
Autom Softw Eng (2015) 22:75–109
DOI 10.1007/s10515-014-0162-2

Automatic, high accuracy prediction of reopened bugs

Xin Xia · David Lo · Emad Shihab ·
Xinyu Wang · Bo Zhou

Received: 3 October 2013 / Accepted: 25 July 2014 / Published online: 18 September 2014
© Springer Science+Business Media New York 2014

Abstract Bug fixing is one of the most time-consuming and costly activities of the
software development life cycle. In general, bugs are reported in a bug tracking system,
validated by a triage team, assigned for someone to fix, and finally verified and closed.
However, in some cases bugs have to be reopened. Reopened bugs increase software
maintenance cost, cause rework for already busy developers and in some cases even
delay the future delivery of a software release. Therefore, a few recent studies focused
on studying reopened bugs. However, these prior studies did not achieve high perfor-
mance (in terms of precision and recall), required manual intervention, and used very
simplistic techniques when dealing with this textual data, which leads us to believe that
further improvements are possible. In this paper, we propose ReopenPredictor, which
is an automatic, high accuracy predictor of reopened bugs. ReopenPredictor uses a
number of features, including textual features, to achieve high accuracy prediction of
reopened bugs. As part of ReopenPredictor, we propose two algorithms that are used
to automatically estimate various thresholds to maximize the prediction performance.

X. Xia · X. Wang (B) · B. Zhou
College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China
e-mail: wangxinyu@zju.edu.cn

X. Xia
e-mail: xxkidd@zju.edu.cn

B. Zhou
e-mail: bzhou@zju.edu.cn

D. Lo
School of Information Systems, Singapore Management University, Singapore, Singapore
e-mail: davidlo@smu.edu.sg

E. Shihab
Department of Computer Science and Software Engineering, Concordia University, Montreal, QC,
Canada
e-mail: eshihab@cse.concordia.ca

123



76 Autom Softw Eng (2015) 22:75–109

To examine the benefits of ReopenPredictor, we perform experiments on three large
open source projects—namely Eclipse, Apache HTTP and OpenOffice. Our results
show that ReopenPredictor outperforms prior work, achieving a reopened F-measure
of 0.744, 0.770, and 0.860 for Eclipse, Apache HTTP and OpenOffice, respectively.
These results correspond to an improvement in the reopened F-measure of the method
proposed in the prior work by Shihab et al. by 33.33, 12.57 and 3.12 % for Eclipse,
Apache HTTP and OpenOffice, respectively.

Keywords Reopened bugs · Imbalanced feature selection · Imbalanced learning

1 Introduction

Bug fixing is one of the main activities in the software development and maintenance
process. The vast majority of open source and commercial software projects use bug
tracking systems, such as Bugzilla, to manage their software bugs. Since effective man-
agement of bugs is a very important problem, numerous research studies have proposed
automated techniques to manage bug assignments, such as bug triaging (Anvik et al.
2006), the detection of duplicate bug reports (Sun et al. 2011), etc.

However, in some cases, a bug has to be reopened. Bugs can be reopened for various
reasons (Zimmermann et al. 2012); for example, if a tester did not provide sufficient
information in the bug report, if the developer misunderstood the root cause of the
bug, if the bug reappeared in the current version of system although it was fixed in the
previous version (i.e., a regression bug), and so on. Reopened bugs are undesirable
since they take longer to resolve (almost twice as long as not reopened bugs), they
consume valuable time from the already-busy developers and lead end users to lose
trust in the quality of the software product (Shihab et al. 2010). Such negative impact
of reopened bugs has been confirmed in both open source (e.g., Shihab et al. 2010,
2012; Xia et al. 2013) and commercial projects (Zimmermann et al. 2012).

Recently, a few studies investigated reopened bug reports. The most related studies
are Shihab et al. (2010, 2012), Xia et al. (2013), and Zimmermann et al. (2012).
Shihab et al. (2010, 2012) propose the problem of predicting reopened bug reports. Xia
et al. (2013) investigate the effectiveness of different supervised learning algorithms
for reopened bug prediction. Zimmermann et al. (2012) comprehensively investigate
factors that cause bug reports to be reopened in Microsoft. Although these prior studies
focused on reopened bugs, they were mostly exploratory in nature. First, we note that
their precision and recall need to be improved in order to make them applicable in
a real-life scenario. Second, most of these studies required manual intervention and
tuning in order to determine certain thresholds that make their approaches work.

A major challenge that causes low precision and recall when reopened bugs are
considered is the fact that only a small proportion of bug reports are actually reopened.
There is an unequal distribution between reopened and non-reopened bug reports. Only
16.1, 6.46, and 26.31 % of the bug reports in the whole bug report repository of Eclipse,
Apache HTTP, and OpenOffice projects respectively are reopened (for more details,
see Table 2). We refer to this phenomenon as the class imbalance phenomenon (He
and Garcia 2009). Due to the class imbalance phenomenon, predicting reopened bugs
with high accuracy is a difficult task.

123



Autom Softw Eng (2015) 22:75–109 77

Therefore, in this paper we propose ReopenPredictor, which improves the perfor-
mance of existing techniques. Past approaches (e.g., Shihab et al. 2010, 2012; Xia
et al. 2013) only consider a limited set of features, ignore the class imbalanced phe-
nomenon, and uses only one classifier. ReopenPredictor achieves better performance
over previous approaches by the following means. First, we investigate various kinds
of features that we could extract from the dataset; these include: features from raw
textual information contained in the summary and description fields of bug reports
(description features), features from raw textual information in the comments of bug
reports (comment features), and features proposed by Shihab et al. (meta features).
Second, to overcome the issue related to the high dimensionality of textual data and the
class imbalance phenomenon, we propose a feature selection method which is based on
the correlation coefficient. Third, ReopenPredictor is a composite classification-based
framework, which automatically combines and assigns weights to multiple classifiers
(i.e., a description classifier, a comment classifier, and a meta classifier), to achieve
a high performance. A developer can use our tool at the end of a bug fixing process.
If our tool predicts that a bug report would be reopened, the developer can then put
more effort to mitigate the reopening of the bug. For example, a developer can per-
form additional code reviews or to add more test cases to ensure that the bug has been
properly fixed.

In this work we integrate a relatively new software engineering (SE) problem,
namely “predicting reopened bugs” with a specialized artificial intelligence (AI) solu-
tion which adapts a machine learning (a subfield of AI) algorithm to perform well on
the SE problem. The research problem motivates the need for a new adaptation of the
machine learning algorithm, and the adapted algorithm improves the performance of
the automated software engineering task. Thus, we synergize SE and AI together.

The main contributions of this paper are as follows:

(1) We propose a novel composite method, ReopenPredictor, which blends three
different classifiers trained using three different sets of features, to achieve better
performance for reopened bug prediction. The experiment results show that our
proposed ReopenPredictor achieves a much better performance than the method
used in (Shihab et al. 2010, 2012).

(2) We investigate the usefulness of the bug report text information for reopened bug
prediction. In doing so, we propose an imbalanced feature selection method that
can automatically select the most substantial textual features.

(3) We contribute to the large body of empirical work by replicating the work on
reopened bug prediction (Shihab et al. 2010, 2012), strengthening our confidence
in the findings of empirical studies.

The remainder of the paper is organized as follows. In Sect. 2, we present the
motivation of reopened bug prediction. In Sect. 3, we present an overall framework
of our ReopenPredictor. In Sect. 4, we propose our feature selection method which
chooses important textual features to predict whether a bug report will be reopened
or not. In Sect. 5, we propose RPComposer, a composite method, which uses all the
3 types of features, to achieve better performance. In Sect. 6, we report the results of
our experiment which compares our proposed approach with the algorithms proposed

123



78 Autom Softw Eng (2015) 22:75–109

by Shihab et al. In Sect. 7, we present related studies. In Sect. 8, we conclude and
mention future work.

2 Motivation

In general, a typical bug goes throughout the following four steps (we take Bugzilla
as an example):

(1) A tester or an end user detected a bug in the software, and published a bug report
to describe the bug in Bugzilla. The current bug status is “new”;

(2) A bug triager assigned this bug to the most appropriate developer. The current
bug status is “assigned”;

(3) The developer read the bug report, and verified whether it is a real bug, and tried
to fix it. The current bug status is “verified”;

(4) Finally, after the developer had fixed the bug or verified that it is not a bug, the
bug triager closes this bug. The current bug status is “closed”;

However, in certain cases a bug is reopened. For example, Fig. 1 presents a reopened
bug report of OpenOffice project with BugID 41356. We list the summary and descrip-
tion fields of the bug report, the list of comments before the bug report is reopened,
as well as other fields in the bug report such as product, component, report time, etc.

Reopened bugs can reduce the reliability of a software system. A past study by
Shihab et al. (2012) has also shown that reopened bugs take longer to be fixed. The
example in Fig. 1 shows that the bug is reopened around two months after it was
closed. In these two months, the software is still buggy. The bug fixing process is also
delayed by more than two months. After the two months, the bug fixer needs to restart
the bug fixing effort which involves trying to understand what the bug is about, what
the code is supposed to do, and so on. With ReopenPredictor, a developer can use our
tool at the end of a bug fixing process (i.e., at 2004-09-28). If our tool predicts that a
bug report would be reopened, the developer can then put more effort to perform code
review or to add more test cases to ensure that the bug has been properly fixed. Thus,
the bug would not be reopened, and it will make the system more reliable and reduce
unnecessary maintenance cost.

It is difficult to decide which words are more important in predicting that a bug
report would be reopened or not. With our imbalanced feature selection method we
can consider other bug reports that are reopened and those that are not, and use them
to identify important words, e.g., “document”, “start”, “wizard”, “crash”, “database”,
and “dbwizard”.1

The aforementioned scenario is just one example, however, we believe that this
example gives us a hint that the textual comments in the bug report contain important
information. Therefore, in contrast to past research on reopened bugs, a large portion
of our work focuses on how to optimally leverage textual information in order to
improve the performance of the reopened bug prediction. As it turns out, leveraging
textual information is not an easy task due to the class imbalance phenomenon, which
we discuss in detail in Sect. 4.2.

