensitivity of the technique to the
choice of starting traces. On the other hand, to fairly compare our approach with other
prioritization methods, the same randomly chosen failed traces are used as the starting
traces for all methods.

The effectiveness of test case prioritization methods would be manifested as the
effectiveness of the subsequent fault localization results. So one way to compare the
effectiveness of different prioritizationmethods based on the different diagnostic costs
of the subsequently applied fault localization technique when the same number of test
cases are selected by the different prioritization methods. In the literature, many fault
localization studies use the percentage of program elements that need to be inspected
according to the ranked list of fault localization results to locate all faults as one kind
of diagnostic costs, which is defined as follows:

cost =
∣
∣ { j | fTS (d j) ≥ fTS (d∗)}

∣
∣

|D| (7)

whereD consists of all program elements appearing in the program and d∗ represents
the fault(s) (i.e., the root cause(s) of failures) of a program. We calculate the average
cost as the percentage of elements that developers have to examine until locating the
root causes (d∗) of failures. The lower the cost is, the better a fault localization tech-
nique is. Since multiple program elements can be assigned with the same suspicious
score, the numerator is considered as the number of program elements d j that have
bigger or the same suspicious score to d∗ in this paper.4

4 There are a number of alternative ways to define diagnostic costs and accuracies, such as using the number
of faults located when up to a certain percentage of program elements are inspected (e.g. Wong et al. 2014;
Debroy and Wong 2013; Cleve and Zeller 2005; Baah et al. 2010; Jones et al. 2002; Lucia et al. 2014),
or assuming a random ordering for elements with the same score and incorporating their expected rank

123

Autom Softw Eng (2016) 23:43–75 61

We can also define the accuracy of a fault localization technique as the reverse of
the cost, which is the higher the better:

accuracy = 1 − cost (8)

In the following parts of the paper, we thus use cost and accuracy interchangeably
when the context is clear.

Another way to measure the effectiveness of test case prioritization methods is to
see how many test cases can be reduced by each method. A major goal of our paper
is to minimize the number of test cases that need manual labelling but can maintain
fault localization accuracies. So, in the following evaluation results, we also show the
numbers of reduced test cases with respect to a targeted fault localization cost (or
accuracy).

If labeling all test cases and performing fault localization on all program spectra
results in an average diagnostic cost c, we call it the base line cost. If a test prioritization
technique or fault localization technique leads to a diagnostic cost c′, then we say the
technique achieves x% of base line effectiveness, where x is defined as follows:

x = c′

c
× 100 (9)

To be fair, the number of reduced test cases by each prioritization technique should
be measured when the technique achieves 100 % of base line effectiveness. However,
in reality, it is hardly possible to directly control the cost to be exactly 100 % of base
line. So, we allow 1 % deviation; i.e., in the following evaluation results, we measure
the numbers of reduced test cases when at most 101 % of base line effectiveness is
achieved.

5.1.2 Subject programs

We use five real C programs and seven Siemens test programs from the Software-
artifact Infrastructure Repository (SIR) (Do et al. 2005). We refer to the five real
programs (sed, flex, grep, gzip, and space) as Unix programs. Table 5 shows
the descriptive statistics of each subject, including the number of faults, available test
cases and code sizes. Following many previous studies (e.g. Jones et al. 2002; Abreu
et al. 2009), we exclude faults not directly observable by the gcov profiling tool5

(e.g., some faults lead to a crash before gcov dumps profiling information and some
faults do not cause any test case to fail), and in total we study 254 faults.

Footnote 4 continued∣
∣
∣{ j | fTS (d j)= fTS (d∗)}

∣
∣
∣+1

2 in calculating cost (e.g. Ali et al. 2009; Steimann et al. 2013; Steimann and
Frenkel 2012; Xu et al. 2011). We use the one in Eq. 7 and 8 as they are commonly used and easy to
understand, and our focus is on evaluating whether different test case prioritization techniques change the
diagnostic costs, instead of measuring the absolute costs. We believe that if our technique shows significant
improvements over one kind of diagnostic cost, it should also show improvements over other kinds of
diagnostic cost.
5 http://gcc.gnu.org/onlinedocs/gcc/Gcov.html.

123

http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

62 Autom Softw Eng (2016) 23:43–75

Table 5 Subject programs
Program Description LOC Tests Faults

tcas Aircraft control 173 1,609 41

schedule2 Priority scheduler 374 2,710 8

schedule Priority scheduler 412 2,651 8

replace Pattern matcher 564 5,543 31

tot_info Info measure 565 1,052 22

print_tokens2 Lexical analyzer 570 4,055 10

print_tokens Lexical analyzer 726 4,070 7

space ADL compiler 9,564 1,343 30

flex Lexical parser 10,124 567 43

sed Text processor 9,289 371 22

grep Text processor 9,089 809 17

gzip Data compressor 5,159 217 15

Table 6 Labeling effort on subject programs

Subject Dms Raptor Sequoia Stmt- Stmt- Fep- Art-

programs Addtl Total Addtl Min

Siemens 18 20 500+ 500+ 500+ 97 150

Unix 16 48 176 150 500+ 98 56

Experiment results for DMS are in bold

5.1.3 Experimental results: Reducing number of test cases

Here, we investigate the effectiveness of Dms in reducing the number of test cases
needed for a targeted diagnostic cost. We compare Dms with previous test case pri-
oritization techniques in terms of labeling effort when to achieve 101 % of base line
effectiveness as stated in Sect. 5.1.1.