1 For more details, please refer to Sect. 4.

123



Autom Softw Eng (2015) 22:75–109 79

Fig. 1 Reopened bug report of OpenOffice Project with BugID 34212. The comments below the dark line
are the comments after the bug report is reopened

3 Overall framework

Figure 2 presents the overall framework of ReopenPredictor. The entire framework
contains two phases: a model building phase and a prediction phase. In the model
building phase, our goal is to build a model from historical bug reports that can
discriminate reopened from non-reopened bug reports. In the prediction phase, this
model is used to predict if an unknown bug report would be reopened or not.

Our framework first collects various fields from a set of training bug reports with
a known status (Steps 1, 2 and 3). We collect the description and summary text fields
(Step 1), the comments text fields (Step 2), and other fields (such as previous status,

123



80 Autom Softw Eng (2015) 22:75–109

Fig. 2 Overall framework for reopened bug prediction (ReopenPredictor)

priority, component, product, report time, etc) (Step 3). It is important to note that
we only consider comments before a bug report was reopened. For the description
and summary text, and comments text, we tokenize them, remove the stop-words,
stem them, and represent them in the form of “bags of words” (Steps 4 and 5). Each
processed word becomes a feature. Then we use our feature selection method to
generate substantial features from the description and summary text, and the comments
text, respectively (Steps 6 and 7).2 Moreover, for the other fields, we extract meta
features (Step 8). These features are first proposed in (Shihab et al. 2010, 2012) and
are briefly described in Table 1.

Next, our framework constructs the classifiers based on the three types of features
(Steps 9, 10 and 11). A classifier is a machine learning model which assigns labels (in
our case: reopened or not) to a data point (in our case: a bug report) based on its fea-
tures.3 We then blend or combine the 3 classifiers together to construct a RPComposer
classifier (Step 12).4

After the RPComposer classifier is constructed, in the prediction phase they are
then used to predict whether a bug report with an unknown label will be reopened
or not. For each such bug report, we first extract the values of the features belonging
to the three feature types from it (Step 13). We then input the feature values to the
RPComposer classifier (Step 14) that outputs the prediction result, which is one of the
following labels: reopened or non-reopened (Step 15).

4 Imbalanced text feature selection

We consider three sources of information for reopened bug prediction. Two of these
are textual information that are represented as bags-of-words. Each processed word in

2 For more details, please refer to Sect. 4.
3 For more details of these three classifiers, please refer to Sect. 5.1.
4 For more details of RPComposer, please refer to Sect. 5.2.

123



Autom Softw Eng (2015) 22:75–109 81

Table 1 Meta features extracted from bug reports as described in (Shihab et al. 2010, 2012)

Features Type Description

Time Nominal Hour the bug is closed

Weekday Nominal Day of the week the bug is closed

Month day Numeric Day of the month the bug is closed

Month Numeric Month the bug is closed

Day of Year Numeric Day of year when the bug is closed

Time days Numeric Time to solve the bug

Last status Nominal Last status of the bug

No. of source files Nominal Number of source code files related to the bug

Reporter Name String The bug reporter name

Fixer Name String The bug fixer name

Reporter Experience Numeric Number of bug reports reported by this reporter

Fixer Experience Numeric Number of bug reports fixed by this fixer

Component Nominal Component affected by the bug

Platform Nominal Platform affected by the bug

Severity Numeric Severity of the bug report

Priority Numeric Priority of the bug report

CC list Number Numeric Number of people in CC list

Description size Numeric Number of words in description text

Description text Bayesian Scores Description text content

No. of comments Numeric Number of comments

Comment size Numeric Number of words in comment text

Comment text Bayesian Scores Comment text content

Priority changed Boolean Whether the priority was changed

Severity changed Boolean Whether the severity was changed

the bags-of-words is a feature. Thus, we have a large number of features. In machine
learning literature, a feature can be viewed as a dimension, and a data point (i.e., a bug
report) can then be viewed as a point in this high-dimensional space. An overly high
number of dimensions can cause what is known as the curse-of-dimensionality (Han
and Kamber 2006). Additionally, we have the class imbalance problem since only a
very small minority of bug reports are reopened. In this section, we address the above
problems by proposing a new feature selection strategy that can be applied to the
textual features of bug reports.

Our feature selection strategy builds on a well known feature selection metric
referred to as the correlation coefficient (CC). We introduce the correlation coeffi-
cient and explain the rationale for using it in Sect. 4.1. We then propose our feature
selection strategy that addresses the issues of high dimensionality and class imbalance
in Sect. 4.2. Our proposed imbalanced feature selection method corresponds to the
“Feature Selection” block in Fig. 2.

123



82 Autom Softw Eng (2015) 22:75–109

4.1 Correlation coefficient

In text classification, we have data points, features, and classes. In our settings, a bug
report is a data point, a word is a feature, and there are two classes: reopened (+ve) and
non-reopened bug reports (−ve). There are various feature selection metrics for text
classification, such as information gain (IG), chi-square (CHI), correlation coefficient
(CC), etc. (Zheng et al. 2004). Some of these metrics are one-sided, and some others
are two-sided. A one-sided metric would assign a score to a feature based on how
indicative a feature is to the target (+ve) class (in our case, reopened bug reports). With
a one-sided metric, we could sort features from the ones which are most indicative to
the target class to the least indicative features. A two-sided metric, on the other hand,
would assign a score to a feature based on how indicative a feature is to either one of
the classes (in our case, reopened bug reports and non-reopened bug reports). Thus
we could not sort features based on how related they are with the target class. CC is a
one-sided metrics, while IG and CHI are two-sided metrics.

In addition, as stated earlier, our dataset suffers from the class imbalance phenom-
enon: there are more data points with negative class label (i.e., non-reopened reports).
Due to this, if we apply the two-sided metrics, we would get more features that are
related to the −ve class than the +ve class. This would make the classifier learn from
the resultant features to more likely predict −ve class for an unknown data point (i.e.
bug report). Thus, this is another reason to use a one-sided metric such as CC.

Now we illustrate how the CC metric is calculated. Let us denote the bug report
collection as B R = {(B1, R1) , (B2, R2), ...(BN , RN )}, where Bi represents the i th

bug report and Ri is a label that represents whether this bug report is reopened (r )
or not (r̄ ) (i.e., Ri ∈ {r, r̄}), and the words in B R as T = {t1, t2, ...tm}. Then, the
correlation coefficient of a term t to class r is defined as:

CC(t, r) =
√

N [P(t, r)P(t̄, r̄) − P(t, r̄)P(t̄, r)]
√

P(t)P(t̄)P(r)P(r̄)
(1)

In the above equation, P(t, r), P(t, r̄), P(t̄, r), P(t̄, r̄) represent the proportion
of reopened bug reports that contain the word t , and the proportion of non-reopened
bug reports that contain the word t , the proportion of reopened bug reports that do not
contain the word t , and the proportion of non-reopened bug reports that do not contain
the word t , respectively.

Note that CC of a term t can either be negative or positive. A negative value indicates
that the word t is related to non-reopened bug reports. On the other hand, a positive
value indicates that t is related to reopened bug reports.

4.2 Imbalanced feature selection

The CC computes a score for each word t . Words with large positive and negative values
have opposite relationships with reopened bug reports. If a bug report has many words
with large positive CC scores then there is a high likelihood that it will be reopened.
On the other hand, if a bug report has many words with large negative CC scores, then

123



Autom Softw Eng (2015) 22:75–109 83

there is a high likelihood that it will not be reopened. The one-sided nature of CC
makes it good for feature selection in our setting. However, the main question is: how
should we select the positive and negative scored features for effective classification?
One naive way is to select an equal number of features with the highest positive and
negative scores. However, we propose a solution that is expected to perform better.
Rather than fixing the proportion of features with the highest positive and negative
scores, we tune this proportion using a training data. In this way, our solution considers
the peculiarity of the domain (i.e., bug reports of a particular project) to decide for the
best features to be selected.

Our proposed solution is to select l features where m % of them are features with
the highest positive scores and the rest are features with the highest negative scores.
We set the value of l to be high enough (i.e., 1,000, by default) so that a sufficient
number of positive and negative terms are included. We reduce this number if there
are relatively fewer words in a bug report collection. We divide the training dataset
into two subsets: one is used to select l features, and another is used to evaluate the
performance of the selected l features. The value of m is tuned by training and testing
on the training dataset that we have in the model building phase. We vary the value
of m using a grid search procedure (Bergstra and Bengio 2012): we start with a low
value of m and increases it by a small amount, step-by-step.

Algorithm 1 presents our proposed method. First, we divide the bug collection B R
into two subsets: B R1 and B R2 (Line 11). By default, we set the dividing coefficient
as 90 %, i.e., we use 90 % of bug reports in B R1 to select l words, and the remaining
10 % bug reports in B R2 to evaluate the performance. Next, we compute the CC
values for each word in B R1, and choose l words with the largest positive CC scores
(candPos) and l words with the largest negative CC scores (candNeg) (Lines 11, 12,
and 13). Then, we select m % top words from candPos and (100 − m)% top words
from candNeg (Lines 18–19). We build a classifier based on the selected features and
perform testing on B R2 to evaluate how good a value of m is. We record the reopened
F-measure that is achieved by the classifier. Reopened F-measure is a common measure
to evaluate how good a classifier is. It is the harmonic mean of precision and recall.
Precision refers to the proportion of bug reports predicted as reopened that are correctly
predicted. Recall refers to the proportion of reopened bug reports that are correctly
identified. We repeat the process many times by increasing the value of m little-by-
little, one step (i.e., 1) at a time. We record the value of m that gives us the highest
F-measure.

5 RPComposer: a composite method

We collected three sets of features, i.e., meta features, description text features and
comment text features. We build a classifier for each of these feature types. We then
compose the three scores together in our proposed ReopenPredictor framework. In
this section, first we define the three sets of scores outputted by the three classifiers.
Next, we describe how we combine these scores together to construct the RPComposer
classifier.

123



84 Autom Softw Eng (2015) 22:75–109

Algorithm 1 Imbalanced Feature Selection of Text Information in Reopened Bug
Prediction
1: ImbalancedFeatureSelection(l,sp,B R)
2: Input:
3: l: Number of Words would be Selected
4: sp: Dividing Coefficient
5: B R: Training Bug Report Collection
6: Output: posi tive, negative
7: posi tive: Words with positive CC scores
8: negative: Words with negative CC scores
9: Method:
10: Divide B R into two subsets B R1 and B R2 according to sp;
11: Compute CC values for each word in B R1;
12: candPos = l words with the largest positive CC scores from B R1;
13: candNeg = l words with the largest negative CC scores from B R1;
14: Best F-measure f ;
15: Best Ratio mbest ;
16: Ratio Coefficient m = 0;
17: while m ≤ 100 do
18: Select m % top words from candPos, denoted as tmpCandPos;
19: Select (100 − m)% top words from candNeg, denoted as tmpCandNeg;
20: Re-construct B R1 and B R2 with tmpCandPos and tmpCandNeg, denote as B Rtmp

1 and B Rtmp
2 ;

21: Build a classifier from B Rtmp
1 ;

22: Evaluate the reopened F-measure ftmp of the classifier using B Rtmp
2 ;

23: if ftmp > f then
24: f = ftmp ;
25: mbest = m;
26: end if
27: m = m + 1;
28: end while
29: Choose posi tive from candPos with ratio mbest %;
30: Choose negative from candNeg with ratio (100 − mbest )%;
31: Return posi tive, negative ;

5.1 Feature scores

As illustrated in Fig. 2, our proposed framework has 3 different components which cor-
respond to classifiers built using the three feature types. Let us refer to them as ClaMeta ,
ClaDesc, and ClaComment , which correspond to the “Meta Classifier”, “Description
Classifier”, and “Comment Classifier” blocks in Fig. 2, respectively. Given an unknown
bug report, ClaMeta , ClaDesc, and ClaComment output the following meta scores,
description scores, and comment scores, respectively:

Definition 1 (Meta Scores) Consider a training bug report collection B R, and its
corresponding set of meta feature values Meta. We build a classifier ClaMeta trained
on Meta. For a new bug report br , we use ClaMeta to get the likelihood that br will be
reopened, and the likelihood that br will not be reopened. We refer to these likelihood
scores as meta scores, and denote them as Meta(br, r) and Meta(br, r̄), respectively.

Definition 2 (Description Scores) Consider a training bug report collection B R, and
its corresponding set of description feature values Desc. We build a classifier ClaDesc

trained on Desc. For a new bug report br , we use ClaDesc to get the likelihood that

123



Autom Softw Eng (2015) 22:75–109 85

br will be reopened, and the likelihood that br will not be reopened. We refer to
these likelihood scores as description scores, and denote them as Desc(br, r) and
Desc(br, r̄), respectively.

Definition 3 (Comment Scores) Consider a training bug report collection B R, and
its corresponding set of comment feature values Comment . We build a classifier
ClaComment trained on Comment . For a new bug report br , we use ClaComment to
get the likelihood that br will be reopened, and the likelihood that br will not be
reopened. We refer to these likelihood scores as comment scores, and denote them as
Comment (br, r) and Comment (br, r̄), respectively.

To compute the meta, description, and comment scores from a set of meta, descrip-
tion, and comment feature values respectively, a classification algorithm is used. The
algorithm is trained on a training data of bug reports and it builds a classifier which
is a machine learning model that can assign labels (in our case: reopened or not) to
a new bug report with a certain likelihood. There are many classification algorithms
proposed in the literature; most of them assign weights to the features and use the
presence and absence of each of these features in a new bug report, along with the
weights of the features to compute the likelihood of the new bug report to be assigned
a particular label (i.e., reopened or not).

5.2 RPComposer

In this section, we propose RPComposer, a composite method which uses all of these
three scores. A linear combination of meta scores, description scores, and comments
scores is used to compute the final RPComposer scores. This computation is performed
by the “RPComposer” block in Fig. 2.

Definition 4 (RPComposer Scores) Consider a training bug report collection B R, and
its corresponding classifiers for meta, description, and comments features (ClaMeta ,
ClaDesc, and ClaComment ), respectively. For a new bug report br , we compute its
corresponding meta, description and comments scores, then its RPComposer scores,
denoted as Reopen(br, r) and Reopen(br, r̄), which are linear combinations of the
three scores, defined as follows:

Reopen(br, r) = α × Meta(b, r) + β × Desc(b, r)

+ γ × Comment (b, r) (2)

Reopen(br, r̄) = α × Meta(b, r̄) + β × Desc(b, r̄)

+ γ × Comment (b, r̄) (3)

In the above equations, α ∈ [0, 1], β ∈ [0, 1], and γ ∈ [0, 1]. Based on the above,
we define the normalized RPComposer score as:

Norm Reopen(br) = Reopen(br, r)

(Reopen(br, r) + Reopen(br, r̄))
(4)

123



86 Autom Softw Eng (2015) 22:75–109

Due to the class imbalance phenomenon, if we directly compare the RPComposer
scores to decide whether the new bug report br will be reopened (i.e., if Reopen(br, r) ≥
Reopen(br, r̄), then predict that the report will be reopened; else, predict that it will
not be reopened), then the prediction performance can be low. To improve the perfor-
mance, we propose to predict the class of bug report br , denoted as Class(br), by
using a reopened threshold threshold, as follows:

Class(br) =
{

r,

r̄ ,

i f Norm Reopen(br) ≥ threshold

Otherwise
(5)

The value of threshold can be trained from the training bug report collection.
To automatically produce good α, β, γ , and threshold values for RPComposer, we
propose a greedy algorithm. Algorithm 2 presents the detailed steps to estimate good
α, β, γ , and threshold values. We first divide training bug report collection B R into
two subsets: B R1 and B R2 according to the dividing coefficient sp (Line 10). By
default, we set the dividing coefficient as 90 %, and the division process is the same as
we do in imbalance feature selection for textual features (see Algorithm 1). Next, we
initialize α, β, γ , and threshold values to 0 at Line 11. Then, we build the classifiers
(i.e., ClaMeta , ClaDesc, and ClaComment ) for meta features, description features, and
comment features using B R1, and compute their corresponding meta, description, and

Algorithm 2 Estimation of Good α, β, γ , and threshold Values in ReopenPredictor
1: Estimatevalue(B R, sp, M ET A,DE SC ,C O M M E N T )
2: Input:
3: B R: Training Bug Report Collection
4: sp: Dividing Coefficient
5: M ET A: Meta Features for B R
6: DE SC : Description Features for B R
7: C O M M E N T : Comment Features for B R
8: Output: α, β, γ , and threshold
9: Method:
10: Divide B R into two subsets B R1 and B R2 according to sp;
11: α=0, β = 0, γ = 0, threshold = 0;
12: Build Clameta for M ET A and B R1, compute meta scores for each bug report in B R2;
13: Build Cladesc for DE SC and B R1, compute description scores for each bug report in B R2;
14: Build Clacomment for C O M M E N T andB R1, compute comment scores for each bug report in B R2;
15: for all α from 0 to 1, every time increase α by 0.1 do
16: for all β from 0 to 1,every time increase β by 0.1 do
17: for all γ from 0 to 1,every time increase γ by 0.1 do
18: for all threshold from 0 to 1,every time increase threshold by 0.01 do
19: for all Bug report br in B R2 do
20: Compute RPComposer score according to Definition 4 ;
21: Judge whether br would be reopened by Equation 5;
22: end for
23: Evaluate the performance by computing reopened F-measure;
24: end for
25: end for
26: end for
27: end for
28: Return α, β, γ , and threshold which give the best reopened F-measure

123



Autom Softw Eng (2015) 22:75–109 87

comment scores of bug reports in B R2 at Lines 12, 13 and 14, respectively. Next, we
incrementally increase α, β, γ , and threshold values (Lines 15–18). We increase α, β,
and γ values from 0 to 1, in 0.1 increments. We increase the threshold value from 0 to
1, in 0.01 increments. We use a finer granularity step to tune threshold since it directly
decides the predicted class label. We use a coarser granularity step to tune α, β, and γ

values to reduce the computational cost in the tuning process. For each configuration of
α, β, γ , and threshold values, we build a composite model and compute the resultant
F-measure score using bug reports in B R2 (Lines 20–23). Finally, Algorithm 2 returns
α, β, γ , and threshold values resulting in the best F-measure (Line 28).

6 Experiments and results

In this section, we evaluate ReopenPredictor. The experimental environment is a Win-
dows 7, 64-bit, Intel(R) Xeon(R) 2.53 GHz server with 24 GB RAM. We first present
our experiment setup and five research questions (Sects. 6.1 and 6.2). We then present
our experiment results that answer the five research questions (Sects. 6.3, 6.4, 6.5
6.6, and 6.7). Next, we discuss important textual features that are related to reopened
and non-reopened bug reports (Sect. 6.8). Finally, we describe some threats to validity
(Sect. 6.9).

6.1 Experiment setup

For comparison purposes, we reuse the same data used by Shihab et al. (2012) to
evaluate their approach. The Eclipse dataset contains bug reports that are reported
from 2002-04-10 to 2007-05-29. We do not analyze the entire Eclipse bug reports but
only bug reports from the Platform component which are much less in number than
the entire Eclipse bug reports. The Apache HTTP dataset contains bug reports that
are reported from 2001-01-08 to 2010-04-29. The OpenOffice dataset contains bug
reports that are reported from 2000-10-17 to 2010-05-19.

The statistics of the three datasets are presented in Table 2. The rows correspond
to the number of total collected bug report, the number of bug reports whose statuses
are “resolved”, the number of bug reports whose links to code changes or patches

Table 2 Statistics of collected bug reports

Eclipse Apache HTTP OpenOffice

Total collected bug reports 18.312 32,680 106,015

Resolved bug reports 3,903 28,738 86,993

Bug reports linked to commit logs 1,530 14,359 40,169

Reopened bug reports 246 927 10,569

Non-reopened bug reports 1,284 13,432 29,600

Terms in description 2,695 14,710 21,589

Terms in comments 3,593 10,434 24,961

123



88 Autom Softw Eng (2015) 22:75–109

are existed, the number of reopened bug reports, the number of non-reopened bug
reports, the number of terms in the description, and the number of terms in comments,
respectively. To explain the data in Table 2, we take Apache HTTP as an example. In
Apache HTTP, there are in total 32,680 bug reports in its corresponding bug tracking
systems, and only 28,738 bug reports are resolved (e.g., closed at least once). Since
our meta features need to consider some features related to the bug fix (e.g., number
of source code files related to the bug), we need to mine the commit logs to link bug
reports and their corresponding fixes. Thus, among the resolved bug reports, there
are 14,359 bug report could find the links. Finally, among the 14,359 bug reports,
only 927 bug report are opened bug reports, and the remaining 13,432 bug reports are
non-reopened.