Since Dms would output a ranked list of suspicious program elements, we compute
the diagnostic cost cn for Dms when we just inspect top n (n ∈ {1, 2, . . . , |D|})
suspicious elements. We record the maximum n that cn is still within 101 % of base
line cost as the amount of labeling effort. Also, we limit the maximum number of test
cases allowed to select (i.e., k in Algorithm 1) to 500 in this specific evaluation.

Table 6 shows how many labels are needed on average to achieve 101 % of base
line effectiveness for each approach. E.g., Raptor requires 48 labels on average for
each faulty version from the 5Unix programs whileDms only needs 16. Overall,Dms
requires the minimal amount of labeling effort by achieving 67.7 % labeling reduction
on Unix programs and 10 % reduction on Siemens programs in comparison with the
existing best approach (Raptor).

5.1.4 Experimental results: Reducing cost

Here, we investigate the effectiveness of Dms in reducing cost given a targeted number
of labeled test cases. We select 30 test cases (i.e., set k = 30 in Algorithm 1), which

123

Autom Softw Eng (2016) 23:43–75 63

Fig. 3 Average cost of Dms when selecting different numbers of test cases

we believe are not too many to manually label.We also find that in our experiments the
average debugging cost of using Dms will not reduce noticeably even if more labeled
test cases beyond 50 are added further (See Fig. 3), which is in line with studies in
the literature (e.g. Abreu et al. 2009; Liblit et al. 2005) that tens of passed and failed
spectra may suffice for fault localization. During the bootstrapping process, the first 10
test cases are picked by Raptor. We use different prioritization techniques and apply
Ochiai to evaluate program elements on the selected program spectra. A prioritization
technique that obtains a lower cost is better.

Following Baah et al. (2010, 2011) and the cost metric (Eq. 7), we compare the
effectiveness of two prioritization methods PA and PB by using one of the methods
(for example, PB) as reference measure. When selecting the same number of traces
k, the cost difference: cost (PB) − cost (PA) is considered as the improvement of
PA over PB . A positive value means that PA performs better than PB (since lower
cost is better) and a negative value means that the performance deteriorates if we use
PA to replace PB . The difference corresponds to the magnitude of improvement. For
example, if the cost of test cases from PA is 30 % and the cost of PB is 40 %, then the
improvement of PA over PB is 10 %, which means that developers would examine 10
% fewer statements if PA is deployed.
Result Summary. Tables 7, 8, and 9 compare our method with the existing prioritizing
techniques. The results show that ourmethod outperforms noworse than othermethods
for the majority of faulty program versions.

As illustrated in Table 7, Dms performs better than Raptor on 25.20 % of the
faulty versions, worse on 19.29 % of the faulty versions, and shows no improvement
on 55.51 % of the faulty versions. The first row of Table 8 characterizes the degree of
positive improvement of Dms over Raptor. As the table indicates, half of the 25.20%
faulty versions with positive improvement values have improvements between 0.03
and 3.93 %, and the other half have improvements between 3.93 and 77.42 %. The
average positive improvement of Dms over Raptor is 7.71 %.

123

64 Autom Softw Eng (2016) 23:43–75

Table 7 Comparison of
prioritization methods

Experiment results for DMS are
in bold

Test prioritization
method

Positive (%) Negative (%) Neutral (%)

Dms vs Raptor 25.20 19.29 55.51

Dms vs Sequoia 33.46 19.69 46.85

Dms vs Stmt-Addtl 42.13 19.29 38.58

Dms vs Stmt-Total 62.99 7.87 29.13

Dms vs Fep-Addtl 40.16 20.08 39.76

Dms vs Art-Min 31.50 19.29 49.21

Table 8 Distribution of positive
improvements

Experiment results for DMS are
in bold

Test Pri. Tech. Max (%) Mean (%) Median (%) Min (%)

Dms vs Raptor 77.42 7.71 3.93 0.03

Dms vs Sequoia 66.67 14.38 8.06 0.23

Dms vs Stmt-Addtl 72.87 14.68 5.17 0.03

Dms vs Stmt-Total 94.97 27.68 22.29 0.03

Dms vs Fep-Addtl 45.90 13.83 6.35 0.03

Dms vs Art-Min 53.81 7.70 3.23 0.03

Table 9 Distribution of
negative deterioration

Experiment results for DMS are
in bold

Test Pri. Tech. Max (%) Mean (%) Median (%) Min (%)