From Table 2, we also notice the Apache HTTP project dataset has a severe class
imbalance problem; the ratio of reopened to non-reopened bug reports is 1:14.5. The
ratio of reopened and non-reopened bugs reports for the Eclipse dataset is 1:5.3, while
the ratio for the OpenOffice dataset is 1:2.8.

We collect the description, summary, and comment texts from each bug report.
We use the WVTool5 (Wurst 2007) to extract words from these texts. The WVTool
is a flexible Java library for statistical language modeling, which is used to create
word vector representations of text documents in the vector space model. We use the
WVTool to remove stop words, do stemming, and produce “bags of words” from the
texts. Words appearing less than 2 times are discarded to remove noisy features.

Stratified tenfold cross validation (Han and Kamber 2006) is used to evaluate the
performance of reopened bug prediction. We randomly divide the dataset into tenfolds.
Of these tenfolds, ninefolds are use to train the classifier, while the remaining onefold
is used to evaluate the performance. The class distribution in the training and testing
datasets is kept the same as the original dataset to simulate real-life usage of the
algorithm.

To evaluate the performance of our approach, we choose the six metrics used in the
first study on reopened bug prediction by Shihab et al. (2010, 2012): reopened precision
(Precision(re)), reopened recall (Recall(re)), reopened F-measure ((F-measure(re)),
non-reopened precision (Precision(nre)), non-reopened recall (Recall(nre)), and non-
reopened F-measure (F-measure(nre)). Reopened (non-reopened) precision refers to
the proportion of bug reports that are correctly labeled among those labeled as reopened
(non-reopened). Reopened (non-reopened) recall refers to the proportion of reopened
(non-reopened) bug reports that are correctly labeled. F-measure is the harmonic mean
of precision and recall. It could be viewed as a summary measure that combines
both precision and recall—it evaluates if an increase in precision (recall) outweighs a
reduction in recall (precision). In this paper, since reopened bug reports is the minority
class and we are interested in predicting which bug reports get reopened, the reopened
F-measure is the most important evaluation metric.

Past studies have highlighted that it is important for one to use evaluation metrics
that are appropriate to the problem at hand (Powers 2011; Jiang et al. 2008). For
reopen bug prediction, two factors affect the utility of a bug prediction tool: first, it

5 http://sourceforge.net/projects/wvtool/

123

http://sourceforge.net/projects/wvtool/


Autom Softw Eng (2015) 22:75–109 89

needs to be able to flag a substantial number of the reopened bugs; second, it should
not wrongly flag too many bugs as reopened bugs when they are not. Two metrics
namely reopened recall and precision capture these factors well. A high recall means
that most of the reopened bugs are flagged. A high precision means that the number
of wrongly flagged bug reports is low. If recall is too low, developers will not use the
tool since most reopened bug reports are missed. If precision is too low, developers
will also not use the tool since most prediction results would be wrong. Thus, they are
equally important. We use F-measure (i.e., F1) as a summary measure, which is the
harmonic mean of precision and recall. We set the parameter β of F-measure equal to
1—this means that precision and recall are given the same weight.

We implement ReopenPredictor on top of Weka6 (Hall et al. 2009). There are three
classifiers in our framework: ClaMeta , ClaDesc, and ClaComment . The first classifier
classifies meta features. Our previous study investigates the effectiveness of various
classification algorithms to predict reopened bug reports using meta features (Xia et al.
2013). A past paper has shown that bagging with C4.5 decision tree performs the best
for reopened bug prediction (Xia et al. 2013). Thus we use it to build ClaMeta . The
last two classifiers classify textual contents. We use multinomial Naive Bayes, that is
known to be fast and yet effective enough to classify these textual contents (McCallum
et al. 1998), to train ClaDesc and ClaComment .

For feature selection, we use the default number of selected features, i.e., 1,000,
for the Apache HTTP and OpenOffice datasets. For the Eclipse dataset, there are
fewer words than the other two datasets. There are only 2,605 and 3,431 words in
the description and comment texts, respectively. Thus, to reduce noise, we reduce the
number of selected features to 500 for Eclipse.

6.2 Research questions

In this paper, we would like the answer the following research questions:

RQ1 What is the performance of ReopenPredictor? How much improvement can it
achieve over the method proposed in (Shihab et al. 2012)?

Shihab et al. (2012) propose an approach to predict reopened bug reports. In this
research question, we investigate the extent our approach (ReopenPredictor) out-
performs the state-of-the-art approach. To answer this research question, we com-
pare reopened precision (Precision(re)), reopened recall (Recall(re)), reopened F-
measure ((F-measure(re)), non-reopened precision (Precision(nre)), non-reopened
recall (Recall(nre)), and non-reopened F-measure (F-measure(nre)) of ReopenPre-
dictor with those of Shihab et al.’s approach.

RQ2 Do different numbers of selected features affect the performance of ReopenPre-
dictor?

By default, we set the number of features as 500 for Eclipse, and 1,000 for Apache
HTTPD and OpenOffice. In this research question, we would like to investigate

6 http://www.cs.waikato.ac.nz/ml/weka/

123

http://www.cs.waikato.ac.nz/ml/weka/


90 Autom Softw Eng (2015) 22:75–109

whether different numbers of selected features affect the performance of Reopen-
Predictor much. Ideally, since users do not know how to choose the best number of
selected features for a new dataset, the performance of ReopenPredictor should be
relatively stable for different numbers of selected features, as long as they are within a
reasonable range. To answer this research question, we vary the number of selected fea-
tures from 100 to 2,000, and plot ReopenPredictor’s performance for Eclipse, Apache
HTTPD and OpenOffice.

RQ3 Does our proposed imbalanced feature selection method really improve the
performance of reopened bug prediction?

Many past studies on bug report analysis (e.g., severity prediction (Tian et al.
2012b; Menzies and Marcus 2008), bug triaging (Anvik et al. 2006), duplicate bug
report detection (Sun et al. 2011), bug linking (Zhou et al. 2012)) do not perform
feature selection. We however proposed a new imbalanced feature selection method
(see Sect. 4) and apply it to reduce the number of features. In this research ques-
tion, we would like to investigate whether the proposed imbalanced feature selection
method really improves the performance of ReopenPredictor. If it does not improve,
then our technical contribution is not useful. To answer this research question, we
first investigate the performance of imbalanced feature selection method on ClaDesc

and ClaComment . Next, we investigate the effect of imbalanced feature selection on
the overall framework. We create a variant of ReopenPredictor by disabling feature
selection and call the resultant technique Reopen Predictor All .

RQ4 Which set of features are the most important to predict reopened bugs?

In this paper, we use many features, such as meta features, description features, and
comment features. In total, we have thousands of features. In this research question,
we would like to investigate which features are the most important to predict reopened
bugs. We want to perform a deeper analysis on factors that make our approach works.
To answer this research question, we extract discriminative features from the thousands
of features. We extract the top-20 features per label based on their information gain
scores (Han and Kamber 2006).

RQ5 What is the benefits of our composite classification-based framework?

Since ReopenPredictor combines three classifiers built on three types of features
(i.e., meta, description, and comment features), in this research question, we would like
to investigate whether the composite classification-based framework could achieve a
better performance than a single classifier. The answer to this question would determine
whether it is necessary to combine different classifiers to better predict reopened
bug reports. To answer this research question, we build a classifier for each of the
three types of features, and compare the performance of the single classifiers with
ReopenPredictor. C4.5 decision tree and naive Bayes (Han and Kamber 2006) are
used to build the single classifiers.

6.3 RQ1: performance of ReopenPredictor

Table 3 presents the experiment results of ReopenPredictor and the method proposed
by Shihab et al. (2012). We notice that the experiment results are a little different

123



Autom Softw Eng (2015) 22:75–109 91

Table 3 Experiment results for ReopenPredictor compared with the method proposed by Shihab et
al. (2010, 2012)

Project Algorithm Prec.(re) Rec.(re) F.(re)

Eclipse ReopenPredictor 0.822 0.680 0.744

Shihab et al. 0.459 0.711 0.558

Improvement 79.08 % −4.36 % 33.33 %

Apache HTTP ReopenPredictor 0.799 0.742 0.770

Shihab et al. 0.538 0.940 0.684

Improvement 48.51 % −21.06 % 12.57 %

Openoffice ReopenPredictor 0.858 0.863 0.860

Shihab et al. 0.782 0.894 0.834

Improvement 9.72 % −3.47 % 3.12 %

Project Algorithm Prec.(nre) Rec.(nre) F.(nre)

Eclipse ReopenPredictor 0.940 0.972 0.956

Shihab et al. 0.938 0.84 0.886

Improvement 0.21 % 15.71 % 7.90 %

Apache HTTP ReopenPredictor 0.982 0.987 0.985

Shihab et al. 0.996 0.944 0.969

Improvement −1.41 % 4.56 % 1.65 %

Openoffice ReopenPredictor 0.951 0.949 0.95

Shihab et al. 0.96 0.911 0.935

Improvement −0.94 % 4.17 % 1.60 %

than what are reported in Shihab et al. (2012). This is the case as the tenfold cross
validation used in our experiments randomly partitions the dataset into 10 sets. Due
to the randomness of the process, the resultant sets are different than those produced
by the random partitioning performed in Shihab et al.’s experiments.

The reopened F-measure of ReopenPredictor are 0.744, 0.770, and 0.860 for
Eclipse, Apache HTTP and OpenOffice, respectively. These improve the F-measure of
the method proposed by Shihab et al. by 33.33, 12.57 and 3.12 % for Eclipse, Apache
HTTP, and OpenOffice, respectively. Averaging across the three datasets, the aver-
age improvement achieved by ReopenPredictor is 16.34 %. 3 ReopenPredictor shows
much better performance for the Eclipse dataset. The improvements of reopened pre-
cision and F-measure are 79.08 and 33.33 % respectively.

We also notice that the improvements for the OpenOffice dataset is not as substantial
as the improvements for the Eclipse and Apache HTTP datasets. The improvement
of reopened F-measure for OpenOffice dataset is only 3.12 %. We re-check the class
distribution of OpenOffice, and find that the ratio of reopened and non-reopened bug
reports is 1:2.8. This is much less imbalanced than the other two datasets, i.e., 1:5.3 and
1:14.5. This indicates that our approach is best suited for highly imbalanced problems,
for less imbalanced datasets, it seems that our approach does not achieve as high of
an improvement over Shihab et al.’s approach.