Dms vs Raptor 1.15 0.54 0.60 0.03

Dms vs Sequoia 31.71 4.01 1.33 0.03

Dms vs Stmt-Addtl 30.73 4.14 1.52 0.03

Dms vs Stmt-Total 27.88 4.61 2.64 0.17

Dms vs Fep-Addtl 24.70 5.06 2.15 0.03

Dms vs Art-Min 22.41 4.11 1.72 0.03

Table 9 characterizes the degree of negative deterioration of Dms over other tech-
niques. As the first row in the table indicates, for half of the 19.29 % faulty versions,
Dms deteriorates between 0.03 and 0.60 % from Raptor, and for the other half, Dms
deteriorates between 0.60 and 1.15 %. The average percentage of negative deteriora-
tion of Dms over Raptor is 0.54 %.

We conduct paired Wilcoxon signed-rank test to confirm the difference in perfor-
mance between Dms and six existing prioritization techniques. The statistical test
result rejects the null hypothesis and suggests that the improvements of Dms over
other existing techniques are statistically significant at 95 % confidence interval.
Detailed comparison Table 6 shows that Raptor, Fep- Addtl and Art- Min achieve
101 % of base line effectiveness with less than 500 test cases on subject programs.
Figures 4, 5, and 6 show the comparison of fault localization costs between Dms

and the three different prioritization techniques. The horizontal axes represent the
number of versions that show differences in the Cost of fault localization. The vertical

123

Autom Softw Eng (2016) 23:43–75 65

Fig. 4 Improvement of Dms over Fep-Addtl

Fig. 5 Improvement of Dms over Art-Min

Fig. 6 Improvement of Dms over Raptor on UNIX programs

123

66 Autom Softw Eng (2016) 23:43–75

axes represent the percentage difference in Costs. If Dms is better than the reference
method, the area above zero-level line will be larger.
DMS vs FEP-ADDTL. Previous studies (Rothermel et al. 2001; Elbaum et al. 2002)
show that Fep-Addtl is the most promising prioritizing method for fault detec-
tion. Without test oracles, Fep can be estimated by 1−False Negative Rate (Fnr)
(González-Sanchez et al. 2011b) 6 which is also used in our study. Figure 4 presents
the comparison between Dms and Fep-Addtl over all faulty versions that show per-
formance differences. Fep-Addtl is used as the reference prioritization technique.
The baseline represents the fault localization cost on program spectra prioritized
by Fep-Addtl. Each program version is a bar in this graph and we remove ver-
sions from the graph that have no cost differences. In the figure, the vertical axis
represents the magnitude of improvement of Dms over Fep-Addtl. If the bar of
a faulty version is above the horizontal axis, that means on this version Dms per-
forms better than Fep-Addtl (positive improvement) and the bars below the hor-
izontal axis represent faulty versions for which Dms performs worse than Fep-
Addtl.

The comparison shows that Dms performs better than Fep-Addtl on 102 versions,
out of 153 versions that show differences in cost, but performs worse than Fep-Addtl
on51versions. The positive improvement ranges from0.03 to 45.90%,with an average
of 6.35 %.
DMS vs Art-MIN. In this studywe compare the effectiveness of Dms toAdaptive Random
Test Prioritization (Art) (Jiang et al. 2009). There are various strategies for Art, in
this experiment we only compare with the best one: Art-Min (Jiang et al. 2009;
González-Sanchez et al. 2011a, b). Figure 5 shows the results of the study in which
Art-Min is used as the baseline method. The comparison shows that Dms is better
than Art-Min. Out of 129 versions that show differences in cost, our prioritization
method performs better than Art-Min on 80 versions but performs worse than the
Art-Min on 49 versions.
DMS vs RAPTOR. Figure 6 shows the comparison between Dms and Raptor on Unix

programs. Here we use Raptor as the reference metric. The comparison shows that
Dms outperforms Raptor on 20 versions by at least 1 % cost, and on only 5 versions,
it is worse than Raptor by over 1 % cost.

There is also improvement on Siemens programs: 32.2% versions show differences
and the average debugging cost improvement is 1.3 %, which is not so significant
as compared with Unix programs. This is probably due to the small software size.
On Siemens programs, Raptor can reach 101 % of base line effectiveness by only
selecting 20 test cases on average (see Table 6). By selecting such few test cases,
Raptor already obtains the maximal ambiguity group reduction due to very limited
different coverage profiles. For example, all test cases of tcas only have less than
15 ambiguity groups in all faulty versions. In this case, the speedup by our method
is trivial. In real scenario, programs to be diagnosed would be more similar to Unix

programs.

6
Fnr is the program passing rate when program element is the real fault and executed in test case. Usually

when Fnr is high, the fault is difficult to be detected by Spectrum-based fault localization techniques.