123



92 Autom Softw Eng (2015) 22:75–109

Although our precision and recall scores are not perfect, we believe they are rea-
sonably good. Our precision and recall are approximately 0.7–0.8. These numbers
mean that out of 10 bug reports that are predicted to be reopened, 7–8 of them are
really reopened; also, 70–80 % of bug reports that are eventually reopened are flagged
by our tool as such. Many past automated software engineering tools proposed in the
literature have precision and recall scores of around 0.7 (e.g., Tian et al. 2012a; Thung
et al. 2012; Zhang et al. 2013; Wu et al. 2011; Nguyen et al. 2012) or lower (e.g.,
Panichella et al. 2014; Canfora et al. 2013; Hooimeijer and Weimer 2007a).

6.4 RQ2: effect of varying the number of selected features

We investigate the effect of the number of the selected features on the performance of
ReopenPredictor. We vary the number of selected features (i.e., l in Algorithm 1) from
100 to 2,000. We plot the resultant reopened F-measure and other evaluation metrics
for Eclipse, Apache HTTP, and OpenOffice datasets in Figs. 3, 4, and 5, respectively.

We notice that reopened F-measure shows stable performance for all the three
datasets, i.e., there is little difference with varying number of selected features. This is
because in our model building phase, we choose alpha, beta, gamma, and threshold
values which maximize the reopened F-measure. We notice that for Eclipse the
reopened F-measure scores drops substantially if we select more than 1500 features.
This is because there are only 2,605 and 3,431 features in the description and comment
texts, respectively. If we choose too many features, then noisy features will be selected
too, negatively impacting our F-measure values. For the other two projects, Apache
HTTP and OpenOffice, since they have more than 10,000 features, we notice that the
reopened F-measure values do not drop substantially when we select more than 1,500
features. And for these two projects, in general, the reopened F-measure values are
relatively stable when we vary the number of features from 100 to 2,000.

Fig. 3 Experiment results of ReopenPredictor for Eclipse with textual features vary from 100 to 2,000

123



Autom Softw Eng (2015) 22:75–109 93

Fig. 4 Experiment results of ReopenPredictor for Apache HTTP with textual features vary from 100 to
2,000

Fig. 5 Experiment results of ReopenPredictor for OpenOffice with textual features vary from 100 to 2,000

We notice that reopened precision and recall vary with the different number of
selected features. For example, in the Eclipse dataset, when the number of features
selected is between 400 and 500, reopened precision substantially increases, while
reopened recall decreases. This phenomenon happens in Apache HTTP when the
number of features is around 1,600. However, the maximum difference of reopened
precision and recall is less then 0.5. So we can still consider our method to be fairly
stable.

123



94 Autom Softw Eng (2015) 22:75–109

6.5 RQ3: benefit of imbalanced feature selection

First, we would like to investigate the effect of the imbalanced feature selection on
ClaDesc. We train another classifier Cla All

Desc that takes all features (i.e., no feature
selection is performed). We compare the performance of ClaDesc and Cla All

Desc. The
result of our comparison is shown in Table 4. We find that ClaDesc outperforms
Cla All

Desc on the reopened F-measure scores. This shows that feature selection is ben-
eficial at least for description text.

Next, we would like to investigate the effect of imbalanced feature selection on
ClaComment . Again, we train another classifier Cla All

Comment that takes all features. We
compare ClaComment and Cla All

Comment . The result is shown in Table 5. We find that
ClaComment outperforms Cla All

Comment on the reopened F-measure scores. This shows
that feature selection is beneficial, at least for comment text.

Finally, we would like to investigate the effect of imbalanced feature selection
on the overall framework. We train another ReopenPredictor by disabling all fea-
ture selection. We call the resultant technique Reopen Predictor All . We compare
ReopenPredictor score and Reopen Predictor All . The result is shown in Table 6.
Again, we find that the ReopenPredictor score outperforms Reopen Predictor All

Table 4 Experiment results of ClaDesc and Cla All
Desc for description text

Project Description Prec.(re) Rec.(re) F.(re)

Eclipse ClaDesc 0.235 0.154 0.186

Cla All
Desc 0.192 0.121 0.149

Improvement 22.40 % 27.27 % 24.83 %

Apache HTTP ClaDesc 0.091 0.040 0.055

Cla All
Desc 0.078 0.033 0.047

Improvement 17.01 % 19.35 % 18.64 %

Openoffice ClaDesc 0.454 0.463 0.458

Cla All
Desc 0.438 0.461 0.449

Improvement 3.78 % 0.29 % 2.05 %

Project Description Prec.(nre) Rec.(nre) F.(nre)

Eclipse ClaDesc 0.848 0.903 0.874

Cla All
Desc 0.842 0.901 0.871

Improvement 0.071 0.22 % 0.34 %

Apache HTTP ClaDesc 0.936 0.972 0.954

Cla All
Desc 0.936 0.973 0.954

Improvement 0.00 % −0.02 % 0.00 %

Openoffice ClaDesc 0.807 0.802 0.804

Cla All
Desc 0.804 0.788 0.796

Improvement 0.37 % 1.67 % 1.02 %

123



Autom Softw Eng (2015) 22:75–109 95

Table 5 Experiment results of ClaComment and Cla All
Comment for comments text

Project Comments Prec.(re) Rec.(re) F.(re)

Eclipse ClaComment 0.194 0.081 0.115

Cla All
Comment 0.196 0.037 0.062

Improvement −0.76 % 122.22 % 85.93 %

Apache HTTP ClaComment 0.133 0.04 0.061

Cla All
Comment 0.118 0.029 0.047

Improvement 11.99 % 37.04 % 31.24 %

Openoffice ClaComment 0.504 0.266 0.348

Cla All
Comment 0.507 0.237 0.323

Improvement −0.57 % 12.42 % 7.93 %

Project Comments Prec.(nre) Rec.(nre) F.(nre)

Eclipse ClaComment 0.842 0.935 0.886

Cla All
Comment 0.840 0.971 0.901

Improvement 0.16 % −3.69 % −1.66 %

Apache HTTP ClaComment 0.937 0.982 0.959

Cla All
Comment 0.936 0.985 0.960

Improvement 0.05 % −0.31 % −0.13 %

Openoffice ClaComment 0.776 0.906 0.836

Cla All
Comment 0.771 0.918 0.838

Improvement −0.57 % −1.23 % −0.24 %

on the reopened F-measure scores. This shows that feature selection is beneficial for
Reopen Predictor as a whole.

To further evaluate whether the difference between ReopenPredictor and Reopen
Predictor All is significant, we repeat the tenfold cross validation 100 times, and
record the reopened F-measure for each time. In total, we have 100 paired data points
(reopened F-measures). Next, we perform a Wilcoxon signed rank test (Wilcoxon,
1945) on the 100 paired data, and record the p value. For Eclipse, we notice the
difference is significant with p value of 0.007515. For Apache HTTP, the difference is
significant with p value of 0.03772. For OpenOffice, the difference is significant with
p value of less than 0.001.

6.6 RQ4: important features of ReopenPredictor

Table 7 presents the top-20 most discriminative features in Eclipse, Apache HTTP,
and OpenOffice. We notice that some meta features (i.e., comments text, description
text, fixer name, comments size, report name, time days, component) appear in the
three projects. Aside from these meta features, some textual features, corresponding
to stemmed words that appear in bug reports, are also good indicators to reopened bug

123



96 Autom Softw Eng (2015) 22:75–109

Table 6 Experiment results of ReopenPredictor compared with Reopen Predictorall

Project Algorithm Prec.(re) Rec.(re) F.(re)

Eclipse Reopen Predictor 0.822 0.680 0.744

Reopen Predictor All 0.608 0.633 0.620

Improvement 35.20 % 7.42 % 20.00 %

Apache HTTP Reopen Predictor 0.799 0.742 0.770

Reopen Predictor All 0.655 0.849 0.739

Improvement 22.03 % −12.60 % 4.15 %

Openoffice Reopen Predictor 0.858 0.863 0.860

Reopen Predictor All 0.848 0.857 0.853

Improvement 1.18 % 0.70 % 0.82 %

Project Algorithm Prec.(nre) Rec.(nre) F.(nre)

Eclipse Reopen Predictor 0.940 0.972 0.956

Reopen Predictor All 0.929 0.922 0.925

Improvement 1.18 % 5.42 % 3.35 %

Apache HTTP Reopen Predictor 0.982 0.987 0.985

Reopen Predictor All 0.989 0.969 0.979

Improvement −0.74 % 1.85 % 0.60 %

Openoffice Reopen Predictor 0.951 0.949 0.95

Reopen Predictor All 0.949 0.945 0.947

Improvement 0.21 % 0.42 % 0.32 %

prediction. For example, the term “verif” in the comments text is a good indicator to
predict whether a bug would get reopened in Eclipse and OpenOffice, which represent
that a developer is confident that this bug is already fixed, and “verified”.7

6.7 RQ5: benefits of composite classification-based framework

Tables 8 and 9 present the experiment of ReopenPredictor compared with C4.5 and
naive Bayes, respectively. Again, we find that the ReopenPredictor score outperforms
C4.5 and Naive Bayes on the reopened F-measure scores. This shows that the benefits
of combining the different classifiers. ReopenPredictor improves the F-measure of
the C4.5 by 177.45, 9274.75 and 45.60 % for Eclipse, Apache HTTP, and OpenOffice,
respectively. ReopenPredictor improves the F-measure of the naive Bayes by 150.92,
413.85 and 52.25 % for Eclipse, Apache HTTP, and OpenOffice, respectively.