123

Autom Softw Eng (2016) 23:43–75 67

5.2 RQ2: Multi-fault programs

Section 5.2.1 gives details about our experimental setup for multi-fault programs. Sec-
tion 5.2.2 introduces the subject programs used in our study. Sections 5.2.3 and 5.2.4
show the results.

5.2.1 Experimental setups and measures

The overall experimental setups and measures used for comparison for the multi-fault
setting is similar to the single-fault setting.

There is only a minor difference in the definition of the diagnostic cost as now there
are multiple faults. The diagnostic cost is defined as follows:

cost =
∣
∣{ j | fTS (d j) ≥ mind∗∈D∗ fTS (d∗)

}∣∣

|D| (10)

where D consists of all program elements appearing in the program and D∗ is a set
of faults in a program. We calculate the average cost as the percentage of elements
that developers have to examine until locating all root causes (D∗). Since multiple
program elements can be assigned with the same suspiciousness score, the numerator
is considered as the number of program elements d j that have bigger or the same
suspiciousness score to a root cause d∗ in D∗ with the lowest suspiciousness score.
In this setting, we consider the worst-case scenario where developers need to find all
root causes by inspecting all elements that have a score no lower than the score of any
root cause.

5.2.2 Subject programs

Eachmulti-fault program version used in our study contains more than one fault where
each fault involves only one line (or one simple statement if the statement is broken
into more than one line) in the program and different faults affect different lines. This
consideration is aligned with previous studies (e.g. Zhang et al. 2013; Abreu et al.
2009). We use a dataset containing 173 multi-fault versions of 8 C programs as shown
in Table 10. Different versions may contain the same fault, and there are 157 distinct
faults in total. The dataset was previously used by Lucia et al. (2014) to evaluate 40
different association measures.

5.2.3 Experimental results: Reducing number of test cases

We investigate the effectiveness of DMS in reducing the number of test cases needed
for a targeted diagnostic cost for our multi-fault subject programs. Table 11 shows how
many labels are needed on average to achieve 101 % of base line effectiveness (cf.
Sect. 5.1.1) for each approach. For example,Raptor requires 98 labels on average for
each faulty version from all of the eight program datasets whileDms needs 79. In total,
Dms requires the least amount of labeling effort; in comparison with the existing best
approach (FepAddtl), Dms achieves 5.95 % labeling reduction on all of the datasets.

123

68 Autom Softw Eng (2016) 23:43–75

Table 10 Multi-fault subject
programs

Program # Bugs per
version

Tests # Versions

tcas 5 1,608 41

schedule2 2 2,710 10

schedule 5 2,650 9

replace 5 5,542 32

tot_info 5 1,052 23

print_tokens2 5 4,115 10

print_tokens 2 4,130 10

space 5 1,343 38

Table 11 Labeling effort on subject programs

Subject Dms Raptor Sequoia Stmt- Stmt- Fep- Art-

programs Addtl Total Addtl Min

All 79 98 111 102 240 84 164

5.2.4 Experimental results: Reducing cost

This subsection investigates the effectiveness of Dms in reducing cost given a targeted
number of labeled test cases. Similar to the single-fault setting, we select 30 test cases
and utilize the same method to compare between techniques. We also find that in our
evaluation the average debugging cost of usingDmswill not reduce significantly even
if more labeled test cases than 50 are added further (see Fig. 7).
Summary. Tables 12, 13, and 14 summarize the comparison between our method and
the existing prioritizing techniques. Table 12 illustrates the distributions of Dms’s
performance against other techniques. For example, the first row shows that Dms
performs better than Raptor on 34.68 % of the faulty versions, worse on 31.79 %
of the faulty versions, and shows no improvement on 33.53 % of the faulty versions.
The first row of Table 13 characterizes the degree of positive improvement of Dms
over Raptor. As the table indicates, half of the 34.68 % faulty versions with positive
improvement values have improvements between 0.03 and 1.05 %, and the other half
have improvements between 1.05 and 46.75 %. The average positive improvement of
Dms over Raptor is 5.95 %. Table 14 illustrates the degree of negative deterioration
of Dms over other techniques. The first row shows that, half of the 31.79 % faulty
versions for which Dms performs worse than Raptor have deterioration between
0.23 and 2.94 %, and the other half have deterioration between 2.94 and 53.30 %. The
average deterioration of Dms from Raptor is 8.54 %.

We conduct paired Wilcoxon signed-rank test to confirm the difference in perfor-
mancebetweenDms and six existingprioritization techniques. The statistical test result
rejects the null hypothesis and suggests that the performance differences betweenDms
and other techniques are statistically significant at 95 % confidence interval.