7 For more description of the terms in description and comments, please refer to Sect. 6.8.3.

123



Autom Softw Eng (2015) 22:75–109 97

Table 7 Top-20 discriminative features based on information gain scores

Eclipse Apache OpenOffice

Features Scores Features Scores Features Scores

Comments text 0.253 Last status 0.200 Comments text 0.248

Description text 0.224 Description text 0.108 Fixer exp. 0.184

C “verif” 0.059 Comments text 0.066 Last status 0.157

Fixer name 0.023 Fixer Name 0.056 C “verif” 0.126

Comments Size 0.020 Comments Size 0.030 Description text 0.119

Reporter Name 0.018 No. of comments 0.027 Reporter Name 0.101

Time Days 0.014 Component 0.022 No. of comments 0.087

Component 0.009 Reporter Name 0.019 C “fic” 0.080

D “readanddispatch” 0.007 Time Days 0.017 Comments Size 0.080

C “unfortun” 0.007 No. of source files 0.007 Fixer name 0.077

D “programat” 0.007 Platform 0.006 Day of year 0.043

Platform 0.006 Severity 0.005 No. of source files 0.041

C “rel” 0.006 Severity changed 0.004 Component 0.030

D “runeventloop” 0.006 Fixer exp. 0.003 Time Days 0.028

D “ideapplic” 0.006 description size 0.003 Weekday 0.027

D “sendev” 0.006 C “problem” 0.002 Reporter exp. 0.024

D “event” 0.005 C “pleas” 0.002 C “pleas” 0.020

C “def” 0.005 C “fil” 0.002 month 0.018

Text features in description and comments are bold C comments, D description

6.8 Discussion

6.8.1 Longitudinal data setup

To investigate whether our tool can be used to solve the problem in the same setting
as the one in practice, we performed an experiment using a longitudinal data setup
following Tamrawi et al. (2011) and Bhattacharya and Neamtiu (2010). We sorted
the bug reports in the order they are received and split them into 11 non-overlapping
windows of equal sizes. The process then proceeds as follows: First, in fold 1, we
train using bug reports in window 0, and test the trained model using the bug reports
in window 1. Then, in fold 2, we train using bug reports in windows 0 and 1, and
test the trained model using the bug reports in window 2, and so on. We proceed in a
similar manner for the next folds. In the final fold (i.e., fold 10), we train using bug
reports in window 0–9, and test using the bug reports in window 10. We record the
average performance across the tenfolds. If there are more distinct terms, there are
more topics. In default, we set the number of terms in imbalance feature selection to
15 % of the number of distinct terms in the training data. We found that the results
remain the same, i.e., we can achieve precision and recall scores of approximately 0.7
or higher, our approach also outperforms the prior work by Shihab et al.

123



98 Autom Softw Eng (2015) 22:75–109

Table 8 Experiment results of ReopenPredictor compared with C4.5

Project Algorithm Prec.(re) Rec.(re) F.(re)

Eclipse Reopen Predictor 0.822 0.680 0.744

C4.5 0.429 0.195 0.268

Improvement 91.80 % 248.50 % 177.45 %

Apache HTTP Reopen Predictor 0.799 0.742 0.770

C4.5 0.085 0.004 0.008

Improvement 838.83 % 17905.85 % 9274.75 %

Openoffice Reopen Predictor 0.858 0.863 0.860

C4.5 0.648 0.543 0.591

Improvement 32.48 % 58.96 % 45.60 %

Project Algorithm Prec.(nre) Rec.(nre) F.(nre)

Eclipse Reopen Predictor 0.940 0.972 0.956

C4.5 0.860 0.950 0.903

Improvement 9.26 % 2.30 % 5.87 %

Apache HTTP Reopen Predictor 0.982 0.987 0.985

C4.5 0.936 0.997 0.965

Improvement 4.97 % −0.98 % 2.05 %

Openoffice Reopen Predictor 0.951 0.949 0.95

C4.5 0.846 0.895 0.869

Improvement 12.45 % 6.09 % 9.27 %

Table 10 presents the experiment results of ReopenPredictor and the method
proposed by Shihab et al. (2012) with the longitudinal data setup. The reopened
F-measure of ReopenPredictor are 0.685, 0.750, and 0.687 for Eclipse, Apache HTTP
and OpenOffice, respectively. These values are an improvement over the F-measure
reported by Shihab et al. by 14.57, 9.06 and 4.97 % for Eclipse, Apache HTTP, and
OpenOffice, respectively. Averaging across the three datasets, the average improve-
ment achieved by ReopenPredictor is 9.53 %.

We also investigate the performance of the ReopenPredictor with the number of
features varying from 1 to 20 % of the unique terms in the training datasets. We plot
the reopened F-measure and other evaluation metrics for Eclipse, Apache HTTP, and
OpenOffice datasets in Figs. 6, 7, and 8, respectively. We notice the difference between
the different number of terms are minor, indicating that the number of terms does not
have a large impct on the F-measure.

6.8.2 Periodic update

It is possible that word frequency in bug reports changes over time; some words that
are indicative of reopened bugs might no longer be indicative in the future. To deal
with this possibility, our approach can be retrained periodically using bug reports that

123



Autom Softw Eng (2015) 22:75–109 99

Table 9 Experiment results of ReopenPredictor compared with Naive Bayes

Project Algorithm Prec.(re) Rec.(re) F.(re)

Eclipse Reopen Predictor 0.822 0.680 0.744

Naive Bayes 0.226 0.431 0.297

Improvement 263.70 % 57.81 % 150.92 %

Apache HTTP Reopen Predictor 0.799 0.742 0.770

Naive Bayes 0.100 0.296 0.150

Improvement 696.08 % 151.03 % 413.85 %

Openoffice Reopen Predictor 0.858 0.863 0.860

Naive Bayes 0.463 0.725 0.565

Improvement 85.37 % 19.10 % 52.25 %

Project Algorithm Prec.(nre) Rec.(nre) F.(nre)

Eclipse Reopen Predictor 0.940 0.972 0.956

Naive Bayes 0.868 0.717 0.786

Improvement 8.29 % 35.51 % 21.71 %

Apache HTTP Reopen Predictor 0.982 0.987 0.985

Naive Bayes 0.944 0.817 0.876

Improvement 4.04 % 20.79 % 12.45 %

Openoffice Reopen Predictor 0.951 0.949 0.95

Naive Bayes 0.877 0.700 0.778

Improvement 8.47 % 35.62 % 22.06 %

are reported and resolved recently, whenever the accuracy of our technique degrades
in predicting reopened bugs.

6.8.3 Qualitative analysis

Here, we want to perform a qualitative analysis of why our new feature selection tech-
nique worked in RQ3. Our feature selection technique ranks description and comment
features in terms of their correlation coefficient (CC) scores as described in Sect. 4.
To understand why our feature selection technique works, we first show the features
with the highest correlation coefficient scores.

Tables 11, 12 and 13 present the top-20 features in the description and comment texts
which are indicative of reopened and non-reopened bug reports in Eclipse, Apache
HTTP and OpenOffice projects, respectively. These features are stemmed words from
the description and comment texts. Some of the words that appear in the lists indicate
particular parts of a software system or features (e.g., “toolitem”, “toolbarmanager”,
“buffermanager”, “thead”, “toolbar”, “databas”, and “spreadsheetml”) that are hard to
fix and correlate with bug reports being reopened. Other words indicate parts of a soft-
ware system or features (e.g., “structuredviewer”, “dialog”, “xmlgraph”, “viewbox”,
and “patch”) that are easier to fix and correlate with bug reports being not reopened.

123



100 Autom Softw Eng (2015) 22:75–109

Table 10 Experiment results for ReopenPredictor compared with the method proposed by Shihab et
al. (2010, 2012) with Longitudinal Data Setup

Project Algorithm Prec.(re) Rec.(re) F.(re)

Eclipse ReopenPredictor 0.734 0.668 0.685

Shihab et al. 0.547 0.684 0.598

Improvement 34.33 % −2.41 % 14.57 %

Apache HTTP ReopenPredictor 0.742 0.770 0.750

Shihab et al. 0.627 0.781 0.687

Improvement 18.38 % −1.33 % 9.06 %

Openoffice ReopenPredictor 0.728 0.786 0.752

Shihab et al. 0.651 0.820 0.716

Improvement 11.82 % −4.15 % 4.97 %

Project Algorithm Prec.(nre) Rec.(nre) F.(nre)

Eclipse ReopenPredictor 0.936 0.943 0.938

Shihab et al. 0.935 0.895 0.914

Improvement 0.07 % 5.35 % 2.62 %

Apache HTTP ReopenPredictor 0.984 0.979 0.982

Shihab et al. 0.984 0.965 0.974

Improvement 0.00 % 1.65 % 0.74 %

Openoffice ReopenPredictor 0.943 0.908 0.924

Shihab et al. 0.939 0.875 0.905

Improvement 0.39 % 3.76 % 2.12 %

Fig. 6 Experiment results of ReopenPredictor for Eclipse with textual features vary from 1 to 20 %

123



Autom Softw Eng (2015) 22:75–109 101

Fig. 7 Experiment results of ReopenPredictor for Apache HTTP with textual features vary from 1 to 20 %

Fig. 8 Experiment results of ReopenPredictor for OpenOffice with textual features vary from 1 to 20 %

Although, we do not employ sentiment analysis, some of the words in the list that are
related to non-reopened bug reports include: “thank”, “great”, and “approv” which are
strong affirmative words. Similarly, some of the words in the list that are related to
reopened bug reports include: “wonder”, “unusual”, and “problem” which are negative
words that indicate doubts on the quality of a bug fix.

Figure 9 presents a bug report from OpenOffice. This bug report is wrongly clas-
sified by Shihab et al.’s method (i.e., predicted it as non-reopened). However, our
ReopenPredictor predicts it as reopened. We manually check the output of each of the
three classifiers in ReopenPredictor, and we find the description classifier has strong

123



102 Autom Softw Eng (2015) 22:75–109

Table 11 Top-20 textual features (in terms of their CC scores) in the description and comment texts related
to reopened and non-reopened bug reports in Eclipse dataset

Description Comments

Reopened Non-reopened Reopened Non-reopened

programat readanddispatch unusu verif

horn runeventloop helper unfortun

strok event intrus clos

exact ideapplic rel oper

whatsoever sendev def detect

getactivep displa middl replac

tweak handleev japan thank

wonder adapt workaround defin

dirk basicrun sens inspect

recreat rundeferredevent contain michael

toolitem nullpointerexcept creates hous

toolbarmanager jfac accomod pardon

coolbarmanager nat isregister spam

stand shar getedit attach

advant structuredviewer doctyp rep

viol runu bens great

lif createandrunwork alph approv

optimizeit eclipsestarter chief dialog

divider platformactiv unfic content

iworkbenchpart upd unintens earl

confidence that this bug report will be reopened. And we further manually check the
description of the bug report; we notice several terms such as “crash”, “loading”,
“slide”, “insert”, “start”, “impress”, “presentation”, “object” which are highly related
to reopened bug reports as shown in Table 13.

Figure 10 presents a bug report from Apache. This bug report is also wrongly
classified by Shihab et al.’s method (i.e., predicted it as non-reopened). However, our
ReopenPredictor predicts it as reopened. We manually check the output of each of the
three classifiers in ReopenPredictor, and we find the comment classifier has strong
confidence that this bug report will be reopened. And we further manually check
the comments of the bug report; we notice several terms such as “problem”, “Test”,
“causes”, “file”, and “make” are highly related to reopened bug reports as shown in
Table 12.

6.9 Threats to validity

Threats to internal validity relates to bias and errors in our experiments. The datasets
used in our experiments are the same as those used in previous studies (Shihab et al.

123



Autom Softw Eng (2015) 22:75–109 103

Table 12 Top-20 textual features (in terms of their CC Scores) in the description and comment texts related
to reopened and non-reopened bug reports in Apache HTTP dataset

Description Comments

Reopened Non-reopened Reopened Non-reopened

arent batik problem bulk

leur docum pleas linger

conträ bugrat window overrid

utiliser transform caus viewvc

filtr patch loadonstartup renderer

porté font hog fallback

tomcat wasn week thank

runexecut improv fil xmlgraph

cupé form experi incompat

load height mak hssfcel

alot ident run procedur

pcreposic rect error evalu

processcallback bridg accesscontrol member

removeelementat howt applic accis

buffermanager usecas reproduc javadoc

userbas viewbox tomcat ton

sysde eval waitfor cek

thead xindic test stefan

reaper href antivirus howt

screennam el dechunk vinc

2010, 2012). We have also double checked the datasets and our experiments, still there
could be errors that we did not notice. Moreover, since we use textual information in
the comments of bug reports, we have double checked that the textual information that
we have collected are those available before the bug reports are reopened.

Threats to external validity relates to the generalizability of our results. We have
analyzed 56,058 bug reports from three software systems. And in total, we collected
157,007 bug reports, and our datasets takes 35.7 % number of the total collected bug
reports. Next, analyzing a substantial proportion of bug reports in selected projects is
important for the generalizability of the findings. In this work, we have investigated
8.36 % of bug reports of the Platform component of Eclipse version 3.0, 43.94 % of bug
reports of Apache HTTP, and 37.89 % of bug reports of OpenOffice. We believe that
we have investigated a substantial proportion of bug reports from these projects. Past
studies also only investigate similar number of bug reports from these projects (e.g.,
Hooimeijer and Weimer 2007a; Zaman et al. 2011; Bhattacharya and Neamtiu 2010).
In the future, we plan to reduce this threat to external validity by investigating more
bug reports from these projects.

123



104 Autom Softw Eng (2015) 22:75–109

Table 13 Top-20 textual features (in terms of their CC scores) in the description and comment texts related
to reopened and non-reopened bug reports in OpenOffice dataset

Description Comments

Re-opened Not re-opened Re-opened Not re-opened

bugdoc transl bugdoc verif

impres openoffic swqbugfic fic

sl build accept pleas

oas sophi workload build

docum download spreadsheetml issu

eform patch loop thank

load thank naddloc chang

start dmak retarges openoffic

sorter project pri commis

insers http mmahes check

wizard upd jmarm fil

pres lou mmahes http

crash autom eik sourc

toolbar cod overbal test

assers solenv natn vers

databas solver oasisbf intern

object instal anim targes

dbwizard kind timezon patch

dock inclus onload master

custom link colormap servic

Fig. 9 Bug report #53696 of OpenOffice. The terms which appears in Table 13 are underlined

Threats to construct validity refers to the suitability of our evaluation measures. We
use F-measure score as the main evaluation metric which is also used by past studies to
evaluate the effectiveness of various prediction algorithms in solving various software
engineering tasks (e.g., Nguyen et al. 2012; Peters and Menzies 2012; Tian et al.
2012a, b; Kim et al. 2008; Nam et al. 2013). Thus, we believe there is little threat to
construct validity.

123



Autom Softw Eng (2015) 22:75–109 105

Fig. 10 Bug report #45720 of Apache HTTP. The terms which appears in Table 12 are underlined

7 Related work

In this section, we briefly review related studies. We first compare our work to work
on reopened bugs and then we contrast our work with work on managing bug reports.

7.1 Reopened bug reports

To our best knowledge, there are very few prior studies that analyzed reopened bug
reports (Shihab et al. 2010, 2012; Zimmermann et al. 2012). Shihab et al. (2010, 2012)
propose the problem of identifying reopened bug reports in three open source projects
using machine learning algorithms. Zimmermann et al. (2012) analyze and categorize
reopened bugs in the Microsoft Windows operating system. The main focus of their
study was to investigate the different reasons for bug reopenings.

Our work complements and differs from the aforementioned work in several ways.
First, our work extends the work by Shihab et al. (2010, 2012) by improving its
performance. Second, our work proposes algorithms that can be used to automat-
ically calculate thresholds needed to optima the performance of ReopenPredictor.
Furthermore, our work differs from the work by Zimmermann et al. (2012) since our
work studies open source data. However, if commercial data is made available we
are confident that ReopenPredictor can help improve the performance of reopened
bugs in commercial projects as well since we believe that effective use of textual
information and the imbalanced data phenomenon also exist in commercial reopened
bugs.

123



106 Autom Softw Eng (2015) 22:75–109

7.2 Bug report management

There exist machine learning and information retrieval approaches for automatic bug
triaging (Anvik et al. 2006; Anvik and Murphy 2007; Tamrawi et al. 2011; Jeong et
al. 2009; Matter et al. 2009). The textual description and structure of bug reports from
bug tracking systems such as Bugzilla provide a lot of information for bug triaging.
Anvik et al. (2006) and Cubranic et al. (2004)used Naive Bayes, SVM, and C4.8 for
bug triaging; title, description and summary fields are extracted from bug reports to
train their classifier.

Jeong et al. (2009) investigate bug reassignment in some open source software
communities, and propose the usage of bug tossing graph to improve bug triaging
performance. Bhattacharya and Neamtiu (2010) improve the accuracy of the approach
by Jeong et al. further. Tamrawi et al. (2011) propose a method called Bugzie, which
uses a fuzzy set and cache-based approach to increase the accuracy of bug triaging.

A number of approaches have been proposed to automatically infer or to help devel-
opers in inferring bug reports that are duplicates of one another. Runeson et al. (2007)
measure the similarity of two bug reports using cosine, dice, and jaccard similarity
of the term features appearing in the bug reports. The similarity scores are used to
identify bug reports that are likely to be duplicate of one another. Wang et al. (2008)
propose a duplicate bug report detection approach that integrates bug reports with
execution traces. They find that if execution trace information is available duplicate
bug reports could be identified with a higher accuracy. Sun et al. (2010) propose a
discriminative model based approach using Support Vector Machine to identify bug
reports that are duplicate of one another. In a latter work, Sun et al. (2011) extend
BM25, a popular information retrieval approach, for duplicate bug report detection.

There are also a number of studies that predict the severity labels of bug reports.
Severis, proposed by Menzies and Marcus (2008), performs multi-class classification
to predict the five severity labels of bug reports in NASA. Their work is extended
by Lamkanfi et al. (2010) which predict two severity labels (severe vs. not severe) of
bug reports in a number of Bugzilla bug tracking systems of open source programs.
Lamkanfi et al. (2011) also investigate the effectiveness of a number of classification
algorithms to predict the severity of bug reports. Our work complements the above
studies; after the priority of a bug report could be determined, our approach could be
employed to recommend a suitable developer to fix the bug.

Huang et al. (2011) propose a machine learning approach that predict the categories
of bug reports based on their impact; the category labels include: capability, security,
performance, reliability, requirement, and usability. Gegick et al. (2010) perform text
mining to recover security bug reports. Francis et al. (2004) and Pordguski et al. (2003)
group reported software failures together based on the similarities of execution traces.

Our work differs from the prior work on bug repository mining in several ways. First,
our focus is on reopened bugs. Second, whereas most prior studies used numerical
features (some did use textual features also), to the best of our knowledge, our work is
one of the first to investigate the use textual information with such detail. We strongly
believe that many of our techniques can be used in other contexts as well. In fact, in
the future, we plan to investigate how our techniques can be used to improved other

123



Autom Softw Eng (2015) 22:75–109 107

problems such as bug triaging, bug reassignment, bug duplicate detection and bug
classification.

7.3 Empirical studies on bug tracking systems

A number of empirical studies have been performed on bug tracking systems. A
study on bug report networks in a large open source development community was
performed by Sandusky et al. (2004). Anvik et al. (2005) study the characteristics
of bug tracking systems of Eclipse and Firefox projects. Bettenburg et al. (2008)
characterize what makes a good bug report by surveying a number of Eclipse, Mozilla,
and Apache developers. Hooimeijer and Weimer (2007b) develop a model that predicts
the quality of bug reports. Anvik et al. (2005) empirically study the characteristics of
bug repositories and show findings on the number of reports that a person submits and
the proportion of different resolutions.

8 Conclusions and future work

In this paper, we propose ReopenPredictor to predict reopened bugs. We first consider
more features from bug reports (i.e., meta, description, and comment features), and
propose an imbalanced feature selection method to choose the most substantial textual
features from both reopened and non-reopened bug reports. Then, ReopenPredictor
use all of these features, and automatically assign different classifiers with different
weights to improve the overall performance. Experiment results show that our Reopen-
Predictor show substantially better performance than the state-of-the-art method pro-
posed by Shihab et al. (2010, 2012). The reopened F-measure are 0.744, 0.770, and
0.860 for Eclipse, Apache HTTP and OpenOffice, respectively, and we improve the
reopened F-measure of the method proposed by Shihab et al. by 33.33, 12.57 and
3.12 % for Eclipse, Apache HTTP and OpenOffice, respectively. Averaging across the
three datasets, the average improvement achieved by ReopenPredictor is 16.34 %.

In the future, we plan to evaluate our ReopenPredictor with more reopened bug
reports, and develop a better technique which could improve reopened bug report
prediction further, in particular, to increase the reopened F-measure. We also plan to
experience with more imbalanced learning algorithms (He and Garcia 2009) in our pro-
posed overall framework for reopened bug prediction, for example, SMOTE (Chawla
et al. 2002), imbalanced SVM (Akbani et al. 2004), etc. We also plan to investigate sen-
timent analysis (e.g., Pang and Lee 2008; Liu 2012) tools to improve the effectiveness
of ReopenPredictor further.