123

Autom Softw Eng (2016) 23:43–75 69

Fig. 7 Average cost of DMS when selecting different numbers of test cases

Table 12 Comparison of
prioritization methods

Experiment results for DMS are
in bold

Test prioritization
method

Positive (%) Negative (%) Neutral (%)

Dms vs Raptor 34.68 31.79 33.53

Dms vs Sequoia 46.24 39.31 14.45

Dms vs Stmt-Addtl 50.29 28.23 21.39

Dms vs Stmt-Total 71.10 24.86 4.05

Dms vs Fep-Addtl 51.45 29.48 19.08

Dms vs Art-Min 71.68 23.70 4.62

Table 13 Distribution of
positive improvements

Test prioritization
method

Max (%) Mean (%) Median (%) Min (%)

Dms vs Raptor 46.75 5.95 1.05 0.03

Dms vs Sequoia 51.75 18.31 14.31 0.56

Dms vs Stmt-Addtl 54.24 10.67 4.50 0.04

Dms vs Stmt-Total 56.31 19.25 25.42 0.19

Dms vs Fep-Addtl 99.05 17.94 9.04 0.02

Dms vs Art-Min 99.13 42.96 36.83 0.14

Detailed comparison. Similar to the single-fault setting, we show the comparison
between Dms and three methods, Raptor, Fep-Addtl and Art-Min, in terms of
fault localization costs in Figs. 8, 9, and 10.
DMS vs FEP-ADDTL. Figure 8 presents the comparison between Dms and Fep-Addtl
over all faulty versions that show cost differences. The comparison shows that Dms is

123

70 Autom Softw Eng (2016) 23:43–75

Table 14 Distribution of
negative deterioration

Test prioritization
method

Max (%) Mean (%) Median (%) Min (%)

Dms vs Raptor 53.30 8.54 2.94 0.23

Dms vs Sequoia 52.00 8.49 4.37 0.19

Dms vs Stmt-Addtl 53.86 10.88 4.87 0.14

Dms vs Stmt-Total 51.38 10.56 7.10 0.13

Dms vs Fep-Addtl 47.13 10.72 5.89 0.04

Dms vs Art-Min 46.21 3.33 2.01 0.16

Fig. 8 Improvement of Dms over Fep- Addtl

Fig. 9 Improvement of Dms over Art-Min

better thanFep-Addtlon89versions, out of 140versions that showdifferences in cost,
but performs worse than the Fep-Addtl on 51 versions. The positive improvement
ranges from 0.02 to 99.05 %, with an average of 17.94 %.
DMS vs Art-MIN. We compare the effectiveness of Dms to the best variant of Adaptive
Random Test Prioritization(Art), namely Art-Min (Jiang et al. 2009; González-

123

Autom Softw Eng (2016) 23:43–75 71

Fig. 10 Improvement of Dms over Raptor

Sanchez et al. 2011b, a). Figure 9 shows the results of the study in which Art-Min is
used as the baseline method. The comparison shows that Dms is better than Art-Min

on 124 versions, out of 165 versions that show differences in cost, but performs worse
than the Art-Min on 41 versions.
DMS vs RAPTOR. Figure 10 shows the comparison between Dms and Raptor. The
comparison shows that Dms is better than Raptor on 60 versions, out of 115 versions
that show differences in cost, but performs worse than theRaptor on 55 versions. The
average deterioration (8.54%)ofDms (Table 14 is higher than its average improvement
(5.95 %) in comparison with Raptor (Table 13), even though Dms reduces the total
labelling effort from 98 test cases to 79 (Table 11). We are yet unclear about the reason
causing the trade-off in the multi-fault programs. It is very intriguing future work to
find ways to balance between labelling effort and diagnostic cost better.

5.3 Discussion and threats to validity

As we have noticed, the improvement of Dms in single-fault and multi-fault programs
are different. In the 12 single-fault programs, Dms requires the minimal amount of
labeling effort by achieving 67.7 % labeling reduction on Unix programs and 10
% reduction on Siemens programs in comparison with the existing best approach—
Raptor. While in the 8multi-fault programs,Dms achieves 5.95% labeling reduction
in comparison with the existing best approach—Fep-Addtl. The phenomenon hap-
pens sinceweconsider theworst cases of Dms inmulti-fault programs, i.e.,we consider
the root case d∗ with the lowest suspiciousness score. In some versions of the multi-
fault programs,Dms needs more test cases to achieve 101 % of base line effectiveness
than that of Fep-Addtl. For example, in the version 2 of the program print_token2,
Dms need to label 500 test cases to achieve 101 % of base line effectiveness, while
Fep-Addtl only requires 59 test cases. Thus, the average reduced number of test cases
for Dms in multi-fault program is not as high as that in single-fault programs.

123

72 Autom Softw Eng (2016) 23:43–75

However, the improvements of Dms in reducing cost are statistically significant
for both single-fault and multi-fault programs at 95 % confidence interval via paired
Wilcoxon signed-rank tests.Moreover, althoughwenotice thatDms reduce the number
of test case of Fep-Addtl by 5.95 % in multi-fault programs, but there are 51.45 %
fault versions that Dms show positive improvement over Fep-Addtl, and 29.48 % fault
versions that Dms show negative deterioration over Fep-Addtl, while the number for
single-fault programs are 40.16 and 20.08 %.