Acknowledgments This research is sponsored in part by NSFC Program (No. 61103032) and National
Key Technology R&D Program of the Ministry of Science and Technology of China (No. 2013BAH01B01).
The code can be download from: https://github.com/xinxia1986/reopenBug.

References

Akbani, R., Kwek, S., Japkowicz, N.: Applying support vector machines to imbalanced datasets. Eur. Conf.
Mach. Learn. 2004, 39–50 (2004)

123

https://github.com/xinxia1986/reopenBug


108 Autom Softw Eng (2015) 22:75–109

Anvik, J., Murphy, G.: Determining implementation expertise from bug reports. In: MSR (2007)
Anvik, J., Hiew, L., Murphy, G.C.: Coping with an open bug repository. In: ETX, pp. 35–39 (2005)
Anvik, J., Hiew, L., Murphy, G.C.: Who should fix this bug? In: ICSE, pp. 361–370. ACM, New York

(2006)
Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305

(2012)
Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., Zimmermann, T.: What makes a good bug

report? In: FSE, pp. 308–318 (2008)
Bhattacharya, P., Neamtiu, I.: Fine-grained incremental learning and multi-feature tossing graphs to improve

bug triaging. In: ICSM, pp. 1–10 (2010)
Canfora, G., De Lucia, A., Di Penta, M., Oliveto, R., Panichella, A., Panichella, S.: Multi-objective cross-

project defect prediction. In: IEEE Sixth International Conference on Software Testing, Verification and
Validation (ICST), 2013, pp. 252–261. IEEE (2013)

Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling
technique. J. Artif. Intell. Res. 16, 321–357 (2002)

Čubranić, D.: Automatic bug triage using text categorization. In: SEKE (2004)
Francis, P., Leon, D., Minch, M.: Tree-based methods for classifying software failures. In: ISSRE, pp.

451–462 (2004)
Gegick, M., Rotella, P., Xie, T.: Identifying security bug reports via text mining: an industrial case study.

In: MSR, pp. 11–20 (2010)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The weka data mining software:

an update. SIGKDD Explor. 11(1), 10–18 (2009)
Han, J., Kamber, M.: Data mining: concepts and techniques. Morgan Kaufmann, San Francisco (2006)
He, H., Garcia, E.: Learning from imbalanced data. Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)
Hooimeijer, P., Weimer, W.: Modeling bug report quality. In: Proceedings of the twenty-second IEEE/ACM

international conference on Automated software engineering, pp. 34–43. ACM, New York (2007a)
Hooimeijer, P., Weimer, W.: Modeling bug report quality. In: ASE, pp. 34–43 (2007b)
Huang, L., Ng, V., Persing, I., Geng, R., Bai, X., Tian, J.: AutoODC: Automated generation of orthogonal

defect classifications. In: ASE, pp. 412–415 (2011)
Jeong, G., Kim, S., Zimmermann, T.: Improving bug triage with bug tossing graphs. In: ESEC/FSE, pp.

111–120 (2009)
Jiang, Y., Cukic, B., Ma, Y.: Techniques for evaluating fault prediction models. Empir. Softw. Eng. 13(5),

561–595 (2008)
Kim, S., Whitehead, E.J., Zhang, Y.: Classifying software changes: clean or buggy? IEEE Trans. Softw.

Eng. 34(2), 181–196 (2008)
Lamkanfi, A., Demeyer, S., Giger, E., Goethals, B.: Predicting the severity of a reported bug. In: MSR, pp.

1–10 (2010)
Lamkanfi, A., Demeyer, S., Soetens, Q., Verdonck, T.: Comparing mining algorithms for predicting the

severity of a reported bug. In: CSMR, pp. 249–258 (2011)
Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 5(1), 1–167 (2012)
Matter, D., Kuhn, A., Nierstrasz, O.: Assigning bug reports using a vocabulary-based expertise model of

developers. In: MSR, pp. 131–140 (2009)
McCallum, A., Nigam, K., et al.: A comparison of event models for naive bayes text classification. In:

AAAI-98 Workshop, Citeseer, vol. 752, pp. 41–48 (1998)
Menzies, T., Marcus, A.: Automated severity assessment of software defect reports. In: ICSM, pp. 346–355

(2008)
Nam, J., Pan, S.J., Kim, S.: Transfer defect learning. In: ICSE, pp. 382–391. IEEE (2013)
Nguyen, A.T., Nguyen, T.T., Nguyen, H.A., Nguyen, T.N.: Multi-layered approach for recovering links

between bug reports and fixes. In: Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering, p. 63. ACM, New York (2012)

Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2(1–2), 1–135 (2008)
Panichella, A., Oliveto, R., De Lucia, A.: Cross-project defect prediction models: L’union fait la force. In:

Software Evolution Week—IEEE Conference on Software Maintenance, Reengineering and Reverse
Engineering (CSMR-WCRE), 2014, pp. 164–173 (2014)

Peters, F., Menzies, T.: Privacy and utility for defect prediction: Experiments with morph. In: ICSE, pp.
189–199. IEEE (2012)

123



Autom Softw Eng (2015) 22:75–109 109

Podgurski, A., Leon, D., Francis, P., Masri, W., Minch, M., Sun, J., Wang, B.: Automated support for
classifying software failure reports. In: ICSE, pp. 465–475 (2003)

Powers, D.M.: Evaluation: from precision, recall and f-measure to roc, informedness, markedness & cor-
relation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)

Runeson, P., Alexandersson, M., Nyholm, O.: Detection of Duplicate Defect Reports Using Natural Lan-
guage Processing. In: ICSE, pp. 499–510 (2007)

Sandusky, R.J., Gasser, L., Ripoche, G.: Bug report networks: Varieties, strategies, and impacts in a f/oss
development community. In: MSR, Citeseer (2004)

Shihab, E., Ihara, A., Kamei, Y., Ibrahim, W., Ohira, M., Adams, B., Hassan, A., Matsumoto, K.: Predicting
re-opened bugs: A case study on the eclipse project. In: WCRE, Citeseer, pp. 249–258 (2010)

Shihab, E., Ihara, A., Kamei, Y., Ibrahim, W.M., Ohira, M., Adams, B., Hassan, A.E., ichi Matsumoto, K.:
Studying re-opened bugs in open source software. In: Empirical Software Engineering, pp. 1–38 (2012)

Sun, C., Lo, D., Wang, X., Jiang, J., Khoo, S.C.: A discriminative model approach for accurate duplicate
bug report retrieval. In: ICSE, pp. 45–54 (2010)

Sun, C., Lo, D., Khoo, S.C., Jiang, J.: Towards more accurate retrieval of duplicate bug reports. In: ASE,
pp. 253–262 (2011)

Tamrawi, A., Nguyen, T., Al-Kofahi, J., Nguyen, T.: Fuzzy set and cache-based approach for bug triaging.
In: CSMR, pp. 365–375. ACM, New York (2011)

Thung, F., Lo, D., Jiang, L.: Automatic defect categorization. In: 19th Working Conference on Reverse
Engineering (WCRE), 2012, pp. 205–214. IEEE (2012)

Tian, Y., Lawall, J., Lo, D.: Identifying linux bug fixing patches. In: ICSE, pp. 386–396. IEEE (2012a)
Tian, Y., Lo, D., Sun, C.: Information retrieval based nearest neighbor classification for fine-grained bug

severity prediction. In: WCRE, pp. 215–224 (2012b)
Wang, X., Zhang, L., Xie, T., Anvik, J., Sun, J.: An Approach to Detecting Duplicate Bug Reports using

Natural Language and Execution Information. In: ICSE, pp. 461–470 (2008)
Wu, R., Zhang, H., Kim, S., Cheung, S.C.: Relink: recovering links between bugs and changes. In: SIGSOFT

FSE, pp. 15–25 (2011)
Wurst, M.: The word vector tool user guide operator reference developer tutorial (2007)
Xia, X., Lo, D., Wang, X., Yang, X., Li, S., Sun, J.: A comparative study of supervised learning algorithms

for re-opened bug prediction. In: CSMR (2013)
Zaman, S., Adams, B., Hassan, A.E.: Security versus performance bugs: a case study on firefox. In: Pro-

ceedings of the 8th working conference on mining software repositories, pp. 93–102. ACM, New York
(2011)

Zhang, H., Gong, L., Versteeg, S.: Predicting bug-fixing time: an empirical study of commercial software
projects. In: Proceedings of the 2013 International Conference on Software Engineering, pp. 1042–1051.
IEEE (2013)

Zheng, Z., Wu, X., Srihari, R.: Feature selection for text categorization on imbalanced data. ACM SIGKDD
Explor. Newsl. 6(1), 80–89 (2004)

Zhou, J., Zhang, H., Lo, D.: Where should the bugs be fixed? more accurate information retrieval-based
bug localization based on bug reports. In: ICSE, pp. 14–24. IEEE (2012)

Zimmermann, T., Nagappan, N., Guo, P., Murphy, B.: Characterizing and predicting which bugs get
reopened. In: ICSE, pp. 1074–1083 (2012)

123


	Automatic, high accuracy prediction of reopened bugs
	Abstract
	1 Introduction
	2 Motivation
	3 Overall framework
	4 Imbalanced text feature selection
	4.1 Correlation coefficient
	4.2 Imbalanced feature selection

	5 RPComposer: a composite method
	5.1 Feature scores
	5.2 RPComposer

	6 Experiments and results
	6.1 Experiment setup
	6.2 Research questions
	6.3 RQ1: performance of ReopenPredictor
	6.4 RQ2: effect of varying the number of selected features
	6.5 RQ3: benefit of imbalanced feature selection
	6.6 RQ4: important features of ReopenPredictor
	6.7 RQ5: benefits of composite classification-based framework
	6.8 Discussion
	6.8.1 Longitudinal data setup
	6.8.2 Periodic update
	6.8.3 Qualitative analysis

	6.9 Threats to validity

	7 Related work
	7.1 Reopened bug reports
	7.2 Bug report management
	7.3 Empirical studies on bug tracking systems

	8 Conclusions and future work
	Acknowledgments
	References