The threats to our studies include the issue of how representative the subjects of
our studies are. Since the Siemens programs are small, and larger programs may be
subject to different testing and debugging traits. To strengthen the external validity,
we include Unix programs which are real-life programs. These subjects have been
adopted for evaluation in many studies (e.g. Jones and Harrold 2005; Abreu et al.
2009; Santelices et al. 2009).

Another possible threat is that although our method outperforms existing method
in 25.2–62.99 % program versions and gets equivalent cost in around 30 % versions,
there are still a certain percent of versions that our method does not perform very well.
But as we can see in the studies, most of the negative deterioration of those versions are
relatively small comparing to the positive improvements. We also conduct statistical
tests to further confirm the advantage of Dms.

There are also many other kinds of threats to validity affecting fault localization
techniques in general as listed in a recent study by Steimann et al. (2013), such as
heterogeneity of test cases, biases in injected faults, unrealistic assumptions about
locating and understanding faults, etc. Although we focus on evaluating test case
prioritization techniques, instead of fault localization techniques, our work inevitably
inherits the threats to validity for fault localization techniques since our evaluation
of prioritization techniques is done through the evaluation of fault localization. We
hope in future work the threats to validity for both fault localization and test case
prioritization techniques can be addressed together.

6 Related work

In this section, we describe related work on fault localization, defect prediction, test
case prioritization, diagnostic prioritization, and automated oracle construction. The
survey here is by no means a complete list.

6.1 Fault localization

Over the past decade, many automatic fault localization and debugging methods have
been proposed. Theways of calculating suspiciousness for program elements based on
program spectra are various, such as Tarantula (Jones et al. 2002; Jones and Harrold
2005), Ochiai (Abreu et al. 2009), Sober (Liu et al. 2005), DStar (Wong et al. 2014),
and many others (e.g. Xie et al. 2013; Naish et al. 2011; Lucia et al. 2014; Jiang and
Su 2007). Renieris and Reiss (2003) propose a nearest neighbor fault localization tool
calledWhither that compares the failed execution to the correct execution and reports
themost ambiguity locations in the program. Zeller (2002) appliesDelta Debugging to

123

Autom Softw Eng (2016) 23:43–75 73

search for the minimum state differences between a failed execution and a successful
execution that may cause the failure. Liblit et al. (2003) consider predicates whose true
evaluation correlates with failures are more likely to be the root cause. Campos et al.
(2013) propose ENTBUG which applies entropy theory to guide test case generation.

6.2 Test case prioritization

Test case prioritization techniques are initially proposed for early fault detection
in regression testing. Rothermel et al. (2001) show the coverage-based and Fault-
exposing-potential based approaches can improve the rate of fault detection of test
suites. Elbaum et al. (2002) further investigate “version-specific prioritization” on dif-
ferent profile granularities. (Li et al. 2007) show that Additional Greedy Algorithm is
among the best approaches for regression test case prioritization. Baudry et al. (2006)
propose Dynamic Basic Block (Dbb) for test suite reduction. Their method focuses
on the number of Dbbs. González-Sanchez et al. (2011a) further consider group sizes
for test suite reduction.

6.3 Oracle construction

Although in recent years, many studies (e.g. Pacheco and Ernst 2005; Xie 2006;
Bowring et al. 2004) aim to automatically generate test oracles, they are often heavy
weight, based on certain assumption and thus applicable to specific scenarios. Eclat
(Pacheco and Ernst 2005) can generate assertions based on a learning model, but they
assume correct executions. Xie (2006) proposes a method called Orstra for oracle
checking. Bowring et al. (2004) propose Argo which selects test cases inducing
unknown behaviors to actively construct test oracles for improving test quality. The
approach is more suitable for regression testing. Our approach complements these
studies by reducing the effort needed for the purpose of fault localization.

7 Conclusion and future work

This paper proposes a new concept and technique named diversity maximization
speedup (Dms) aiming tominimize the amount of effort inmanual oracle construction,
while still permitting effective fault localization. In comparison with six other exist-
ing prioritization techniques on 12 C programs, we have shown that our technique
requires on average a smaller number of labelled test cases to achieve the targeted
diagnostic cost of subsequent fault localization techniques, and that if the same num-
ber of labelled test cases are allowed, it can choose test cases that may be more
effective in reducing debugging cost. We have shown that the improvements made
by our technique on real-life programs over other existing techniques are statistically
significant.

In future, we will evaluate the proposed approach on more subject programs. We
will also explore the possibility of adoptingmore sophisticated trend analysismethods.

123

74 Autom Softw Eng (2016) 23:43–75

Acknowledgments This work is partially supported by NSFC Program (Nos. 61073006 and 61103032),
Tsinghua University project 2010THZ0, and National Key Technology R&D Program of the Ministry of
Science and Technology of China (No. 2013BAH01B03). We thank researchers at University of Nebraska–
Lincoln, Georgia Tech, and Siemens Corporate Research for the Software-artifact Infrastructure Repository.
We would also like to thank the anonymous reviewers for providing us with constructive comments and
suggestions.

References

Abreu, R., Zoeteweij, P., Golsteijn, R., van Gemund, A.: A practical evaluation of spectrum-based fault
localization. J. Syst. Softw. 82(11), 1780–1792 (2009)

Ali, S., Andrews, J., Dhandapani, T., Wang,W.: Evaluating the accuracy of fault localization techniques. In:
IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 76–87 (2009)

Arcuri, A., Briand, L.C .: Adaptive random testing: an illusion of effectiveness? In: ISSTA, pp. 265–275
(2011)

Artzi, S., Dolby, J., Tip, F., Pistoia, M.: Directed test generation for effective fault localization. In: ISSTA,
pp. 49–60 (2010)

Baah, G.K., Podgurski, A., Harrold, M.J.: Causal inference for statistical fault localization. In: ISSTA, pp.
73–84 (2010)

Baah, G.K., Podgurski, A., Harrold, M.J.: Mitigating the confounding effects of program dependences for
effective fault localization. In: SIGSOFT FSE, pp. 146–156 (2011)

Baudry, B., Fleurey, F., Traon, Y.L.: Improving test suites for efficient fault localization. In: ICSE, pp. 82–91
(2006)

Beizer, B.: Software Testing Techniques, 2nd edn. International Thomson Computer Press, Boston (1990)
Bowring, J.F., Rehg, J.M., Harrold, M.J.: Active learning for automatic classification of software behavior.

In: ISSTA, pp. 195–205 (2004)
Campos, J., Abreu, R., Fraser, G., d’Amorim, M.: Entropy-based test generation for improved fault local-

ization. In: IEEE/ACM 28th International Conference on Automated Software Engineering (ASE),
IEEE, pp. 257–267 (2013)

Cleve, H., Zeller, A.: Locating causes of program failures. In: ICSE (2005)
Debroy, V., Wong, W.E.: A consensus-based strategy to improve the quality of fault localization. Softw.

Pract. Exp. 43(8), 989–1011 (2013)
Do, H., Elbaum, S.G., Rothermel, G.: Supporting controlled experimentation with testing techniques: an

infrastructure and its potential impact. Empir. Softw. Eng. 10(4), 405–435 (2005)
Elbaum, S., Malishevsky, A.G., Rothermel, G.: Test case prioritization: a family of empirical studies. IEEE

TSE 28, 159–182 (2002)
Godefroid, P., Klarlund, N., Sen, K.: Dart: Directed automated random testing. In: PLDI, pp. 213–223

(2005)
González-Sanchez, A., Abreu, R., Groß, H.G., van Gemund, A.J.C.: Prioritizing tests for fault localization

through ambiguity group reduction. In: ASE, pp. 83–92 (2011a)
González-Sanchez, A., Piel, É., Abreu, R., Groß, H.G., van Gemund, A.J.C.: Prioritizing tests for software

fault diagnosis. Softw. Pract. Exper. 41(10), 1105–1129 (2011b)
Graybill, F.A., Iyer, H.K.: RegressionAnalysis: Concepts andApplications. Duxbury Press, Belmont (1994)
Hamlet, R.: Testing programs with the aid of a compiler. IEEE TSE 3(4), 279–290 (1977)
Jiang, B., Zhang, Z., Chan, W.K., Tse, T.H.: Adaptive random test case prioritization. In: ASE, pp, 233–244

(2009)
Jiang, B., Chan, W.K., Tse, T.H.: On practical adequate test suites for integrated test case prioritization and

fault localization. In: QSIC, pp. 21–30 (2011)
Jiang, L., Su, Z.: Context-aware statistical debugging: from bug predictors to faulty control flow paths.

In: IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 184–193
(2007)

Jones, J., Harrold, M.: Empirical evaluation of the tarantula automatic fault-localization technique. In: ASE
(2005)

Jones, J., Harrold, M., Stasko, J.: Visualization of test information to assist fault detection. ICSE, pp.
467–477. Orlando, FL (2002)

123

Autom Softw Eng (2016) 23:43–75 75

Li, Z., Harman, M., Hierons, R.: Search algorithms for regression test case prioritization. IEEE TSE 3,
225–237 (2007)

Liblit, B., Aiken, A., Zheng, A.X., Jordan, M.I.: Bug isolation via remote program sampling. In: PLDI, pp.
141–154 (2003)

Liblit, B., Naik, M., Zheng, A.X., Aiken, A., Jordan, M.I.: Scalable statistical bug isolation. In: ACM
SIGPLAN International Conference on Programming Language Design and Implementation (PLDI)
(2005)

Liu, C., Yan, X., Fei, L., Han, J., Midkiff, S.P.: SOBER: Statistical model-based bug localization. In:
ESEC/FSE (2005)

Lucia, Lo D., Jiang, L., Thung, F., Budi, A.: Extended comprehensive study of association measures for
fault localization. J. Softw. Evolut. Process 26(2), 172–219 (2014)

Nainar, P.A., Chen, T., Rosin, J., Liblit, B.: Statistical debugging using compound boolean predicates. In:
ISSTA, pp. 5–15 (2007)

Naish, L., Lee, H.J., Ramamohanarao, K.: A model for spectra-based software diagnosis. ACM TOSEM
20(3), 11:1–11:32 (2011)

National Institute of Standards and Technology (NIST): Software Errors Cost U.S. Economy $59.5 Billion
Annually (2002)

Pacheco, C., Ernst, M.D.: Automatic generation and classification of test inputs. In: ECOOP, pp. 504–527
(2005)

Parnin, C., Orso, A.: Are automated debugging techniques actually helping programmers? In: ISSTA, pp.
199–209 (2011)

Renieris, M., Reiss, S.: Fault localization with nearest neighbor queries. In: ASE, pp. 141–154 (2003)
Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Prioritizing test cases for regression testing. In: IEEE

TSE, pp. 929–948 (2001)
Santelices, R.A., Jones, J.A., Yu, Y., Harrold, M.J.: Lightweight fault-localization using multiple coverage

types. In: ICSE, pp. 56–66 (2009)
Sen, K., Marinov, D., Agha, G.: Cute: a concolic unit testing engine for c. In: ESEC/SIGSOFT FSE, pp.

263–272 (2005)
Steimann, F., Frenkel, M.: Improving coverage-based localization of multiple faults using algorithms from

integer linear programming. In: IEEE International Symposium on Software Reliability Engineering
(ISSRE), pp. 121–130 (2012)

Steimann, F., Frenkel, M., Abreu, R.: Threats to the validity and value of empirical assessments of the
accuracy of coverage-based fault locators. In: International Symposium on Software Testing and
Analysis (ISSTA), pp. 314–324 (2013)

Wilcoxon, F.: Individual comparisons by ranking methods. In: Biometrics, pp. 80–3 (1943)
Wong, W.E., Debroy, V., Gao, R., Li, Y.: The dstar method for effective software fault localization. IEEE

Trans. Reliab. 63(1), 290–308 (2014)
Xie, T.: Augmenting automatically generated unit-test suites with regression oracle checking. In: ECOOP,

pp. 380–403 (2006)
Xie, X., Chen, T.Y., Kuo, F.C., Xu, B.: A theoretical analysis of the risk evaluation formulas for spectrum-

based fault localization. ACM TOSEM 22(4), 31:1–31:40 (2013)
Xu, X., Debroy, V., Wong, W.E., Guo, D.: Ties within fault localization rankings: exposing and addressing

the problem. Int. J. Softw. Eng. Knowl. Eng. 21(6), 803–827 (2011)
Zeller, A.: Isolating cause-effect chains from computer programs. In: FSE, pp. 1–10, doi:10.1145/587051.

587053 (2002)
Zhang, L., Hao, D., Zhang, L., Rothermel, G., Mei, H.: Bridging the gap between the total and additional

test-case prioritization strategies. In: ICSE, IEEE Press, pp. 192–201 (2013)

123

http://dx.doi.org/10.1145/587051.587053
http://dx.doi.org/10.1145/587051.587053

	Diversity maximization speedup for localizing faults in single-fault and multi-fault programs
	Abstract
	1 Introduction
	1.1 Running example
	1.2 Contributions
	1.3 Paper outline

	2 Preliminaries
	2.1 Fault localization
	2.2 Test case prioritization
	2.2.1 Coverage based prioritization
	2.2.2 Fault-exposing potential based prioritization
	2.2.3 Diagnostic prioritization
	2.2.4 Practical usage

	3 Problem definition
	3.1 Running example revisited
	3.2 Formal definition of DMS

	4 Approach details
	4.1 Identify high change-potential elements
	4.1.1 Representative time series construction
	4.1.2 Linear model construction
	4.1.3 Change potential computation

	4.2 Speed up the rank change process
	4.3 Overall approach
	4.4 Example
	4.5 Approach complexity and robustness

	5 Empirical evaluation
	5.1 RQ1: Single-fault programs
	5.1.1 Experimental setups and measures
	5.1.2 Subject programs
	5.1.3 Experimental results: Reducing number of test cases
	5.1.4 Experimental results: Reducing cost

	5.2 RQ2: Multi-fault programs
	5.2.1 Experimental setups and measures
	5.2.2 Subject programs
	5.2.3 Experimental results: Reducing number of test cases
	5.2.4 Experimental results: Reducing cost

	5.3 Discussion and threats to validity

	6 Related work
	6.1 Fault localization
	6.2 Test case prioritization
	6.3 Oracle construction

	7 Conclusion and future work
	Acknowledgments
	References

